

Liferay Portal Performance
Best Practices

A practical tutorial to learn the best practices for
building high performing Liferay-based solutions

Samir Bhatt

BIRMINGHAM - MUMBAI

Liferay Portal Performance Best Practices

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2013

Production Reference: 1030613

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-368-8

www.packtpub.com

Cover Image by Faiz Fattohi (faizfattohi@gmail.com)

Credits

Author
Samir Bhatt

Reviewers
Gaurav Barot

Albert Coronado Calzada

Chintan Mehta

Acquisition Editor
Kartikey Pandey

Commissioning Editor
Harsha Bharwani

Technical Editors
Jalasha D'costa

Amit Ramadas

Project Coordinator
Sneha Modi

Proofreader
Maria Gould

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Production Coordinator
Aditi Gajjar

Cover Work
Aditi Gajjar

About the Author

Samir Bhatt is an Enterprise Architect with over 12 years of IT experience. He
has been working on Liferay-Portal-based solutions for the last four years. He has
co-authored a book, Liferay Beginner's Guide by Packt Publishing. He is also a Liferay
certified trainer and has delivered public and private training across the world.
Samir leads an architectural group at CIGNEX Datamatics. He extensively worked
on performance tuning of Liferay-Portal-based solutions. Apart from Liferay Portal,
Samir has also worked on many other technologies and frameworks including
Hadoop, MongoDB, Pentaho BI, Oracle, Java Swing, ICEfaces, ZK, Spring, Hibernate,
and Visual Basic.

Samir is also a very good speaker and has delivered various webinars on Liferay,
Pentaho BI, and MongoDB. He blogs at www.connect-sam.com.

I would like to specially thank my mentor and CTO of CIGNEX
Datamatics, Munwar Sharif, for encouraging me to write this book.

I sincerely thank the entire Packt Publishing team for providing
continuous support throughout this project.

Last but not least, I would like to give a big thanks to my parents,
my wife Hetal, and my little daughter Shreeya for supporting and
encouraging me throughout the project.

About the Reviewers

Gaurav Barot is a Liferay Architect having 8 years of industry experience, with
more than 4 years of experience in Liferay Portal technologies. He has executed
Liferay projects in various domains such as media, healthcare, insurance, and so
on. He has been involved in the complete life cycle of the project starting from
requirement gathering to deployment. He has worked on various versions of
Liferay from 5.x to 6.1. He is a certified trainer as well and has provided more
than 15 successful private and public training sessions to more than 100 trainees
across the globe.

He works with CIGNEX Datamatics, which is a global leader in Open Source
technologies. He leads Liferay Practice having nearly 200 members at his organization.
Gaurav also co-authored Liferay Beginner's Guide by Packt Publishing.

I would like to thank my parents and my two younger sisters, Kinjal
and Yogini, for their love and encouragement. A special thanks to
my wife Kruti and my lovely daughter Twisha; both of them have
been very tolerant and understanding during all the time I've spent
on the computer while reviewing this book.

Albert Coronado Calzada is a highly experienced IT professional with more
than 13 years of experience in Java EE, high performance portals, e-commerce,
and enterprise software solutions. Albert has completed his Engineering degree
in Information Technology and has pursued a Master's in Economic and Financial
Management of Companies.

Albert is currently working as a freelance software developer, technical trainer, and
consultant for international customers. Albert is an open source software contributor
and has released different applications for Liferay and Android.

Albert has also worked on Liferay Beginner's Guide and Instant Liferay Portal 6 Starter
by Packt Publishing.

Albert lives in Girona (Spain) and maintains a blog at http://www.
albertcoronado.com. You can contact him through Linkedin (es.linkedin.com/
in/albertcoronado/) or Twitter (@acoronadoc).

Chintan Mehta has over 10 years of progressive experience in Systems and Server
Administration of Linux and open source technologies, along with applications such
as Liferay, Alfresco, Drupal, Moodle, Magento, and Compiere. While developing
his expertise in these areas, he also enhanced his technical skills in database
administration, security, and performance tuning. He heads the Managed Cloud
Services practice at CIGNEX Datamatics, and is involved in creating solutions
and consulting customers on the cloud. Chintan has done Diploma in Computer
Hardware and has a Network certification from a reputed institute in India.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface	 1
Chapter 1: Architectural Best Practices	 7

The Liferay Portal reference architecture	 7
The Presentation tier	 9
The Networking tier	 9
The Web tier	 9
The Application tier	 9
The Database Repository tier	 10
The Search Repository tier	 10
The Media Repository tier	 10
The Active Directory tier	 10
Reference architecture characteristics	 10

Scalability	 11
Performance	 11
High availability and fault tolerance	 11
Security	 11

The Deployment sizing approach	 12
The reference hardware	 13
The performance benchmark test summary	 14
An example of sizing calculations	 15

Sample performance requirements	 15
Sizing calculations	 15

The Documents and Media Library architecture	 15
File System and Advanced File System stores	 16
The Database store	 16
The JCR store	 17
The CMIS store	 17
The S3 store	 18

The database architecture	 18
The read/write database	 18

Table of Contents

[ii]

Database sharding	 19
Static content delivery	 20

Content Delivery Network	 21
Content delivery through the web server	 21

The caching architecture	 22
Caching using Ehcache	 22

Ehcache replication using RMI	 22
Ehcache replication using Cluster Link	 23

Caching using Terracotta	 24
Web resource caching using Varnish	 25

The search architecture	 26
Apache Lucene	 26

Index storage on SAN	 26
Lucene Index replication using Cluster Link	 27

Apache Solr	 27
Summary	 29

Chapter 2: Load Balancing and Clustering Best Practices	 31
The basics of load balancing and clustering with Liferay	 32
Setting up Liferay Portal nodes	 33
Software load balancer configuration using the Apache Web Server	 35

Load balancer configuration using mod_jk	 35
Load balancer configuration using mod_proxy_ajp	 37
Load balancer configuration using mod_proxy_http	 39
Load balancing best practices	 41

Liferay Portal cluster configuration	 41
Session replication configuration	 42
Cache replication	 44

Ehcache replication using RMI	 45
Ehcache configuration using JGroups	 46
Ehcache replication using Cluster Links	 47
Ehcache clustering best practices	 47

Media Library configuration	 48
Network file storage using the Advanced File System store	 48
Database storage using the JCR store	 49
Database storage using DBStore	 52
Media Library clustering best practices	 52

Search engine configuration	 53
Lucene index storage on network storage	 53
Lucene index replication using Cluster Link	 54
Using the Apache Solr search engine	 54
Clustering best practices for the search engine	 56

Quartz scheduler configuration	 56
Summary	 57

Table of Contents

[iii]

Chapter 3: Configuration Best Practices	 59
Liferay Portal configuration best practices	 60

Servlet filter configuration	 60
The auto login filter	 60
The CAS filter	 61
The NTLM SSO filter	 61
The OpenSSO filter	 61
The SharePoint filter	 62
The GZip filter	 62
The Strip filter	 62
The ValidHtml filter	 63

Auto login hooks	 63
Counter increment	 63
User session tracker	 64
Direct Servlet Context	 64
Plugin repositories	 65
Pingbacks and trackbacks	 65
Google's blog search ping integration	 66

The asset view counter	 66
Document ranks and view count	 66
Scheduler configuration	 67
Inline permission checks	 69
Lucene Configuration	 70

Application Server configuration best practices	 70
Database connection pool configuration	 70
JVM configuration	 72

Garbage Collection	 72
The Java Heap configuration	 73

JSP engine configuration	 74
Thread pool configuration	 75

Apache Web Server configuration best practices	 76
Static content delivery	 76
GZip compression configuration	 78
Cache header configuration	 79
Apache Web Server MPM configuration	 80

Summary	 81
Chapter 4: Caching Best Practices	 83

Customizing the Ehcache configuration	 83
Hibernate Ehcache CacheManager	 85
Single-VM CacheManager	 86
Multi-VM CacheManager	 86

Ehcache configuration best practices	 86
Caching using Terracotta	 89
Summary	 92

Table of Contents

[iv]

Chapter 5: Development Best Practices	 93
UI best practices	 93

Reducing the number of JavaScript files	 94
Reducing the number of CSS files	 96
Using CSS image sprites	 96
Minifying JavaScript files	 98
JavaScript positioning	 99
Limiting the use of DOM operations	 100
Analyzing web page performance using tools	 100

Portlet development best practices	 101
Limiting the use of dynamic queries	 101
Liferay caching API	 102
Coding best practices	 103

Summary	 103
Chapter 6: Load Testing and Performance Tuning	 105

Getting ready for load testing	 106
Capturing load testing requirements	 106
Selecting load testing tools	 107

Apache JMeter	 107
BlazeMeter	 107
Apache Benchmark (ab)	 108

Preparing load testing scripts	 108
Setting up the load testing environment	 110
Conducting load tests	 110

Resource monitoring and performance tuning	 111
Liferay Portal server – monitoring and tuning	 111

JConsole	 111
VisualVM	 113
JVM – monitoring and tuning	 114
Tomcat thread – monitoring and tuning	 117
Database connection pool – monitoring and tuning	 119
Cache – monitoring and tuning	 121

Apache web server – monitoring and tuning	 123
Monitoring the database server	 124

CPU and memory usage	 124
Slow queries	 124
Connections	 125
Lock monitoring	 125

Monitoring logfiles	 125
Summary	 126

Index	 127

Preface
Liferay is the most popular portal based on open standards, written in Java. It
was named Leader in Gartner's Magic Quadrant for Horizontal Portals. Many
influential sites have been implemented with or have switched to Liferay Portal.
The Liferay platform is highly scalable to serve millions of pages to millions of users
on all web browsers, tablets, and mobile devices. We, at CIGNEX Datamatics, have
implemented more than 200 large enterprise portals using Liferay since 2006. I was
leading Liferay Practice at CIGNEX Datamatics with a staff of 240 Liferay experts.
We have tuned many Liferay-based sites, and also trained many administrators
and developers in Liferay. This book distills the hands-on approach of my project
engagements into a concise, practical book.

Liferay Portal Performance Best Practices will explain to you how to implement
high-performing, Liferay-based solutions by following various best practices.
The book not only explains the best practices in detail, but also provides the
detailed instructions to implement them. By following the logical flow of the
chapters, you will learn performance-related best practices that should be
followed during the architecture, design, development, deployment, and testing
phases. You will also learn best practices for conducting performance tuning
activities for a Liferay-based solution. By the end of this book you will have the
advanced knowledge to implement a high-performing, Liferay-based solution.

What this book covers
Chapter 1, Architectural Best Practices, talks about the Liferay Portal reference
architecture. It talks about various architectural options for implementing
high-performing, Liferay-based solutions.

Chapter 2, Load Balancing and Clustering Best Practices, teaches you how to implement
load balancing and clustering for a Liferay-based solution. It teaches you about
various configuration options for implementing clustering.

Preface

[2]

Chapter 3, Configuration Best Practices, teaches you various configurations for
improving performance of Liferay-based solutions. It talks about performance-related
configuration options for the Apache web server, the Tomcat server, Liferay Portal,
and so on.

Chapter 4, Caching Best Practices, talks about various options related to caching for
improving the performance of Liferay-based solutions. It also teaches you how to
configure Liferay Portal with the Terracotta cache server.

Chapter 5, Development Best Practices, talks about some of the key Liferay-specific
development practices for developing a high-performing, Liferay-based solution.

Chapter 6, Load Testing and Performance Tuning, teaches you how to perform load
testing and performance tuning exercises for a Liferay-based solution. It talks about
best practices and guidelines related to load testing and performance tuning. It talks
about how to monitor various resources during a load testing exercise in order to
fine-tune the solution.

What you need for this book
The following is the software that you will need for Liferay Portal Performance
Best Practices.

•	 Liferay Portal 6.1 CE GA2 Tomcat Bundle (http://downloads.
sourceforge.net/project/lportal/Liferay%20Portal/6.1.1%20GA2/
liferay-portal-tomcat-6.1.1-ce-ga2-20120731132656558.zip)

•	 Apache Web Server 2.x (http://httpd.apache.org/download.cgi)
•	 MySQL Community Server 5.5.29 (http://dev.mysql.com/downloads/)
•	 Terracotta Server Array, with Ehcache and Quartz (http://terracotta.

org/downloads/open-source/destination?name=terracotta-3.7.5-
installer.jar&bucket=tcdistributions&file=terracotta-3.7.5-
installer.jar)

Who this book is for
Developers and architects who already work on Liferay Portal will find this book
very useful. Also, system administrators who administer Liferay-Portal-based
solutions will find this book very useful.

http://downloads.sourceforge.net/project/lportal/Liferay Portal/6.1.1 GA2/liferay-portal-tomcat-6.1.1-ce-ga2-20120731132656558.zip
http://downloads.sourceforge.net/project/lportal/Liferay Portal/6.1.1 GA2/liferay-portal-tomcat-6.1.1-ce-ga2-20120731132656558.zip
http://downloads.sourceforge.net/project/lportal/Liferay Portal/6.1.1 GA2/liferay-portal-tomcat-6.1.1-ce-ga2-20120731132656558.zip
http://httpd.apache.org/download.cgi
http://dev.mysql.com/downloads/
http://terracotta.org/downloads/open-source/destination?name=terracotta-3.7.5-installer.jar&bucket=tcdistributions&file=terracotta-3.7.5-installer.jar
http://terracotta.org/downloads/open-source/destination?name=terracotta-3.7.5-installer.jar&bucket=tcdistributions&file=terracotta-3.7.5-installer.jar
http://terracotta.org/downloads/open-source/destination?name=terracotta-3.7.5-installer.jar&bucket=tcdistributions&file=terracotta-3.7.5-installer.jar
http://terracotta.org/downloads/open-source/destination?name=terracotta-3.7.5-installer.jar&bucket=tcdistributions&file=terracotta-3.7.5-installer.jar

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Instead of using SingleVMPoolUtil,
we will need to use the MultiVMPoolUtil class to store and retrieve objects from
the cache."

A block of code is set as follows:

/arrows/01_down.png=0,16,16
/arrows/01_left.png=16,16,16
/arrows/01_right.png=32,16,16
/arrows/01_up.png=48,16,16

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

package com.connectsam.development;

import com.liferay.portal.kernel.cache.SingleVMPoolUtil;
import java.util.ArrayList;
import java.util.List;

public class SingleVMPoolExample {
 public List<String> getTestList(String key){
 List<String> listOfStrings = null;

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"In JConsole, navigate to the MBeans tab and then expand net.sf.ehcache |
CacheStatistics | liferay-multi-vm-clustered."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so,
you can save other readers from frustration and help us improve subsequent
versions of this book. If you find any errata, please report them by visiting http://
www.packtpub.com/submit-errata, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata
are verified, your submission will be accepted and the errata will be uploaded on
our website, or added to any list of existing errata, under the Errata section of that
title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Preface

[5]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Architectural Best Practices
The most important aspect that affects the performance of a system is architecture. It
is often seen that systems fails to perform as expected because of wrong architectural
decisions. Liferay is a leading open source platform for developing high-performing
portals. In this chapter, we will focus on the architecture of Liferay-Portal-based
solutions. We will learn about various aspects which should be considered while
defining the architecture of a Liferay-based solution. By the end of this chapter, we
will learn about:

•	 The Liferay Portal reference architecture
•	 The Deployment sizing approach
•	 Documents and Media Library architecture options
•	 Database architecture options
•	 Architectural options for handling static resources
•	 Caching architecture options
•	 Search engine architecture options

The Liferay Portal reference architecture
Defining the architecture of a system from scratch requires an enormous amount of
effort for researching, investigating, and taking right architectural decisions. We
can reduce the effort by referring to the reference architecture for similar kinds
of solutions. We can also ensure including a set of architectural best practices
from the reference architecture. In this section, we will talk about the reference
architecture of Liferay-Portal-based solution. This reference architecture can be
used as a base for any Liferay-Portal-based portal solution. Of course, necessary
changes have to be made in the reference architecture depending upon specific
requirements. The rest of the chapter will help Liferay architects to make the right
architectural decisions for such changes.

Architectural Best Practices

[8]

Here is the reference architecture diagram of Liferay-Portal-based solution:

Firewall

Hardware

Load Balancer

Apache

Web Server 1

+

Software

Load Balancer

Apache

Web Server N

+

Software

Load Balancer

Tomcat

Application Server 1

Tomcat

Application Server N

Tomcat

Application Server 2

Tablets
Mobile

Devices
Computers

Network

Netwrok

Clustered Database Repository Search Repository

Database

Server 1

Database

Server N

Active Directory

Server

Media Repository

(Storage Area

Network)

Lucene

Search Index

Repository for

App Server 1

Lucene

Search Index

Repository for

App Server 2

Lucene

Search Index

Repository for

App Server N

Users

Chapter 1

[9]

The Presentation tier
As shown in the previous diagram, users of the portal will access the Portal
using tablets, mobile devices, or through PC browsers. Liferay Portal 6.1 supports
various devices, and we won't need any special component to render content for
mobile devices. Liferay Portal can even detect specific devices and respond with
device-specific content. Liferay also supports creating responsive web design using
its UI framework called AlloyUI.

The Networking tier
As shown in the reference architecture, every request will pass through Firewall.
Firewall will filter unsecure requests. All valid user requests will be passed to the
Hardware Load Balancer. The hardware load balancer is a hardware appliance
which distributes loads between multiple web servers. The hardware load balancer
can also deal with the failure of web servers. In case a of failure of any web server,
the hardware load balancer diverts traffic to working web servers. There are a number
of hardware load balancers available on the market. Some of the popular hardware
load balancer vendors include F5, Cisco, Radware, CoyotePoint, and Barracuda.

The Web tier
The Web tier includes a series of Apache Web Servers. As shown in the reference
architecture diagram, each Web Server is connected with each Application Server.
The Web Server acts as a Software Load Balancer for Application Servers. Web
servers can also act as components to serve static resources. The Apache Web Server
connects with the Liferay Portal application server using mod_jk, mod_proxy, or
mod_proxy_ajp connectors. These are popular connecters available with the Apache
Web Server.

The Application tier
The Application tier includes one or more Liferay Portal application servers.
Liferay Portal can be deployed on many different application servers. The reference
architecture recommends using the most popular Apache Tomcat Server. Application
servers are connected with web servers using the AJP protocol or the HTTP protocol.
As shown in the diagram, there is a communication link between Application Servers.
Each Application Server is connected with other Application Servers to replicate the
session information, and cache and/or search indexes. Each Application Server is
connected to dedicated Database Servers and Active Directory Servers.

Architectural Best Practices

[10]

The Database Repository tier
The Liferay Portal server connects to the Database Repository tier. For production
systems, it is advisable to set up multiple database instances with replication. Such
a setup ensures high availability of Database Servers. Liferay Portal works with
majority of open source and propriety databases. In our reference architecture,
we will use MySQL, which is one of the popular open source databases.

The Search Repository tier
Liferay Portal comes with an embedded Apache Lucene search engine. The Lucene
search engine stores search indexes in a filesystem. As shown in the reference
architecture diagram, each Application Server has its own search index repository
in the Search Repository tier. Search engine repositories can be synchronized by
the Liferay Portal server using the Cluster Link feature.

The Media Repository tier
Liferay Portal comes with a media repository, which includes a document library,
image gallery, and so on. Liferay Portal provides different options to store the media
repository content. By default, Liferay stores the media repository content on a
filesystem. It can be configured to store the media repository content on a database,
Java Content Repository (JCR), CMIS-based repository, or Amazon S3. As shown in
the reference architecture diagram, we have used a centralized filesystem to store the
media repository content. To avoid issues related to concurrent access on a centralized
filesystem, it is recommended to use Storage Area Network (SAN) as the centralized
filesystem to store the Media Library content.

The Active Directory tier
Liferay comes with its own user repository. Liferay maintains its user repository
in a database. But for production systems, it is recommended to integrate the user
repository with identity management systems. The reference architecture refers
using the Active Directory server. Liferay Portal connects with the Active Directory
Server using the LDAP protocol.

Reference architecture characteristics
In the previous section, we learned about various tiers of the reference architecture.
Let's understand how the reference architecture addresses architectural concerns.

Chapter 1

[11]

Scalability
As shown in the architecture diagram, horizontal scaling is used for both the
Web tier and the Application tier. Most of the components in the architecture are
decoupled and hence if the user base is increased, we can scale up by adding extra
nodes. We can establish linear scalability of the solution by using a performance
benchmarking exercise. This can enable us to increase the capacity of the system by
increasing 'x' number of Liferay application servers, web servers, or database servers.

Performance
The reference architecture divides the load of the system to multiple tiers. A static
resource's requests can be served by the Web tier directly. Also, the Web tier is load
balanced using the Hardware Load Balancer. So, the load on each web server is
also controlled. Similarly, all application requests will be served by the clustered
Application Server tier. The Application Server connects with the Database tier which
is again clustered to ensure the load is distributed. The reference architecture ensures
that the architecture of the solution is robust enough for delivering high performance.

High availability and fault tolerance
The reference architecture ensures that the most important tiers of the solutions are
clustered and load balanced to ensure that the system is highly available and fault
tolerant. As shown in the diagram, the Web tier, Application tier, and Database tier
are clustered, which means that if any nodes from these tiers go down, the system
will still respond to user requests.

Security
The reference architecture places Firewall in front of the Hardware Load Balancer,
which ensures that all the security threats are filtered. Depending upon the security
needs, it is advisable to set up a firewall between each tier as well. So for example,
the Web tier can access the Application tier, but the opposite can be prevented.
Depending upon the project need, the architecture supports configuring
SSL-based access.

Architectural Best Practices

[12]

The Deployment sizing approach
In the previous section, we learned about the Liferay Portal reference architecture.
The reference architecture is generic in nature. It can be used as a reference to define
an architecture that is more specific to a project. One of the important activities in
defining a specific architecture is sizing. We need to be sure of the number of Liferay
Portal application servers or web servers to meet performance expectations. In the
beginning of the project when the system is yet to be developed, it is impossible
to size the architecture with 100 percent accuracy. Hence, the idea is to size the
architecture based on previous benchmarks, and then review the sizing during the
load testing phase when the system is ready. Liferay Inc. publishes the performance
benchmark for every major Liferay Portal release. It is a best practice to use this
benchmark as a reference and size the deployment architecture of the solution. In
this section, we will learn how to size the deployment architecture of the Liferay-
Portal-based solution based on Liferay's performance benchmark whitepaper.

This section refers to the Liferay Portal 6.1 performance white
paper published by Liferay Inc.. This whitepaper can be
accessed through the following URL:
http://discover.liferay.com/LP=13/?i=Liferay_
Portal_6.1

The first step of the sizing activity is to capture some of the basic non-functional
requirements. The following table provides a list of these questions. The answers to
these questions will act as parameters for sizing calculations.

No. The requirement question Mandatory? Details
1 How many concurrent users will

log in at the same time?
Yes Login is the most resource-

consuming use case in Liferay
Portal. It is very important
to know the answer to this
question.

2 What is the number of
concurrent users accessing the
Message Board functionality
including login?

No The Liferay performance
benchmark report publishes
the result of this scenario.
If the project requirement
matches the scenario, we
can use this to size the
deployment architecture
more accurately.

Chapter 1

[13]

No. The requirement question Mandatory? Details
3 What is the number of

concurrent users accessing the
Blogging functionality including
login?

No If such a scenario
is applicable to our
requirement, we can derive
a more accurate deployment
architecture.

4 What is the number of
concurrent users accessing
the document management
functionality including login?

No Depending upon the project
requirement if such a scenario
exists, using this parameter
we can size the deployment
architecture more accurately.

Once we get the answers to these questions, the next step is to compare the
answers with performance benchmark results from the white paper and derive
the exact number of application servers we will need. The whitepaper establishes
linear scalability based on various tests. Based on the report, we can establish the
exact number of application servers that we will need to handle a specific number
of concurrent users. Before we jump on to the calculation, let us summarize the
performance benchmark report.

The reference hardware
In the performance benchmark test, Liferay Inc. used the following
hardware configurations:

Server type Configuration
Apache Web
Server

1 x Intel Core 2 Duo E6405 2.13 GHz CPU, 2 MB L2 cache (2 cores
in total)
4 GB memory, 1 x 146 GB 7.2k RPM IDE

Liferay Portal
Application Server

2 x Intel Core 2 Quad X5677 3.46 GHz CPU, 12 MB L2 cache (8
cores and 16 threads)
16 GB memory, 2 x 146 GB 10k RPM SCSI

Database Server 2 x Intel Core 2 Quad X5677 3.46 GHz CPU, 12 MB L2 cache (8
cores and 16 threads)
16 GB memory, 4 x 146 GB 15k RPM SCSI

Architectural Best Practices

[14]

The performance benchmark test summary
In the performance benchmark test, Liferay Inc. concluded the following:

No. Scenario Result summary
1 Isolated logins: During this test, a

number of concurrent users tried
to log in at the same time. Based on
this scenario, the breaking point of
the Liferay Portal application server
was identified. In this scenario, no
customizations were considered and
the Liferay login scenario with out of
the box home page was tested.

According to the results, one Liferay
Portal application server was able to
handle 27,000 concurrent logins at the
same time. After , concurrent login
requests if we increase the requests, the
application starts becoming loaded and
the response time increases.

2 Login with Legacy Simulator: In
this scenario a two-second delay was
included in one of the home page
portlets. As we build our application
on top of Liferay Portal and we
normally have some additional
processing time after login for
custom home page portlets, a delay
of two seconds was included to
simulate this scenario. This is the
realistic scenario for estimating
possible concurrent logins by a
server.

The results proved that the performance
of the system degrades after 6,300
concurrent login requests. That means
one application server should handle
6,300 concurrent login requests only. If
expected concurrent users are more than
6,300 but less than 12,600 concurrent
requests, one more application server
should be added in the cluster.

3 Message Board: In this scenario, a
number of concurrent users will log
in and perform various transactions
on the Message Board portlet.

It was proved that one application server
was stable until 5,800 concurrent requests.
After that, the system performance
started to degrade. So in this scenario,
one application server was able to handle
5,800 concurrent requests smoothly.

4 Blogging: In this scenario, a number
of concurrent users performed
blogging transactions, such as view
blog list, view blog entry, post new
blog, and so on.

The result proved that one application
server was able to handle 6,000 concurrent
requests smoothly.

5 Document management: In this
scenario, a number of concurrent
users accessed document
management functionalities.

The results proved that the system was
able to handle 5,400 concurrent requests
smoothly with one application server.

Chapter 1

[15]

An example of sizing calculations
We learned about the reference hardware and benchmark results. Now, let's size
the deployment architecture for a sample project.

Sample performance requirements
The example Portal solution should be able to handle 15,000 concurrent requests.
This is the only requirement that we received from the customer, and we need
to size our initial deployment architecture based on that.

Sizing calculations
Login is the most resource-consuming operation in a Liferay-based portal. Also, the
login use case takes care of authentication as well as rendering of the home page,
which is displayed after authentication. We have not received any use case-specific
performance needs. So for sizing, we can refer to the benchmark results of the Login
with Legacy Simulator scenario. According to the results of this benchmark test, one
Liferay Portal application server can handle 6,300 concurrent login requests. So to
handle 15,000 concurrent login requests, we will need three Liferay Portal application
servers. Generally, the load on the web server is less than 50 percent of application
servers. Hence, we can derive the number of web servers as half of the application
servers. So in our case, we will need two web servers (3 application servers/2). For the
database server as per our reference architecture, it is recommended to have a master-
slave database server. This calculation is valid for similar hardware configurations
as it was used in the benchmark performance test. Hence, we need to use the same
hardware configuration for the application server, web server, and database servers.

This calculation is an initial sizing calculation. More accurate
sizing calculations can be done only after the system is
developed and load testing is performed.

The Documents and Media Library
architecture
Documents and Media Library is one of the most important functionality of Liferay
Portal. It allows users to manage documents, images, videos, and other types of
documents. This functionality is designed in such a way that metadata is stored in the
database, while actual files are stored on pluggable repository stores. Liferay Portal
ships with various built-in repository stores. In this section, we will learn about these
repository stores and the best practices associated with them.

Architectural Best Practices

[16]

File System and Advanced File System stores
Both File System store and Advance File System store are similar with some
exceptions. Both of these store files on the filesystem. Advanced File System
stores additionally distributes files in a multiple folder structure to eliminate
limitations of the filesystem. The File System store is the default repository store
used by Liferay Portal. Compared to other repository stores, both of these stores
give better performance.

Liferay doesn't handle file locking when we use any of these two stores. Hence on
production environments, they must be used with Storage Area Network (SAN)
with file locking capabilities. Most of the SAN providers support file locking, but
this has to be verified before using them.

To get best performance results, it is recommended to use an Advanced File System
store with SAN. In our reference architecture, we have used the same approach for
the Media Library repository. Liferay can be configured to use the Advanced File
System store by using the following properties in portal-ext.properties:

dl.store.impl=com.liferay.portlet.documentlibrary.store.
AdvancedFileSystemStore
dl.store.file.system.root=<Location of the SAN directory>

The Database store
This repository store simply stores files in the Liferay database. Concurrent access
to files is automatically managed as files are stored in the database. From the
performance point of view, this store will give bad results when compared to File
System and Advanced File System stores. Also, if the Portal is expected to have
heavy use of the Media Library functionality, then this repository store will also
affect the overall performance of the Portal, as the load on the database will increase
for file management. It is not recommended to use this store unless the use of the
Media Library is limited. Liferay Portal can be configured to use the Database store
by adding the following property in portal-ext.properties:

dl.store.impl=com.liferay.portlet.documentlibrary.store.DBStore

Chapter 1

[17]

The JCR store
Java Content Repository (JCR) is the result of the standardization of content
repositories used across content management systems. It follows the JSR-170
standard specification. Liferay Portal also provides the JCR store, which can be
configured with the Media Library. The JCR store internally uses Apache Jackrabbit,
which is an implementation of JSR-170. Apache Jackrabbit also, by default, stores
files in a filesystem. It can be also configured to use the database for storing medial
library files. For the production environment if we plan to use JCR, it must be
configured to store files in the database. As on a filesystem, we can get file locking
issues. The JCR store is a good option for the production environment when it is not
possible to use the Advanced File System store with SAN. To configure Liferay to use
the JCR store, we need to add the following properties to portal-ext.properties:

dl.store.impl=com.liferay.portlet.documentlibrary.store.JCRStore

The CMIS store
Content Management Interoperability Services (CMIS) is an open standard that
defines services for controlling document management repositories. It was created
to standardize content management services across multiple platforms. It is the
latest standard used by most of the content management systems to make content
management systems interoperable. It uses web services and RESTful services that
any application can access. Liferay provides the CMIS store which can connect to any
CMIS-compatible content repositories. The metadata of the Media Library content will
be stored in Liferay, and the actual files will be stored in the external CMIS-compatible
repository. This repository store can be used when we need to integrate Liferay Portal
with external repositories. For example, Alfresco is one of the leading open source
content management systems. If we have a requirement to integrate the Alfresco
content repository with Liferay, we can use the CMIS store which will internally
connect with Alfresco using CMIS services. To configure Liferay with the CMIS
repository, we need to add the following properties to portal-ext.properties:

dl.store.impl=com.liferay.portlet.documentlibrary.store.CMISStore
dl.store.cmis.credentials.username=<User Name to be used for CMIS
authentication>
dl.store.cmis.credentials.password=<Password to be used for CMIS
authentication>
dl.store.cmis.repository.url=<URL of CMIS Repository>
dl.store.cmis.system.root.dir=Liferay Home

Architectural Best Practices

[18]

The S3 store
Nowadays, companies are moving their infrastructures to the cloud. It provides
great benefit in procuring and managing hardware infrastructure. It also allows
us to increase or decrease the infrastructure capacity quickly. One of the most
popular cloud providers is Amazon AWS. Amazon offers a cloud-based storage
service called Amazon Simple Storage Service (Amazon S3). The Liferay Media
Library can be configured to store Media Library files on Amazon S3. This is a
good option when the production environment is deployed on the Amazon Cloud
infrastructure. To configure Liferay to use Amazon S3 for the Media Library store,
we need to add the following properties to portal-ext.properties:

dl.store.impl=com.liferay.portlet.documentlibrary.store.S3Store
dl.store.s3.access.key=<amazon s3 access key id>
dl.store.s3.secret.key=<amazon s3 encrypted secret access key>
dl.store.s3.bucket.name=<amazon s3's root folder name>

The database architecture
Liferay Portal requires storing its data on database systems. It is possible to
store custom portlet data in a separate database. But for the core features of Liferay
Portal, we need to connect Liferay with a database. In our reference architecture,
we suggested using the MySQL cluster for this purpose. In this section, we will talk
about various deployment strategies for the database server.

The read/write database
In case of transaction-centric applications, it is a good idea to separate read and
write databases. In this situation, all write transactions will be executed on the
write database and all read transactions will be executed on the read-only database.
Using database replication mechanism, data from the write database is replicated
to the read database. By using this mechanism, we can optimize the write database
to perform extensive write transactions and the read database to perform extensive
read transactions. Liferay Portal supports configuring read and write databases
through portal-ext.properties. Here are some high-level steps to configure the
read/write database through portal-ext.properties.

1.	 In portal-ext.properties, append the following value at the end of
original values. This configuration change will load the following spring
configuration file during startup and load the rest of the read/write
database properties:
spring.configs=<Existing config files>, META-INF/dynamic-data-
source-spring.xml

Chapter 1

[19]

2.	 Add the following properties to portal-ext.properties to configure the
read database:
jdbc.read.driverClassName=<Read Database Driver Class Name>
jdbc.read.url=<Read Database JDBC URL>
jdbc.read.username=<Read Database User Name>
jdbc.read.password=<Read Database Password>

3.	 Add the following properties to portal-ext.properties to configure the
write database:
jdbc.write.driverClassName=<Read Database Driver Class Name>
jdbc.write.url=<Read Database JDBC URL>
jdbc.write.username=<Read Database User Name>
jdbc.write.password=<Read Database Password>

If data sources are configured through JNDI, we need to
configure the jdbc.read.jndi.name and jdbc.write.
jndi.name properties respectively for the read data source
and the write data source.

Database sharding
Database sharding is the architectural solution to separate the data of same the
tables in multiple database instances. Liferay supports this feature. Liferay Portal
can be used to host multiple portals within the same portal server using Portal
Instances (Companies). By default, Liferay Portal stores data of all the instances in
the same database. If we are hosting multiple portals using portal instances, the same
tables will have data from multiple instances. Gradually, tables will grow rapidly
because of the data from multiple portals. At some point in time, this will affect the
performance as tables grow rapidly, and for any request internally the system will
need to scan the data of all instances. We can configure multiple database shards
(separate databases), and we can provide how shards should be chosen. Depending
on the shard selection algorithm, each portal instance will be mapped to a specific
shard database. By using this architectural approach, data from multiple instances
will be distributed in multiple databases. By default, Liferay supports configuring
three shards. But we can add more shards by changing configuration files. We can
enable database sharding by changing portal-ext.properties. Here are some
high-level steps to configure database sharding:

1.	 Append the following property in portal-ext.properties to enable
database sharding:
spring.configs=<Existing config files>, META-INF/shard-data-
source-spring.xml

Architectural Best Practices

[20]

2.	 Configure database shards by adding the following properties in
portal-ext.properties:
#Shard 1
jdbc.default.driverClassName=<Database Driver Class Name for shard
1>
jdbc.default.url=<Database JDBC URL for shard 1>
jdbc.default.username=<Database User Name for shard 1>
jdbc.default.password=<Database Password for shard 1>
#Shard 2
jdbc.one.driverClassName=<Database Driver Class Name for shard 2>
jdbc.one.url=<Database JDBC URL for shard 2>
jdbc.one.username=<Database User Name for shard 2>
jdbc.one.password=<Database Password for shard 2>
#shard 3
jdbc.two.driverClassName=<Database Driver Class Name for shard 3>
jdbc.two.url=<Database JDBC URL for shard 3>
jdbc.two.username=<Database User Name for shard 3>
jdbc.two.password=<Database Password for shard 3>

If we want to add more than three shards, we will need to
provide our own shard-data-source-spring.xml with
more than three shards, and we need to provide s similar
configuration in portal-ext.properties for those
additional shards.

By default, shards will be assigned to each portal instance based on the round
ribbon algorithm. Liferay also supports the manual selection algorithm. This
algorithm allows for the selecting of a specific shard through the control panel.
To enable the manual shard selection algorithm, we need to add the following
property in portal-ext.properties:

shard.selector=com.liferay.portal.dao.shard.ManualShardSelector

Static content delivery
In any dynamic web application, majority of the web requests are for static
resources, such as JavaScript, CSS, images, or videos. The same rule also applies
to Liferay-Portal-based solutions. Hence, it is very important from an architectural
point of view how we serve these static resources. In a basic Liferay Portal setup,
static resources are served from the Liferay Portal application server. In this section,
we will learn about other options to serve static resources.

Chapter 1

[21]

Content Delivery Network
Content Delivery Network (CDN) is a large network of servers deployed across
the world to serve static resources. The same static resources are stored on multiple
servers across the world. When these static resources are requested, they will be
retrieved from a server nearby the location of user. This feature reduces response
time drastically. Liferay Portal also supports integration with CDNs. In Liferay
Portal, majority of the static resources are a part of themes. Liferay provides a way
to rewrite URLs of static resources within themes to a URL of the same resource
in CDN. By using this feature, we can also reduce the load on the Liferay Portal
application server by reducing the number of requests. To configure Liferay with
CDN, we need to perform the following steps:

1.	 Upload all the static resources from the theme into CDN. CDN providers
provide the UI to do the same. This step requires referring to the CDN
provider's documentation.

2.	 Add the following properties to the portal-ext.properties file:
cdn.host.http=<CDN host name to server static resources from http
request>
cdn.host.https=<CDN host name to server static resources from
https request>

This solution is highly recommended when the intended users are spread across
the globe.

Content delivery through the web server
If we serve static resources directly from the web server, it can reduce the number
of requests coming to the Liferay Portal application server. Also, static resources can
be served faster from the web server than the application server. All portal requests
pass through the web server. Hence, it is easy to filter static resource requests and
serve them directly from the web server. To implement this option, we do not need to
change any configuration on the Liferay Portal application. We need to copy all static
resources from all the Liferay plugins to the web server public directory. We need to
make changes in the web server configuration so that all the static resource requests
are directly served from the web server public directory. In this approach, we need to
ensure that we copy the static resources to the web server every time we deploy a new
version. This option can be used along with CDN to serve static resources of portlets.

It is recommended to create an automated shell script to copy
static resources from the Liferay Portal application server to the
Apache web server as a part of the deployment process.

Architectural Best Practices

[22]

The caching architecture
Caching is a very important aspect for any system to achieve high performance.
Liferay Portal provides integration with different caching frameworks. Liferay
Portal, by default, caches entity records, content, and so on. In this section, we
will learn about various caching options available with Liferay Portal.

Caching using Ehcache
Ehcache is a very powerful-distributed caching framework. Liferay Portal, by
default, comes with the Ehcache integration. The default configuration uses a
cache on local instances. This means that if we are using a clustered environment,
each node will have its own cache. So in a clustered environment, it is required
to replicate the cache across all the nodes. There are different options available to
replicate a cache across multiple nodes. Here are the options available to replicate
Ehcache across the cluster.

Ehcache replication using RMI
Ehcache framework supports cache replication using RMI. In this scenario, when
the server starts up using IP multicast, each node in the cluster will connect with
other nodes using RMI. All the cache updates are replicated to other nodes using
RMI. It is a kind of point-to-point connection between all the nodes in the cluster.
The following diagram explains how each node connects with the other to
replicate the cache:

Liferay Portal

Server 1

Liferay Portal

Server 2

Liferay Portal

Server 3

Liferay Portal

Server 4

RMI Link 3

RMI Link 1

Chapter 1

[23]

As shown in the preceding diagram, we have four Liferay Portal nodes in the cluster.
Each node is connected with each other. So in total, it will create around twelve RMI
links to replicate the cache across other nodes. This option uses a thread-per-cache
replication algorithm. Hence, it creates a massive number of threads for replicating
the cache over the cluster. Because of this algorithm, this option adds a lot of
overhead and affects the overall performance of the system.

Ehcache replication using Cluster Link
This option is available for the enterprise version of Liferay Portal. In this approach,
Liferay Portal creates a limited number of dispatcher threads that are responsible for
replicate cache over the cluster. As in this approach all requests pass through a single
place before they are actually distributed in the network, it gives a chance to remove
unnecessary requests. For example, if the same cache object is changed by multiple
nodes, instead of sending two requests to all the nodes to invalidate cache, only one
request will be sent. This feature reduces network traffic. The following architectural
diagram explains this feature in detail:

Liferay Portal

Server 1

Liferay Portal

Server 2

Liferay Portal

Server 3

Liferay Portal

Server 4

Cluster Link

As shown in the preceding diagram, all four Liferay Portal nodes are connected to
each other using Cluster Link. Internally, this feature uses UDP multicast to establish
a connection with cluster nodes. A small group of threads is created to distribute
cache update events to all the connected nodes. It is recommended to use this option
for Ehcache replication.

Architectural Best Practices

[24]

Caching using Terracotta
In the previous section, we talked about Liferay Ehcache integration. In order to
use Ehcache in a distributed environment, we need to replicate the cache across the
cluster. Another approach is to use the centralized caching server. All nodes connect
to the centralized cache server and store/retrieve cached objects. In this approach,
we do not need to worry about cache replication. Terracotta is one of the leading
products which provides this solution. Liferay Portal supports integration with
Terracotta. If a portal is intended to have a large amount of cache objects and a large
number of cache changes, it is recommended to go with this approach. Terracotta
also provides solutions for storing web sessions and quartz jobs. By using Terracotta,
we can even prevent session replication and replication of quartz job data. The
following diagram explains how Terracotta fits into the Liferay Portal architecture:

Liferay Portal

Server 1

Liferay Portal

Server 2

Liferay Portal

Server 3

Liferay Portal

Server 4

Terracotta

Server

As shown in the preceding diagram when we use Terracotta, we will not need any
communication between individual Liferay Portal application nodes. Each node will
directly communicate with Terracotta and store/retrieve cached objects, sessions,
and quartz data. It is recommended to use this architectural approach if the portal
is going to have huge cache objects. This approach gives the best performance by
omitting replication overhead.

Chapter 1

[25]

Web resource caching using Varnish
We have talked about the caching of objects at the Application tier. But in many
situations, it is even possible to cache whole web pages and deliver them directly
from the cache. This option can be used for content that doesn't change frequently.
This approach can reduce the load on the web server, application server, and database
server drastically, and also improve the overall response time. Such caching tools are
also called web application accelerators. Varnish is one of the popular open source
web application accelerators.

The following architectural diagram explains where Varnish can fit in our
reference architecture:

Tomcat

Application Server 1

Tomcat

Application Server N

Tomcat

Application Server 2

Firewall

Hardware

Load Balancer

Varnish

Server 2

Varnish

Server 1

Apache

Web Server N

Apache

Web Server 1

Network

Network

Clustered Database

Repository

Search Repository

Database

Server 1

Database

Server N

Active Directory

Server

Media Repository

(Storage Area

Network)

Lucene

Search Index

Repository for

App Server 1

Lucene

Search Index

Repository for

App Server 2

Lucene

Search Index

Repository for

App Server N

Architectural Best Practices

[26]

As shown in the preceding diagram, the Varnish server runs in front of web servers.
The Hardware load balancer will sent all the requests to the Varnish server. Based on
the configuration, the Varnish server will decide if the request should be served from
the cache or should be send to the web server. It provides a way to clear the cache
as well. Depending upon the hardware configuration of the web server, it is also
possible to run the Varnish server on the web server itself. This architectural option
can be used with many portals which serves kind of static contents. Some of the
examples include news portals and product catalogue portals.

For more information about Varnish please refer to the following URL:
https://www.varnish-cache.org/

The search architecture
Search is an inescapable feature in every portal application. Liferay Portal also
provides search functionality out of the box. Liferay Portal includes the search
framework which can be integrated with external search engines. In this section,
we will look at various search integration options available with Liferay Portal.

Apache Lucene
Liferay Portal, by default, uses the embedded Apache Lucene search engine. Apache
Lucene is the leading open source search engine available in the market. By default,
Liferay Portal's search API connects with the local embedded Lucene search engine.
It stores search indexes on the local filesystem. When we use Lucene in a clustered
environment, we need to make sure the indexes are replicated across the cluster.
There are different approaches to make sure the same search indexes are available
to all Liferay Portal nodes.

Index storage on SAN
One of the options is to configure Lucene to store indexes on a centralized network
location. Hence, all the Liferay Portal nodes will refer to the same version of indexes.
Liferay provides a way to configure indexes on a particular location. This approach
is recommended only if we have SAN installed, and the SAN provider handles
file locking issues. As indexes are accessed and changed too often, if SAN is not
able to handle file locking issues, we will end up having problems with the search
functionality. This option gives the best performance. To configure the location of the
index directory, we need to add the following property in portal-ext.properties:

lucene.dir=<SAN lucene index location>

Chapter 1

[27]

Lucene Index replication using Cluster Link
We have learned about the Cluster Link feature of Liferay Portal which replicates
Ehcache. Cluster Link also replicates Lucene indexes across the Liferay Portal nodes.
Cluster Link connects to all the Liferay Portal nodes using UDP multicast. When
Cluster Link is enabled, the Liferay search engine API raises an event on Cluster
Link to replicate specific index changes across the cluster. The Cluster Link
dispatcher threads distribute index changes to other nodes. This is a very powerful
feature. This feature doesn't require specialized hardware. But it adds overhead on
the network and the Liferay Portal server. This option is recommended if we cannot
go with centralized index storage on SAN.

Apache Solr
Apache Solr is one of the powerful open source search engines. It is based on the
Apache Lucene search engine. In simple words, it wraps the Lucene search engine
and provides access to Lucene search engine APIs through web services. Unlike
Lucene, Solr runs as a separate web application. Liferay provides integration with
Apache Solr as well. To integrate Apache Solr with Liferay, we need to install the
Solr web plugin. We can configure the URL of the Solr server by modifying the
configuration of the Solr web plugin. It is recommended to use Solr with Liferay
Portal when the Portal is expected to write a large amount of data in search indexes.
In such situations, Apache Lucene will add a lot of overhead due to index replication
over the cluster. As Apache Solr runs as a separate web application, it makes the
Portal architecture more scalable. The following diagram explains the basic
Liferay-Solr integration:

Tomcat

Application Server 1

Tomcat

Application Server N

Index Storage

Apache Solr Master

Tomcat Server

Tomcat

Application Server 2

Architectural Best Practices

[28]

As shown in the preceding diagram, Apache Solr is installed on a separate server.
The Apache Solr server internally stores indexes on the filesystem. All Liferay Portal
servers are connected with the Apache Solr server. Every search request and index
write request will be sent to the Apache Solr server.

In the preceding architecture, we are using a single Solr server for both read and
write operations. Internally, the Solr server performs concurrent read and write
operations on the same index storage. If the Portal application is expected to perform
heavy write and search operations on the Solr server, this architecture as explained
earlier will not give good performance. In such situations, it is recommended to
use the master-slave Solr setup. In this approach, one master and many slave Solr
servers are configured to work together. The master server will handle all the write
operations and the slave servers will handle all read and search operations. Here is
the diagram explaining the master-slave Solr setup:

Apache Solr Slave

Tomcat Server

Index Storage

Apache Solr Master

Tomcat Server

Index Storage

Tomcat

Application Server N

Read Index

Read Index
Read Index

Write Index

Write Index

Write Index

Tomcat

Application Server 2

Tomcat

Application Server 1

Index

Replication

Chapter 1

[29]

As shown in the preceding diagram, we have one Solr master server and one Solr
slave server. The Solr master server is configured such that it automatically replicates
indexes to the slave server. Each Liferay Portal application server will be connected
to both master and slave servers. The Liferay Solr web plugin provides a way to
configure separate Solr servers for read and write operations. To scale the search
functionality further, we can also configure separate slave servers for each Liferay
portal node. This will reduce the load on the slave server by limiting search requests.

Summary
We have covered most of the important architectural aspects that we should consider
while designing a Liferay-based portal. We learned about the reference architecture
of Liferay-Portal-based solutions and the sizing approach. We also learned about
various architectural options for managing the Document and Medial library,
caching, and static content delivery. We also talked about caching options available
to boost performance. In the last section, we learned various architectural options
available for the search functionality.

Now let's get ready to learn about load balancing and clustering in detail.

Load Balancing and
Clustering Best Practices

In the previous chapter, we learned the reference architecture and architectural best
practices of Liferay-Portal-based solutions. One of the key architectural concepts
which we learned in the previous chapter is load balancing and clustering. We
learned how horizontal scaling can fulfill performance and scalability needs. In this
chapter, we will learn how to configure the software load balancer and cluster for
Liferay-Portal-based solutions. We will also learn the best practices associated with
each configuration step. We will cover the following topics in this chapter:

•	 Basics of load balancing and clustering with Liferay
•	 Load balancer configuration

°° Apache Web Server configuration
°° Application Server configuration

•	 Clustering configuration
•	 Ehcache configuration
•	 Media Library configuration
•	 Search configuration
•	 Quartz job configuration

Let's gear up to start with the basics of load balancing and clustering with Liferay.

Load Balancing and Clustering Best Practices

[32]

The basics of load balancing and
clustering with Liferay
Load balancing is a technique to distribute load on multiple systems. In the previous
chapter, we talked about the reference architecture of Liferay-Portal-based solutions.
In our reference architecture, we referred to two levels of load balancing. The first
level of load balancing is done by the hardware load balancer. The hardware load
balancer distributes load among Apache Web Servers. As hardware load balancing
is very specific to the load balancer appliance, we will not cover it in this book.
The second level of load balancing is done by Apache web servers. Each Apache
web server performs the role of software load balancer and distributes load among
Liferay Portal application servers. In this chapter, we will focus on Apache Web
Server based software load balancing.

To learn best practices associated with load balancing and clustering of Liferay-
Portal-based solutions, we need to know how to configure the load balancer and
cluster. In the next few sections, we will learn how to configure the cluster of Liferay
Portal servers, which is similar to our reference architecture.

Apache
Web Server

2.x

Liferay
Portal Server 2
(Tomcat 7.x)

Liferay
Portal Server 1
(Tomcat 7.x)

Ehcache Replication
Session Replication

Search Index Replication
Quartz Job Replication

Lucene
Search Index
Repository for
App Server 1

Lucene
Search Index
Repository for
App Server 2

MySQL
Databse
Server 1

Media Repository
(JackRabbit)

Network

Chapter 2

[33]

As shown in the preceding diagram, we will configure the cluster of two Liferay
Portal application servers. We will need the following software components to
set up the clustered environment:

•	 Liferay Portal Community Edition 6.1 GA2
•	 Apache Web Server 2.X
•	 MySQL Community Server 5.5.29

It is not mandatory to use the exact versions as mentioned,
but the exercises within this chapter are verified on the
versions listed.

To configure the Liferay Portal cluster as shown in the preceding architecture
diagram, we will need four servers to set up the Apache Web Server, MySQL
Database server, and two Liferay Portal application servers. It is assumed that
Apache Web Server and MySQL Community Server are already installed and
running. Once these prerequisites are addressed, we will need to perform the
following high-level steps to configure the clustered environment:

•	 Setting up Liferay Portal Server nodes
•	 Software load balancer configuration using Apache Web Server
•	 Liferay Portal session replication configuration
•	 Liferay Portal Media Library configuration
•	 Liferay Portal Ehcache configuration
•	 Liferay Portal search configuration
•	 Liferay Portal quartz scheduler configuration

So let's start with Liferay Portal cluster configuration steps.

Setting up Liferay Portal nodes
As shown in the architecture diagram, we need to configure two Liferay Portal
server nodes. Throughout the book, we will refer to both Liferay Portal servers as
liferay-node-01 and liferay-node-02 respectively. Let's do that by following
the ensuing steps:

1.	 On liferay-node-01, create a directory named node-01 in the root
directory, and then extract the Liferay Portal 6.1 GA2 bundle in it. Similarly
on liferay-node-02, create a directory name, node-02, and extract the
Liferay Portal bundle in it.

Load Balancing and Clustering Best Practices

[34]

We created node-01 and node-02 directories for easy
reference to the Liferay installation directory throughout
the book. It may not be required on production setup.
Throughout the book we will refer to the node-01
directory for Liferay Portal installation on the liferay-
node-01 server and the node-02 directory for Liferay
Portal installation on the liferay-node-02 server.

2.	 Create a new database schema in the MySQL Database server using the
following command:
create database lportal character set utf8;

3.	 Now create the portal-ext.properties file in the node-01\liferay-
portal-6.1.1-ce-ga2& node-02\liferay-portal-6.1.1-ce-ga2
directory with the following content:

jdbc.default.driverClassName=com.mysql.jdbc.Driver
jdbc.default.url=jdbc:mysql://<MySQL Database Server IP>/lportal?u
seUnicode=true&characterEncoding=UTF-8&useFastDateParsing=false
jdbc.default.username=<MySQL Database User Name>
jdbc.default.password=<MySQL Password>

Make sure you provide the correct IP, username, and
password of the MySQL server with which the lportal
database is accessible.

We just installed the Liferay Portal server on both the Liferay portal nodes. We
created a database in the MySQL server and provided database configuration on
both the Liferay Portal nodes using the portal-ext.properties file.

In the book, we are implementing horizontal scaling as
both the Liferay Portal nodes are on separate servers.
But suppose we want to implement vertical scaling by
installing both the Liferay Portal nodes on the same server,
we will need to make sure that unique ports are used
for both the Liferay Portal nodes. For the Liferay Portal
Tomcat bundle, ports can be configured in server.xml.

Chapter 2

[35]

Software load balancer configuration
using the Apache Web Server
Now, both the Liferay Portal server nodes are ready. As a next step, we need to
configure the Apache Web Server to connect with both the Liferay Portal nodes and
also distribute the load on both the Liferay Portal nodes. The Apache Web Server
provides many options to connect with the Liferay Portal Tomcat server. But there
are three options which are more popular. Let's understand these options and the
scenarios in which they are best suitable.

Load balancer configuration using mod_jk
This option allows us to configure the load balancer using the mod_jk module of the
Apache Web server. Internally, the mod_jk module connects with the Liferay Portal
Tomcat server using the AJP protocol. Using this option, the Apache Web Server
distributes all requests on the AJP port of Liferay Portal Tomcat servers. Let's learn
how to configure the software load balancer using this option.

1.	 Download and copy the mod_jk module in the <APACHE_HOME>/
modules directory.

The mod_jk connector is available for download from the
following URL:
http://tomcat.apache.org/download-connectors.cgi

2.	 Create a new file called mod_jk.conf in the <APACHE_HOME>/conf directory,
and add the following configuration into it:
LoadModule jk_module modules/mod_jk.so
JkWorkersFile /etc/httpd/conf/workers.properties
JkShmFile /var/log/httpd/mod_jk.shm
JkLogFile /var/log/httpd/mod_jk.log
JkLogLevel info
JkLogStampFormat "[%a %b %d %H:%M:%S %Y] "
JkMount /* loadbalancer

In the preceding configuration, please make the changes to
the file paths according to your installation folder structure.

Load Balancing and Clustering Best Practices

[36]

3.	 Now edit the httpd.conf file located in the <APACHE_HOME>/conf directory,
and add the following line at the bottom:
Includemod_jk.conf

4.	 Add a new file called worker.properties in the <APACHE_HOME>/conf
directory, and add the following lines into it:
#Name of the load balancer workers
worker.list=loadbalancer
#Worker configuration for liferay-node-01
#AJP Connector port of node-01 on liferay-node-01 server
worker.node-01.port=8009
worker.node-01.host=<IP of liferay-node-01 server>
worker.node-01.type=ajp13
#Factor which decides the load sharing by this worker in the
cluster
worker.node-01.lbfactor=1
#Worker configuration for liferay-node-02
worker.node-02.port=8009
worker.node-02.host=<IP of liferay-node-02 server>
worker.node-02.type=ajp13
worker.node-02.lbfactor=1
#load balancer configuration properties
worker.loadbalancer.type=lb
#list of worker nodes that are part of the cluster
worker.loadbalancer.balance_workers=node-01,node-02
worker.loadbalancer.sticky_session=1
worker.loadbalancer.method=B

5.	 Now edit the server.xml file of liferay-node-01 located in node-01\
liferay-portal-6.1.1-ce-ga2\ tomcat-7.0.27\conf, and add the
jvmRoute attribute to the <Engine> tag as given here:
<Engine defaultHost="localhost" name="Catalina"
jvmRoute="node-01">

6.	 Similarly, add the jvmRoute parameter in server.xml of liferay-node-02.
Here the value of jvmRoute will be node-02.

7.	 We are ready to test our configuration. Restart both the Liferay Portal nodes
and the Apache Web Server to test the configuration. We can access Liferay
Portal directly by using the http://<Apache Web Server IP> URL.

Chapter 2

[37]

To connect the Apache Web Server with the Liferay Portal Tomcat server, we
installed the mod_jk module in the Apache Web Server. We then configured
the Apache Web Server to load the mod_jk module and provided the mod_jk
configuration parameters. We defined the logfile and shared memory file locations
and logfile formats for the mod_jk module. The most important configuration is
to add worker nodes on which we want to distribute the load. We defined this by
providing the worker configuration file. In the worker configuration file, we defined
two Liferay Portal nodes. We then configured the load balancer and added Liferay
Portal nodes to it. We configured the load balancer method to Busyness (B) which
means, the load balancer will distribute the requests depending upon the load on
Liferay Portal Tomcat servers. Other possible load balancer methods include By
Requests (distributes the load based on the number of requests and load factor of
the worker) and By Traffic (distributes load based on the traffic in bytes and load
factor). Finally, we enabled session stickiness. Session stickiness is used to distribute
all the requests for a specific session to a specific Liferay Portal Server node. Only in
case of failure of the specific node, subsequent requests will be served by the other
node. It is very important to use the sticky session feature to save resources. In order
to make sure the sticky session functionality works fine, we configured jvmRoute
in both the Tomcat nodes with unique values. The Apache Web Server appends
jvmRoute in the session ID and based on the jvmRoute value, the Apache Web
Server can ensure sending requests to the right Liferay Portal Tomcat node.

Load balancer configuration using
mod_proxy_ajp
Another way to configure the software load balancer using Apache Web Server is
through the mod_proxy_ajp and mod_proxy_balancer modules. This is a newer
approach introduced in Apache Web Server 2.2. It uses the mod_proxy module and
connects the Liferay Portal server using the AJP protocol. Let's understand how to
configure the software load balancer using this option.

1.	 Create a new file called mod_proxy_ajp.conf in the <APACHE_HOME>/conf
directory, and add the following content:
LoadModuleproxy_modulemodules/mod_proxy.so
LoadModule proxy_ajp_module modules/mod_proxy_ajp.so
LoadModule proxy_balancer_module /modules/mod_proxy_balancer.so

If you are using an existing Apache Web Server, before adding
these lines, make sure these modules are not enabled already
in the Apache Web Server configuration (<APACHE_HOME>/
conf/httpd.conf and all the included files).

Load Balancing and Clustering Best Practices

[38]

2.	 In the same file, add the following configuration settings:
<VirtualHost *:80>
 ServerName localhost.localdomain
 ErrorLog /var/log/apache2/ajp.error.log
 CustomLog /var/log/apache2/ajp.log combined

 <Proxy *>
 AddDefaultCharSet Off
 Order deny,allow
 Allow from all
 </Proxy>
 ProxyPass / balancer://ajpCluster/ stickysession=JSESSIONID
 ProxyPassReverse / balancer://ajpCluster/
stickysession=JSESSIONID
 <Proxy balancer://ajpCluster>
 BalancerMember ajp://<IP of liferay-node-01>:8009
route=node-01
 BalancerMember ajp:// <IP of liferay-node-02>:8009
route=node-02
 ProxySet lbmethod=byrequests
 </Proxy>
</VirtualHost>

3.	 Now edit the httpd.conf file located in the <APACHE_HOME>/conf directory,
and add the following lines at the bottom:
Include mod_proxy_ajp.conf

4.	 Now, edit the server.xml file of liferay-node-01 located in node-01\
liferay-portal-6.1.1-ce-ga2\ tomcat-7.0.27\conf, and add the
jvmRoute attribute to the <Engine> tag as shown here:
<Engine defaultHost="localhost" name="Catalina"
jvmRoute="node-01">

5.	 Similarly, add the jvmRoute parameter in server.xml of liferay-node-02.
Here the value of jvmRoute will be node-02.

6.	 Now restart both the Liferay Portal Servers and the Apache Web server, and
test the configuration using the http://<Apache Web Server IP> URL.

Chapter 2

[39]

This approach requires the mod_proxy, mod_proxy_ajp and mod_proxy_balancer
modules. These modules, by default, ship with the Apache Web Server binary.
We enabled them by using the LoadModule command. We then configured the
virtual host for our local instance. In the virtual host configuration, we provided the
locations of the logfiles. We added the load balancer using the <Proxy balancer>
tag. Again in the load balancer configuration, we provided the hostname and port
of both the Liferay Portal Servers. We also provided the jvmRoute value using the
route parameter. This parameter must match with jvmRoute configured in steps 4
and 5. We also configured the load balancing method to By Requests (byrequests).
This load balancing method distributes the load on both the Liferay Portal servers in
a round robin manner. We also configured the virtual host to route all the requests to
the load balancer using the mod_proxy configuration. We configured to use session
stickiness through the mod_proxy configuration.

Load balancer configuration using
mod_proxy_http
This method is very similar to mod_proxy_ajp. The only difference here is the load
balancer configuration. Here the Apache Web Server and the Liferay Portal Tomcat
server will connect using the HTTP or HTTPS protocol. So let's configure the load
balancer using this option.

1.	 Similar to previous options, we need to load the necessary modules. Create a
new file called mod_proxy_http.conf in the <APACHE_HOME>/conf directory
and add the following content:
LoadModuleproxy_modulemodules/mod_proxy.so
LoadModule proxy_http_module modules/mod_proxy_http.so
LoadModule proxy_balancer_module /modules/mod_proxy_balancer.so

If you are using an existing Apache Web Server, before
adding these lines, make sure these modules are not
already enabled in the Apache Web Server configuration.

Load Balancing and Clustering Best Practices

[40]

2.	 In the same file, add the following configuration settings:
<VirtualHost *:80>
 ServerName localhost.localdomain
 ErrorLog /var/log/apache2/http.error.log
 CustomLog /var/log/apache2/http.log combined

 <Proxy *>
 AddDefaultCharSet Off
 Order deny,allow
 Allow from all
 </Proxy>
 ProxyPass / balancer://httpCluster/ stickysession=JSESSIONID
 ProxyPassReverse / balancer://httpCluster/
stickysession=JSESSIONID
 <Proxy balancer://httpCluster>
 BalancerMember http:// <IP of liferay-node-01>:8080
route=node-01
 BalancerMember http:// <IP of liferay-node-02>:8080
route=node-02
 ProxySet lbmethod=byrequests
 </Proxy>
</VirtualHost>

3.	 Now edit the httpd.conf file located in the <APACHE_HOME>/conf directory
and add the following line at the bottom:
Include mod_proxy_http.conf

4.	 Now edit the server.xml file of liferay-node-01 located in node-01\
liferay-portal-6.1.1-ce-ga2\ tomcat-7.0.27\conf, and add the
jvmRoute attribute to the <Engine> tag as follows:
<Engine defaultHost="localhost" name="Catalina"
jvmRoute="node-01">

5.	 Similarly, add the jvmRoute parameter in server.xml of liferay-node-02.
Here the value of jvmRoute will be node-02.

6.	 Now restart both the Liferay Portal Servers and the Apache Web server and
test the configuration using the http://<IP of Apache Web Server> URL.

These steps are very similar to the previous option. The only difference is that we
are using the HTTP protocol. This connector allows us to establish an encrypted
connection between the web server and the Liferay Portal application server using
the HTTPS protocol.

Chapter 2

[41]

Load balancing best practices
We have learned three different methods of configuring the software load balancer
using the Apache Web Server. Now let's learn some of the best practices associated
with these options:

•	 The software load balancer configuration using mod_jk is most recommended
because mod_jk is a reliable and error free module compared to other options.
From the performance point of view it gives the best performance. The mod_
proxy_ajp module is similar to mod_jk but it is relatively new. If there is a
need to use a secured connection between the Apache Web Server and Liferay
Portal Tomcat server, we can consider using the mod_proxy_http module. It
provides easy configuration to implement this scenario.

•	 We learned that the Liferay Portal Tomcat server and the Apache Web Server
either connect using the AJP connector or the HTTP connector. None of
the connectors use both the connectors at the same time. The Liferay Portal
Tomcat server, by default, enables both the connectors. It is a best practice
to disable the connector which we are not using. This can save resources on
the Liferay Portal application server. We can disable any of the connectors by
commenting the respective <Connector> tag from the server.xml file of the
Liferay Portal Tomcat server.

•	 It is advisable to select the load balancer method carefully. Depending upon
the nature of the application, the right load balancer method should be
chosen. If we are using the mod_jk connector, it is recommended to use the
Busyness load balancer method. This will help in distributing requests on
Liferay Portal servers with respect to their current load.

Liferay Portal cluster configuration
In the previous section, we learned about the software load balancer configuration
using the Apache Web Server. In this section, we extend the setup by configuring
the cluster between Liferay Portal Server nodes. To set up a cluster of Liferay
Portal Server nodes, we need to ensure all shared resources are either centralized
or replicated. The following list highlights the resources that need to be handled
for cluster setup:

•	 Liferay Portal web sessions: For every user conversation, a web session
object is created and managed by the Liferay Portal application server.
A web session object stores important data related to a specific user
conversation. In a clustered environment, it is possible that subsequent
user requests are served by different Liferay Portal nodes. So, it is very
important to make sure that the same session object is available on all
clustered nodes.

Load Balancing and Clustering Best Practices

[42]

•	 Cache replication: Liferay Portal, by default, uses the Ehcache caching
framework for caching persistence and service layer resources. It is very
important to invalidate or replicate caches across the cluster to avoid stale
cache issues.

•	 Media Library: Media Library is one of the key features of Liferay. It is used
to store documents, videos, images, and so on. Liferay stores the metadata of
the Media Library content in the Liferay database, but the actual resources
are stored using various repository stores. So, we need to ensure that the
Media Library content is stored at a centralized place.

•	 Search indexes: Liferay provides a powerful built-in search feature.
The default installation uses the Lucene search engine to provide search
capability. The Lucene search engine stores the index on the filesystem.
It is very important to ensure that search indexes are either centralized or
replicated across all the nodes.

•	 Quartz jobs: There are various features in Liferay which internally use
scheduled jobs. In a clustered environment, it is very important to ensure
that all the nodes are aware about running scheduler jobs.

In this section, we will learn how to configure these resources to work in a clustered
environment. We will also learn about the best practices associated with each option.

Session replication configuration
Session replication is a technique to replicate the session information across all the
nodes. With the help of session replication, we can ensure automatic recovery after
the failover of any node. In our load balancer configuration, we configured session
stickiness which ensures all requests related to the same user session are served
through a specific node. Now suppose that node goes down; in this case, the load
balancer sends subsequent requests to another node in the cluster. If the new node
does not have the session information of the same user, it considers it as a new
session and in this situation the user will be logged out of the system. With the help
of session replication, we can avoid this situation and ensure transparent switching
between nodes.

Let's learn how to configure session replication.

1.	 Stop the Liferay Portal nodes if they are running.
2.	 Edit the server.xml file of liferay-node-01 located in node-01\liferay-

portal-6.1.1-ce-ga2\ tomcat-7.0.27\conf, and add the following
configuration inside the <Engine> tag:
<Cluster className="org.apache.catalina.ha.tcp.SimpleTcpCluster"
channelSendOptions="6">

Chapter 2

[43]

<Manager className="org.apache.catalina.ha.session.DeltaManager"
expireSessionsOnShutdown="false"
notifyListenersOnReplication="true"/>
<Channel className="org.apache.catalina.tribes.group.
GroupChannel">
<Membership className="org.apache.catalina.tribes.membership.
McastService"
address="228.0.0.4"
port="45564"
frequency="500"
dropTime="3000"/>
<Receiver className="org.apache.catalina.tribes.transport.nio.
NioReceiver"
address="auto"
port="5000"
selectorTimeout="100"
maxThreads="6"/>

<Sender className="org.apache.catalina.tribes.transport.
ReplicationTransmitter">
<Transport className="org.apache.catalina.tribes.transport.nio.
PooledParallelSender"/>
</Sender>
<Interceptor className="org.apache.catalina.tribes.group.
interceptors.TcpFailureDetector"/>
<Interceptor className="org.apache.catalina.tribes.group.
interceptors.MessageDispatch15Interceptor"/>
<Interceptor className="org.apache.catalina.tribes.group.
interceptors.ThroughputInterceptor"/>
</Channel>
<Valve className="org.apache.catalina.ha.tcp.ReplicationValve"
 filter=".*\.gif;.*\.js;.*\.jpg;.*\.png;.*\.
htm;.*\.html;.*\.css;.*\.txt;"/>
<Valve className="org.apache.catalina.ha.session.
JvmRouteBinderValve"/>

<ClusterListener className="org.apache.catalina.ha.session.
JvmRouteSessionIDBinderListener"/>
<ClusterListener className="org.apache.catalina.ha.session.
ClusterSessionListener"/>
</Cluster>

Load Balancing and Clustering Best Practices

[44]

3.	 Edit the web.xml file of liferay-node-01 located in node-01\liferay-
portal-6.1.1-ce-ga2\ tomcat-7.0.27\webapps\ROOT\WEB-INF and at
the bottom of the file before the </web-app> tag, add the following content:
<distributable/>

4.	 Now repeat steps 2 and 3 on liferay-node-02.
5.	 Restart both the Liferay Portal nodes.

With this configuration, changes in session replication between both the Liferay
Portal servers is set up. The Tomcat server provides a simple TCP cluster which
connects multiple Tomcat servers using the TCP protocol. In our configuration, we
used DeltaManager which identifies session changes and transfers these changes
to other nodes in the cluster. We have used IP multicast to connect both the Tomcat
servers. Once both the nodes connect with each other, they establish a set of sender
and receiver socket channels. The session replication data is transferred using
these channels. We have also configured various interceptors to intercept data
transfer. The replication manager checks the session data after every request and
accordingly transfers the changed session data to other nodes. For some kinds of
requests, it is sure that the session data is not going to change; for example, requests
for static resources like images, videos, and so on. So, it is unnecessary to check
the session data after such requests. We configured a filter for all such resources
in the replication valve configuration. The Application Server does not replicate
sessions of any application unless the application is enabled for session replication.
So, we enabled session replication for the Liferay Portal application by adding the
<distributable> tag in web.xml.

Session replication is not a mandatory requirement for cluster configuration. Session
replication consumes lots of server and network resources. So if there is not a real
need to handle transparent failover, it is advisable to avoid session replication.

Cache replication
Caching is a very important technique to boost the performance of the system.
Liferay Portal, by default, caches resources of the persistence layer and the service
layer. By default, Liferay Portal uses the Ehcache framework for caching, and it
caches resources in memory and the filesystem. In the clustered environment,
each Liferay Portal node will have its own copy of the cache. It is very important
to invalidate or replicate the cache on all the Liferay Portal nodes if the cache is
invalidated or updated on any of the nodes. To implement this we need to replicate
the cache. In this section, we will learn multiple options to replicate Ehcache across
the cluster.

Chapter 2

[45]

Ehcache replication using RMI
The Ehcache framework provides RMI (Remote Method Invocation) based cache
replication across the cluster. It is the default implementation for replication. The
RMI-based replication works on the TCP protocol. Cached resources are transferred
using the serialization and deserialization mechanism of Java. RMI is a point-to-point
protocol and hence, it generates a lot of network traffic between clustered nodes.
Each node will connect to other nodes in the cluster and send cache replication
messages. Liferay provides Ehcache replication configuration files in the bundle. We
can re-use them to set up Ehcache replication using RMI. Let's learn how to configure
Ehcache replication using RMI for our cluster.

1.	 Stop both the Liferay Portal nodes if they are running.
2.	 Add the following properties to the portal-ext.properties file of both

the Liferay Portal nodes:
net.sf.ehcache.configurationResourceName=/ehcache/hibernate-
clustered.xml
net.sf.ehcache.configurationResourceName.peerProviderProperti
es=peerDiscovery=automatic,multicastGroupAddress=${multicast.
group.address["hibernate"]},multicastGroupPort=${multicast.group.
port["hibernate"]},timeToLive=1
ehcache.multi.vm.config.location=/ehcache/liferay-multi-vm-
clustered.xml
ehcache.multi.vm.config.location.peerProviderProperties=peer
Discovery=automatic,multicastGroupAddress=${multicast.group.
address["multi-vm"]},multicastGroupPort=${multicast.group.
port["multi-vm"]},timeToLive=1
multicast.group.address["hibernate"]=233.0.0.4
multicast.group.port["hibernate"]=23304
multicast.group.address["multi-vm"]=233.0.0.5
multicast.group.port["multi-vm"]=23305

3.	 Now restart both the Liferay Portal nodes.

Liferay Portal uses two separate Ehcache configurations for the hibernate cache and
the Liferay service layer cache. Liferay ships with two different sets of configuration
files for each hibernate and service layer cache. By default, it uses the non-replicated
version of the cache file. Using the portal-ext.properties file, we can tell Liferay
to use the replicated cache configuration file. In the preceding steps, we configured
the replicated version of cache files for both the hibernate and service layer cache
using the net.sf.ehcache.configurationResourceName and ehcache.multi.
vm.config.location properties. Replicated Ehcache configuration files internally
use IP multicast to establish the RMI connection between each Liferay node. We
configured IP multicast and ports for establishing connections.

Load Balancing and Clustering Best Practices

[46]

Ehcache configuration using JGroups
Another option to replicate Ehcache is using JGroups. JGroups is a powerful
framework used for multicast communication. The Ehcache framework also
supports replication using JGroups. Similar to the RMI-based Ehcache replication,
Liferay also supports JGroup-based replication. Let's learn how to configure the
JGroup-based Ehcache replication.

1.	 Stop both the Liferay Portal nodes if they are running.
2.	 Add the following properties to the portal-ext.properties file of both the

Liferay Portal nodes:
ehcache.multi.vm.config.location=/ehcache/liferay-multi-vm-
clustered.xml
ehcache.multi.vm.config.location.peerProviderProperties=conne
ct=UDP(mcast_addr=multicast.group.address["hibernate"];mcast_
port=multicast.group.port["hibernate"];):PING:
MERGE2:FD_SOCK:VERIFY_SUSPECT:pbcast.NAKACK:UNICAST:pbcast.
STABLE:FRAG:pbcast.GMS
ehcache.bootstrap.cache.loader.factory=com.liferay.portal.cache.
ehcache.JGroupsBootstrapCacheLoaderFactory
ehcache.cache.event.listener.factory=net.sf.ehcache.distribution.
jgroups.JGroupsCacheReplicatorFactory
net.sf.ehcache.configurationResourceName=/ehcache/hibernate-
clustered.xml
net.sf.ehcache.configurationResourceName.peerProviderProperties=pe
erDiscovery=connect=UDP(mcast_addr=multicast.group.address["multi-
vm"];mcast_port=multicast.group.port["multi-vm"];):PING:
MERGE2:FD_SOCK:VERIFY_SUSPECT:pbcast.NAKACK:UNICAST:pbcast.
STABLE:FRAG:pbcast.GMS
multicast.group.address["hibernate"]=233.0.0.4
multicast.group.port["hibernate"]=23304
multicast.group.address["multi-vm"]=233.0.0.5
multicast.group.port["multi-vm"]=23305

3.	 Now restart both the nodes one by one to activate the preceding configuration.

The Ehcache replication configuration is very similar to the RMI-based replication.
Here, we used the UDP protocol to connect Liferay Portal nodes. With this option
both Liferay Portal nodes also connect with each other using IP multicast.

Chapter 2

[47]

Ehcache replication using Cluster Links
We learned about the JGroups- and RMI-based Ehcache replication. The Liferay
Enterprise version includes another powerful feature called Cluster Link, which
provides the Ehcache replication mechanism. Internally, this feature uses JGroups
to replicate the cache across the network. Let's go through the steps to configure
this feature.

1.	 Stop both the Liferay Portal nodes if they are running.
2.	 Now deploy the ehcache-cluster-web enterprise plugin on both the

Liferay Portal servers.
3.	 Now, edit portal-ext.properties of both the nodes:

cluster.link.enabled=true

ehcache.cluster.link.replication.enabled=true

net.sf.ehcache.configurationResourceName=/ehcache/hibernate-
clustered.xml

ehcache.multi.vm.config.location=/ehcache/liferay-multi-vm-
clustered.xml

4.	 Now restart both the Liferay Portal servers to activate this configuration.

In Chapter 1, Architectural Best Practices, we talked about this option. Unlike the
JGroups- or RMI-based Ehcache replication, this option centralizes all Ehcache
changes at one place and then distributes changes to all the nodes of the cluster.
This in turn reduces unnecessary network transfers.

This option is only available in the Liferay Enterprise version.
Hence, the preceding steps are applicable only if you are using
the Liferay Enterprise version.

Ehcache clustering best practices
We talked about different options to configure Ehcache replication. Let's learn
the best practices related to Ehcache replication.

•	 If there are more than two nodes in the cluster, it is recommended to
either use Cluster Link- or JGroups-based replication. If we are using
the Liferay Enterprise edition, it is recommended to use Cluster Link for
Ehcache replication.

•	 All three options that we discussed previously use IP multicast for
establishing connections with other nodes. The IP multicast technique
uses group IP and port to know other nodes in the same group. It is very
important to ensure that the same IP and port are used by the nodes of the
same cluster.

Load Balancing and Clustering Best Practices

[48]

•	 It is advisable to keep the group IP and port different for development,
testing, or staging environment to make sure that the nodes of other
environments do not pair up with the production environment.

•	 Cluster Link provides up to 10 transport channels to transfer cached
resources across the cluster. If the application is supposed to have a huge
cache and frequent cache changes, it is advisable to configure multiple
transport channels using the cluster.link.channel.properties.
transport configuration property.

Media Library configuration
Media Library is one of the most important features of Liferay Portal. The Media
Library content is divided into two repositories. The metadata of the Media Library
content is stored in the Liferay database. The actual media files are stored by default
on the filesystem. For a clustered setup, we need to make sure that the media files
are stored in a centralized repository, otherwise each node will have their own copy
of files. Liferay Portal provides various options to store media files in centralized
storage. Let's learn how to configure Media Library for the clustered environment
and then talk about best practices.

Network file storage using the Advanced File
System store
In Chapter 1, Architectural Best Practices, we talked about the Advanced File System
store. It's a pluggable Media Library repository store. It stores files on the filesystem,
but it divides files into multiple directories. This feature improves the efficiency in
locating the files, especially when the files are stored on the network filesystem. To
use this option in a clustered environment, we need to use a Storage Area Network
appliance or Network File System. We need to mount the storage SAN or the NFS
directory on both the Liferay Portal nodes. Let's learn how to configure Media
Library with the Advanced File System store.

1.	 Stop both the Liferay Portal nodes if they are running.
2.	 Add the following properties to portal-ext.properties of both the

Liferay Portal nodes:
dl.store.impl=com.liferay.portlet.documentlibrary.store.
AdvancedFileSystemStore
dl.store.file.system.root.dir=<SAN Directory>

3.	 Now restart both the Liferay Portal nodes one by one.

Chapter 2

[49]

We have configured Media Library to use AdvancedFileSystemStore, and also
provided a networked location where the Portal should store the Media Library
content. Both the Portal nodes will store content in the same filesystem location.
To use this option, we need to make sure the SAN appliance supports file locking,
as multiple nodes will access the filesystem at the same time. As this option requires
specialized hardware like SAN or NFS, it will add additional cost to the solution.

Database storage using the JCR store
Liferay Portal provides an option to store the Media Library content to the database
using the JCR store. Liferay Portal uses Apache Jackrabbit as JCR implementation.
Jackrabbit provides both filesystem- and database-based storage for the content. By
default, the Jackrabbit configuration uses filesystem-based storage. Another option is
to configure Jackrabbit to use the database for the Media Library content. Let's learn
how to configure Media Library using the JCR store.

1.	 Stop both the Liferay Portal nodes if they are already running.
2.	 Edit portal-ext.properties of both the nodes and add the

following configuration:
dl.store.impl=com.liferay.portlet.documentlibrary.store.JCRStore

3.	 Now edit node-01\liferay-portal-6.1.1-ce-ga2\data\jackrabbit\
repository.xml and make the following changes:

1.	 Comment the following lines from the file:
<FileSystem class="org.apache.jackrabbit.core.fs.local.
LocalFileSystem">
<param name="path" value="${rep.home}/repository" />
</FileSystem>

2.	 Uncomment the following lines and change the values as given in
the following code snippet. Make sure you provide the correct IP,
username, and password of the MySQL database:
<FileSystem class="org.apache.jackrabbit.core.fs.db.
DbFileSystem">
<param name="driver" value="com.mysql.jdbc.Driver"/>
<param name="url" value="jdbc:mysql:// {IP of MySQL Database
Server}/lportal"/>
<param name="schema" value="mysql"/>
<param name="user" value="{Database User Id}"/>
<param name="password" value="{Database Password}"/>
<param name="schemaObjectPrefix" value="J_R_FS_"/>
</FileSystem>

Load Balancing and Clustering Best Practices

[50]

3.	 Comment the following lines that appear within the <workspace>
tag:
<FileSystem class="org.apache.jackrabbit.core.fs.local.
LocalFileSystem">
 <param name="path" value="${wsp.home}" />
</FileSystem>
<PersistenceManager class="org.apache.jackrabbit.core.
persistence.bundle.BundleFsPersistenceManager" />

4.	 Uncomment and change the following lines that appear within the
<workspace> tag. Make sure you provide the correct IP, username,
and password of the MySQL database:
<PersistenceManager class="org.apache.jackrabbit.core.state.
db.SimpleDbPersistenceManager">
<param name="driver" value="com.mysql.jdbc.Driver" />
<param name="url" value="jdbc:mysql:// {IP of MySQL Database
Server}/lportal" />
<param name="user" value="{Database User Id}"/>
<param name="password" value="{Database Password}"/>
<param name="schema" value="mysql" />
<param name="schemaObjectPrefix" value="J_PM_${wsp.name}_"
/>
<param name="externalBLOBs" value="false" />
</PersistenceManager>
<FileSystem class="org.apache.jackrabbit.core.fs.db.
DbFileSystem">
<param name="driver" value="com.mysql.jdbc.Driver"/>
<param name="url" value="jdbc:mysql:// {IP of MySQL Database
Server}/lportal" />
<param name="user" value="{Database User Id}"/>
<param name="password" value="{Database Password}"/>
<param name="schema" value="mysql"/>
<param name="schemaObjectPrefix" value="J_FS_${wsp.name}_"/>
</FileSystem>

5.	 Uncomment the following lines of code within the <versioning> tag:
<FileSystem class="org.apache.jackrabbit.core.fs.local.
LocalFileSystem">
<param name="path" value="${rep.home}/version" />
</FileSystem>
<PersistenceManager class="org.apache.jackrabbit.core.
persistence.bundle.BundleFsPersistenceManager"/>

Chapter 2

[51]

6.	 Uncomment the following lines that appear within the <Versioning>
tag. Make sure you provide the correct IP, username, and password
of the MySQL database:
<FileSystem class="org.apache.jackrabbit.core.fs.db.
DbFileSystem">
<param name="driver" value="com.mysql.jdbc.Driver"/>
<param name="url" value="jdbc:mysql:// {IP of MySQL Database
Server}/lportal" />
<param name="user" value="{Database User Id}"/>
<param name="password" value="{Database Password}"/>
<param name="schema" value="mysql"/>
<param name="schemaObjectPrefix" value="J_V_FS_"/>
</FileSystem>
<PersistenceManager class="org.apache.jackrabbit.core.state.
db.SimpleDbPersistenceManager">
<param name="driver" value="com.mysql.jdbc.Driver" />
<param name="url" value="jdbc:mysql:// {IP of MySQL Database
Server}/lportal" />
<param name="user" value="{Database User Id}"/>
<param name="password" value="{Database Password}"/>
<param name="schema" value="mysql" />
<param name="schemaObjectPrefix" value="J_V_PM_" />
<param name="externalBLOBs" value="false" />
</PersistenceManager>

7.	 Finally, uncomment and change the following tag within the
<Clustering> tag. Make sure you provide the correct IP, username,
and password of the MySQL database:
<Cluster id="node_1" syncDelay="5">
<Journal class="org.apache.jackrabbit.core.journal.
DatabaseJournal">
<param name="revision" value="${rep.home}/revision"/>
<param name="driver" value="com.mysql.jdbc.Driver"/>
<param name="url" value="jdbc:mysql:// {IP of MySQL Database
Server}/lportal"/>
<param name="user" value="{Database User Id}"/>
<param name="password" value="{Database Password}"/>
<param name="schema" value="mysql"/>
<param name="schemaObjectPrefix" value="J_C_"/>
</Journal>
</Cluster>

Load Balancing and Clustering Best Practices

[52]

4.	 Now, replace the same file in the other node and change the id attribute
of the cluster tag to node_2.

5.	 Restart both the Liferay Portal nodes one by one.

In the preceding configuration, we first enabled the JCR store for Media Library.
This change will internally use Jackrabbit to store the Media Library content. By
default, configuration of Jackrabbit is stored in the repository.xml file. By default,
the Jackrabbit configuration stores the Media Library content in the data folder. We
configured the repository.xml file to store content in the same lportal database.
We can also configure the repository.xml file such that it stores the Media Library
content in a separate database. Jackrabbit internally divides the Media Library data
into the following types of data in the database:

•	 Repository-filesystem-related data
•	 Workspace-related data
•	 Versioning-related data
•	 Cluster-related data

We configured the repository.xml file such that the preceding data is stored in
the database.

Database storage using DBStore
Liferay Portal 6.1 introduced a new type of repository store to persist Media Library
content in the Liferay database. It is very simple to configure and provides better
performance than the JCR store with the database. Let's learn how to configure
Media Library to use DBStore.

1.	 Stop both the Liferay Portal nodes if they are already running.
2.	 Edit portal-ext.properties of both the nodes and add the following

configuration:
dl.store.impl= com.liferay.portlet.documentlibrary.store.DBStore

3.	 Restart both the Liferay Portal nodes one by one.

Media Library clustering best practices
We talked about two options to centralize Media Library content storage. In
Chapter 1, Architectural Best Practices, we briefly talked about other options too.
Let's talk about some of the best practices related to Media Library.

•	 In a clustered environment, the filesystem-based Media Library store
can only be used with SAN or NFS that supports file locking.

Chapter 2

[53]

•	 If the Media Library content needs to be stored in the database, DBStore
is preferred over the JCR store with database. DB Store is better for
performance and scalability.

•	 If JCR-based database storage is used for Media Library, it is recommended
to keep the JCR database separate.

•	 If JCR-based database storage is used for Media Library, it is very important
to ensure that the cluster node ID is unique in the Jackrabbit configuration
file (repository.xml).

Search engine configuration
Liferay Portal uses Apache Lucene as a search engine. Apache Lucene creates search
indexes to provide the search functionality. Apache Lucene, by default, stores search
indexes into the filesystem. To make sure the search functionality works properly
in a clustered environment, we need to synchronize search indexes of all the Liferay
Portal nodes. There are multiple options to make sure the search functionality works
properly in a clustered environment. Let's learn how to configure these options and
then talk about the best practices associated with them.

Lucene index storage on network storage
Liferay's Lucene configuration provides a way to configure the index storage directory
through the portal-ext.properties file. In order to use this option, we will need a
specialized Storage Area Network (SAN) appliance with file locking capabilities. Let's
learn how to configure Lucene to store index files on the SAN appliance.

1.	 Stop both the Liferay Portal servers if they are already running.
2.	 Add the following property to portal-ext.properties of both the Liferay

Portal nodes:
lucene.dir=<SAN based mapped directory>

3.	 Now start both the nodes one by one.
4.	 Now, access the Portal and sign in using admin user name. Then from the

dock bar, access Control Panel and then from the Server Administration
section, click on the button beside the Rebuild all search indexes label.

We have just added a property in the portal-ext.properties file that specifies
the location of the search indexes. Both the Liferay Portal nodes will specify the same
network storage directory and hence, both the nodes will refer to the same copy of
search indexes. As the index storage location has changed, we rebuilt search indexes
for the existing data. This is the easiest option to centralize search indexes.

Load Balancing and Clustering Best Practices

[54]

Lucene index replication using Cluster Link
We talked about the Cluster Link feature for Ehcache replication. Cluster Link is a
very powerful feature and it can be used for Lucene index replication as well. Using
Cluster Link, Liferay Portal sends index changes to all the other Liferay Portal nodes
in the group. Internally, Cluster Links uses JGroups to send the index data across to
other nodes. Let's learn how to configure Cluster Link to replicate search indexes.

1.	 Stop both the Liferay Portal nodes if they are already running.
2.	 Add the following properties to the portal-ext.properties file of both

the nodes:
cluster.link.enabled=true
lucene.replicate.write=true

3.	 Now restart both the nodes one by one.

We simply enabled Cluster Link through portal-ext.properties. We enable one
of the Lucene properties which generates replication events through Cluster Link for
every search index change. Cluster Link then distributes the event to all the nodes in
the cluster. With this option, each node will have their copy of search indexes.

Using the Apache Solr search engine
Apache Solr is one of the powerful open search engine projects. Liferay supports
Apache Solr integration. We can replace the default Lucene search engine with
Solr. Unlike Lucene, Solr runs as a separate application. In a clustered environment,
Liferay Portal nodes connect to centralize the Solr server to search and index the
data. Let's learn how to configure Liferay Portal with Solr.

1.	 Connect to the server on which Solr has to be installed and create a root
named Solr.

2.	 Download Apache Tomcat 7.0.34 server from the http://apache.
techartifact.com/mirror/tomcat/tomcat-7/v7.0.34/bin/apache-
tomcat-7.0.34.zip URL.

3.	 Extract the apache-tomcat-7.0.34.zip file in the solr directory.
4.	 Download Apache Solr 1.4.0 from the http://archive.apache.org/dist/

lucene/solr/1.4.0/apache-solr-1.4.0.zip URL.
5.	 Extract the preceding apache-solr-1.4.0.zip file to a temporary directory.

From the extracted directory, copy the content of the apache-solr-1.4.0/
example/solr directory to the solr directory created in step 1.

Chapter 2

[55]

6.	 In the preceding temporary directory, you can locate the Apache Solr WAR file
in the apache-solr-1.4.0/dist directory. Rename the WAR file to solr.war
and copy it to the solr/apache-tomcat-7.0.34/webapps directory.

7.	 In the catalina.sh file, add the JVM argument for -Dsolr.solr.
home=<fully qualified path of solr directory created in step 1>.

8.	 Start the Solr Tomcat server and access Solr Admin using the http://
localhost:8080/solr/admin URL.

9.	 Now from the Liferay Marketplace, download the Solr Search Engine CE
app. Liferay Marketplace can be accessed from the http://www.liferay.
com/marketplace URL. From the Marketplace, we will get a file with the
.lpkg extension.

10.	 Now, copy this file to deploy the directory of both the nodes and start them.
By default, the deployed directory will be there in the liferay-portal-
6.1.1-ce-ga2 directory.

11.	 On startup, both the Liferay nodes will deploy the solr-web plugin.
12.	 Once the solr-web plugin is deployed successfully, stop both the

nodes again.
13.	 Now edit node-01\liferay-portal-6.1.1-ce-ga2\ tomcat-7.0.27\

webapps\solr-web\WEB-INF\classes\META-INF\solr-spring.xml and
change the Solr server URL as follows:
<bean id="com.liferay.portal.search.solr.server.
BasicAuthSolrServer" class="com.liferay.portal.search.solr.server.
BasicAuthSolrServer">
<constructor-arg type="java.lang.String" value="http://
localhost:8080/solr" />
</bean>

14.	 Make the same changes in liferay-node-02.
15.	 Now on the Solr server, replace the solr/conf/schema.xml file with the

node-01/liferay-portal-6.1.1-ce-ga2/tomcat-7.0.27/webapps/solr-
web/WEB-INF/conf/schema.xml file from liferay-node-01.

16.	 Now restart the Solr Tomcat server. Then, restart both the Liferay
Portal nodes.

Load Balancing and Clustering Best Practices

[56]

We just configured Solr 1.4 as a separate application on the Tomcat server. We then
deployed the solr-web plugin on both the nodes. The solr-web plugin connects
to the Solr server. We configured the URL of our Solr server by changing the spring
configuration file. The Solr server uses a predefined schema for indexes. Liferay
Portal has its own schema for indexes. This schema file is supplied with the solr-
web plugin. We replaced the Solr server schema with the one provided with the
solr-web plugin. After the preceding setup, when we create any data like a user or
blog, indexes of related data will be created in the Solr server.

Clustering best practices for the search engine
We learned about three options available to configure the search engine to work
properly in a clustered environment. Let's learn some of the best practices associated
with them.

•	 If the Portal application is expected to write a few indexes, it is recommended
to use the Cluster Link option. It is a lightweight option and can be
configured quickly.

•	 As indexes are accessed and changed frequently, a network filesystem-based
index storage can create issues related to concurrent file access. Hence, it is
advisable to avoid using that option even though it gives the best performance.

•	 If the Portal application is expected to have a large amount of data written
to search indexes, it is advisable to use the Solr search engine instead of
other options.

•	 The Solr server provides a master/slave server concept. If the Portal
application is expected to have a huge amount of read and write transactions
on search indexes, it is advisable to use that option to manage heavy loads.

•	 If the Cluster Link option is used to replicate search indexes and the Portal
application is expected to have frequent index changes, it is advisable to
configure multiple transport channels for the Cluster Link.

Quartz scheduler configuration
Liferay Portal includes a built-in scheduler engine. There are many features in
Liferay Portal that use a scheduler; for example, expiration of web content, LDAP
import functionality, and so on. Liferay also supports setting up a scheduler for
custom portlets. Internally, Liferay Portal uses the Quartz scheduler. Quartz is a
very popular open source scheduler engine. Quartz scheduler stores data related
to scheduled jobs in the Liferay database. Hence in a clustered environment, it is
possible that multiple nodes start the same job at the same time. This can create havoc.
To prevent this situation, we need to configure Quartz for the clustered environment.

Chapter 2

[57]

Let's learn how to configure the Quartz scheduler to run in the clustered environment.

1.	 Stop both the Liferay Portal servers if they are running.
2.	 Add the following property to the portal-ext.properties file of both the

Liferay Portal nodes:
org.quartz.jobStore.isClustered=true

3.	 From the lportal database, drop all the tables starting with QUARTZ_. This
step is required if Liferay tables are already created.

4.	 Now restart both the Liferay Portal servers.

We just added a property to let the Quartz scheduler know that we are running
multiple instances of the Quartz scheduler connected to a single database. By
enabling this property, the Quartz scheduler will make sure that each job is executed
only once.

Summary
We have learned how to configure Liferay Portal in the clustered environment.
We also learned how to configure the software load balancer using the Apache
Web Server. We talked about various options and best practices related to load
balancing and clustering configuration. We covered how to configure Media Library,
search engine, cache, and scheduler to work in the clustered environment. With
this knowledge, we can decide the best options to configure a load balanced and
clustered environment.

Let's get ready to learn various configuration best practices to set up a high-
performing Liferay Portal.

Configuration Best Practices
In Chapter 2, Load Balancing and Clustering Best Practices, we learned about clustering
and load balancing best practices. We learned about the configuration of various
components for load balancing and clustering. In Chapter 1, Architectural Best Practices,
we learned about the reference architecture of a Liferay-Portal-based solution and its
various components. All of these components are configurable and allow us to change
their behavior according to our requirements. In this chapter, we will focus on the
configuration settings that can improve the performance of the overall solution. We
will also talk about the consequences of applying various configuration settings.

By the end of this chapter, we will learn about the following topics:

•	 Liferay Portal configuration best practices
°° Servlet filter configuration
°° Service bus configuration
°° Optional features configuration
°° Lucene configuration
°° Scheduler configuration

•	 Application Server configuration best practices
°° JVM configuration
°° Thread pool configuration
°° Other Application Server configurations

•	 Apache Web Server configuration best practices
°° Static content delivery
°° GZip compression configuration
°° Cache header configuration
°° MPM configuration

Configuration Best Practices

[60]

Liferay Portal configuration best practices
In this section, we will learn the various Liferay Portal configuration settings for
achieving best performance. These configuration settings are categorized into
multiple sections. Let's learn these configuration settings in detail.

Servlet filter configuration
Liferay Portal ships with a bunch of features which are implemented using servlet
filters. An example of such feature includes NTLM SSO integration, CAS SSO
integration, SharePoint integration, and so on. Irrespective of whether we are using
such features, all requests pass through a chain of filters depending upon the filter
configuration. So, a fraction of CPU and memory will be consumed by some of the
unnecessary filters for every request. Liferay Portal provides a way to disable these
features. In this section, we will learn about these filters in detail. We will also learn
how to disable them to improve performance.

The auto login filter
Liferay Portal implements the auto login feature using the auto login filter. The
auto login feature is used to sign in to the Portal automatically without using the
traditional sign-in mechanism. For example, if we want to sign in to Liferay Portal
by passing the username and password in URL requests, we will need to bypass the
traditional sign-in form. This feature intercepts every secure request using the HTTP
servlet filter. The auto login functionality is implemented using the hook-based
mechanism to allow customizations. The auto login filter delegates every request
to a chain of auto login hooks. If any of the auto login hooks return a success result,
it automatically signs the user in. By default, the auto login filter is used for the
following features:

•	 CAS SSO integration
•	 Facebook SSO integration
•	 NTLM SSO integration
•	 OpenID SSO integration
•	 OpenSSO integration
•	 Site Minder SSO integration
•	 The Remember Me feature (saves login information using the Remember Me

checkbox in the Sign in portlet)

Chapter 3

[61]

The auto login filter is also used when we define a custom auto login hook through
portal-ext.properties. If we are not using the auto login functionality in the
portal, it is recommended to disable the auto login filter. By disabling this filter, we
can improve the response time and load on the Portal's server. To disable this filter,
we need to add the following property in the portal-ext.properties file:

com.liferay.portal.servlet.filters.autologin.AutoLoginFilter=false

The CAS filter
Central Authentication Service (CAS) is an authentication system. Liferay Portal
supports Single Sign-on with CAS. As discussed in the previous section, most of the
SSO integrations in Liferay Portal are implemented using servlet filters. For CAS
integration, Liferay Portal includes the CAS filter. This filter intercepts all secure
requests. It redirects all the unauthenticated secure requests to the CAS server for
authentication. Even when we are not using CAS integration, all secure requests will
pass through this filter. It is recommended to disable this filter if we are not using
it. To disable this filter, we need to add following property to the portal-ext.
properties file:

com.liferay.portal.servlet.filters.sso.cas.CASFilter=false

The NTLM SSO filter
NTLM is a Windows protocol, which provides an authentication service. Liferay
provides support to authenticate users using NTLM. With this feature, users do not
need to sign in to Liferay Portal to access secure pages. The system automatically
authenticates the user based on their Windows login credentials. This feature is also
implemented using servlet filters. If this feature is not used, it is recommended to
disable the servlet filters to improve the response time. To disable filters associated
with this feature, we need to add the following properties in portal-ext.properties:

com.liferay.portal.servlet.filters.sso.ntlm.NtlmFilter=false
com.liferay.portal.servlet.filters.sso.ntlm.NtlmPostFilter=false

The OpenSSO filter
OpenSSO is one of the leading open source SSO providers. It is now known as
OpenAM. Liferay supports integration with OpenSSO. OpenSSO integration
is also implemented using the servlet filter. Again, if OpenSSO is not used, it is
recommended to disable the servlet filter. This can be done by adding the following
property to portal-ext.properties:

com.liferay.portal.servlet.filters.sso.opensso.OpenSSOFilter=false

Configuration Best Practices

[62]

The SharePoint filter
Liferay Portal supports accessing documents from Media Gallery through the
SharePoint protocol. Using this feature, we can directly access Media Gallery
documents in MS Office. This feature is implemented using the servlet filter. If
we are not using this feature, it is recommended to disable the SharePoint filter
to improve performance. This can be done by adding the following property to
portal-ext.properties:

com.liferay.portal.sharepoint.SharepointFilter=false

The GZip filter
It is a common technique to compress HTTP responses using GZip compression
to improve the response time by reducing network data transfer time. Liferay
Portal also supports this technique. Liferay implements this feature using the GZip
filter. Although this feature benefits by reducing the size of response, it uses server
resources to compress the response. If we are using the Apache Web server in front
of the Liferay Portal server, it is a good idea to compress the response on the Apache
Web Server. GZip compression on the Apache Web Server gives a better performance
than the Liferay Portal server. Hence, it is recommended to disable this feature in
Liferay and enable GZip compression in the Apache Web Server. This feature can be
disabled by adding the following property to portal-ext.properties:

com.liferay.portal.servlet.filters.gzip.GZipFilter=false

The Strip filter
Liferay provides a feature to remove blank lines from the generated response.
This feature is implemented using the Strip filter. It reduces the size of responses
and ultimately, helps in improving the network data transfer time. But it increases
processing on the Liferay Portal server for every request. We can remove blank lines
from the compiled JSP files by using the Tomcat server configuration. It doesn't add
any extra processing overhead. Hence, it is recommended to disable this filter if it is
possible to remove blank lines using Tomcat configuration. To disable this filter, we
need to add the following property to portal-ext.properties:

com.liferay.portal.servlet.filters.strip.StripFilter=false

Chapter 3

[63]

The ValidHtml filter
It is a common technique to add JavaScript out of the body tag to improve the page
rendering performance. But theoretically, it creates an invalid HTML response.
Because of this screen, readers cannot access the response. This filter moves
JavaScript files within the HTML body tag. This filter adds overhead for every
request. It is recommended to keep this filter disabled to improve performance.
This can be done by adding the following property to portal-ext.properties:

com.liferay.portal.servlet.filters.validhtml.ValidHtmlFilter=false

Auto login hooks
In the previous section, we talked about the auto login functionality. This
functionality is implemented using the auto login filter and auto login hooks.
As discussed earlier, if we are not using any of the auto login features, we can
disable the auto login filter. But if we are using any of the auto login functionality,
we cannot disable the auto login filter. In that scenario, the auto login filter will
process all the auto login hooks to perform auto login. So, it will process some of
the unnecessary auto login hooks as well. Liferay Portal provides a way to configure
only the required hooks. This can be configured by removing unnecessary hooks
from the following property:

auto.login.hooks=com.liferay.portal.security.auth.CASAutoLogin,com.
liferay.portal.security.auth.FacebookAutoLogin,com.liferay.portal.
security.auth.NtlmAutoLogin,com.liferay.portal.security.auth.
OpenIdAutoLogin,com.liferay.portal.security.auth.OpenSSOAutoLogin,com.
liferay.portal.security.auth.RememberMeAutoLogin,com.liferay.portal.
security.auth.SiteMinderAutoLogin

As shown in the property, by default, many auto login hooks are configured. We
should keep only the required auto login hooks and then add this property to
portal-ext.properties. It will improve the performance by removing
unnecessary processing for each secure request.

Counter increment
Liferay Portal uses counter services for generating unique IDs. Most of the built-in
and custom persistence services developed using service builder use counter service
to generate unique IDs. Counter services persist counters in the database table.
Counter services always communicate with the database to reserve counter values.
So once the reserved counter values are used, Liferay Portal again invokes database
queries and gets the next set of reserve values.

Configuration Best Practices

[64]

Liferay Portal provides a way to configure a number of reserve counters to be
maintained in the memory. By default, the reserve counter value is 100. So once
100 counters are used, the system will make a database call and get the next 100
counters. If the application is used to generate a large amount of data and it is using
the counter service for generating such data, it is recommend to set a higher value
for this counter. For production systems, it is recommended to configure the counter
value to 2000. We can configure the counter value by adding the following property
to portal-ext.properties:

counter.increment=2000

The counter service also allows us to define unique counters by the specific category.
For example, we can maintain separate counters for the Layout service. To do that,
we need to provide the counter category name while generating the new counter. For
such cases, we can even specify the counter increment value by adding the category
name after counter.increment in portal-ext.properties. For example, Liferay
maintains separate counters for Layout services. To specify different increment values
for Layout services, we can add the following property to portal-ext.properties:

counter.increment.com.liferay.portal.model.Layout=10

User session tracker
Liferay provides a feature for administrators to view user session activities. It
allows admin users to look at what a user is doing on the Portal. It is a great feature
for debugging and troubleshooting. But to capture user session activities, it uses a
high amount of server resources. It is recommended to disable this feature in the
production environment. To disable this feature, we need to add the following entry
to portal-ext.properties:

session.tracker.memory.enabled=false

Direct Servlet Context
Liferay includes a feature to speed up the loading of JSP files within Liferay's tag
libraries. Liferay's tag classes are used to dispatch requests to the JSP file. Dispatching
a request to the JSP file involves resource look up. It also involves execution of the filter
chain. This can be avoided for the tag libraries. To solve this issue, Liferay uses the
Direct Servlet Context mechanism. This feature improves the performance of Liferay
tag libraries. This feature also includes a developer-friendly capability that checks for
JSP modifications. Because of this capability, the system always checks for the last
modified date of the JSP pages. This capability is useful for developers but may not be
required for the production environment.

Chapter 3

[65]

Fortunately, Liferay provides a way to enable or disable this check through
configuration. It is recommended to disable this check in the production
environment. We can disable this check by adding the following property
to portal-ext.properties:

direct.servlet.context.reload=false

Plugin repositories
Liferay Portal uses online plugin repositories to check for updates. Liferay provides
a way to configure which plugin repositories it should check for. Internally, Liferay
runs a scheduler every day, which reloads all the configured repositories. This check
involves accessing the repository using the repository URL. It also checks for the new
version of the installed plugins. In the production environment, we usually avoid
making direct installations. Hence, this feature is not really useful in the production
environment. But still it consumes resources every day to download the metadata
of the configured plugin repositories. It is recommended to disable these features in
the production environment. To disable these features, we need to add the following
properties to portal-ext.properties:

plugin.repositories.trusted=
plugin.repositories.untrusted=
plugin.notifications.enabled=false

Pingbacks and trackbacks
Pingbacks and trackbacks are methods to request a notification when somebody
adds the link of a web resource to their documents. Liferay supports trackbacks
and pingbacks for collaboration features like blogs and message boards. Liferay
Portal provides a way to configure the trackback and pingback URLs for each blog
and message board posts. Internally, Liferay Portal sends requests to the pingback
and trackback URLs. This operation uses a good amount of server resources. If the
solution uses blogs and message board portlets but it does not need the pingback
and trackback features, the system will unnecessarily use system resources for these
features. Liferay Portal provides a way to disable these features. To disable them we
need to add the following properties to portal-ext.properties:

#
Todisable pingbacks in blogs portlet.
#
blogs.pingback.enabled=false
#
Todisable trackbacks in blogs portlet.
#
blogs.trackback.enabled=false

Configuration Best Practices

[66]

#
Todisable pingbacks in message board portlet.
#
message.boards.pingback.enabled=false

Google's blog search ping integration
Google provides a search service for blogs. We can search any blog using Google's
blog search service. To ensure a particular blog to appear in Google's blog search,
Google provides a ping service. This service is used to make sure that the blogs are
indexed by the Google blog search. Liferay Portal provides integration with Google's
blog search ping service. This integration internally calls Google's ping service when a
blog is created or updated. If the portal solution does not require Google blog search
integration, it is recommended to disable this option for better performance. This
feature can be disabled by adding the following property to portal-ext.properties:

blogs.ping.google.enabled=false

The asset view counter
Liferay uses the Asset framework for its content management system. Each web
content in Liferay is an Asset. Liferay provides a feature to maintain a view counter
for each asset. This feature ensures incrementing the view counter whenever the
asset is viewed from any of the portlets. Liferay maintains the view counter in the
database. Hence to maintain the view counter, internally, Liferay Portal executes
update queries. For each access of the page or asset, it will execute the update query.
This feature increases the load on the Database and Application servers, even for the
read-only access. If the Portal solution does not require the knowledge of the view
count of assets, it is recommended to disable this option. It can improve the response
time and performance of the system. To disable this feature, we need to add the
following property to portal-ext.properties:

asset.entry.increment.view.counter.enabled=false

Document ranks and view count
The Media Library portlet of Liferay provides a feature to record the download rank
and view count for documents. Whenever a document is downloaded or viewed, it
increments the view counter and the download rank. The recent download portlet
lists documents based on the document rank. Similarly, we can enable displaying
the view count in the Documents and Media display portlet. These features update
the data in the database whenever documents are downloaded or viewed. If these
features are not used in the portal, it is recommended to disable them. It will reduce
the load on the Database and Application Servers.

Chapter 3

[67]

To disable these features, we need to add the following properties to
portal-ext.properties:

#
To disable file rank for document library files.
#
dl.file.rank.enabled=false
#
To disable the read count for document library files.
#
dl.file.entry.read.count.enabled=false

Scheduler configuration
Liferay Portal provides built-in integration with the Quartz scheduler. Many of the
Liferay features use a scheduler. Depending upon the feature and its configuration,
the scheduled jobs are executed in the background. These background jobs run on
the same Liferay Portal servers. Hence, these jobs will use the Portal server resources.
Scheduled jobs are executed for all the features irrespective of whether they are used
or not. They may finish quickly but will consume some of the system resources.
Hence, it is advisable to disable schedulers associated with unused features. The
following built-in features use schedulers in Liferay Portal:

•	 The Calendar portlet
•	 LDAP integration
•	 The Web Content portlet
•	 The Message Board portlet
•	 The Blogs portlet
•	 The Media Library portlet
•	 The Announcement portlet

The Calendar portlet
Liferay's Calendar portlet uses a scheduler to send reminders for events. If the
Calendar portlet or event reminder feature is not used, it is recommended to disable
the scheduler job created for the Calendar portlet. To disable the scheduler used in the
Calendar portlet, we need to add the following property to portal-ext.properties:

calendar.event.check.interval=-1

Configuration Best Practices

[68]

LDAP integration
Liferay Portal provides built-in integration with LDAP. Liferay Portal uses the
scheduler to import users from the LDAP server to the Liferay Portal server. From
the Control Panel, we can configure whether to import users from LDAP or not. But
even though we disable the LDAP import, Liferay Portal runs the scheduler and
exists if it finds that the LDAP import is disabled. So in any scenario, the scheduler
job will get executed. If the LDAP import is not used, it is recommended to disable
the LDAP import scheduler itself to save server resources. This can be done by
adding the following property to portal-ext.properties:

ldap.import.interval=-1

The Web Content portlet
Liferay Portal provides a way to configure future expiration and review the date for
web content. In order to expire the web content and send ane-mail on the review date,
Liferay Portal uses a scheduler. If web content is not used, or web content is never
going to be expired or reviewed, it is recommended to disable the Web Content portlet
scheduler. This will improve the performance of the Application Server. This scheduler
can be disabled by adding the following property to portal-ext.properties:

journal.article.check.interval=-1

The Message Board portlet
The Message Board portlet provides a feature to ban users from accessing the
Message Board portlet. Liferay Portal runs a scheduler to unban the banned user
after a certain interval. If the Message Board portlet is not used or the ban user
functionality is not used, it is recommended to disable this scheduler. To disable
this scheduler, we need to add the following property to portal-ext.properties:

message.boards.expire.ban.job.interval=-1

The Blogs portlet
As discussed earlier, the Blogs portlet supports pingbacks and trackbacks. Liferay
Portal implements these features by using scheduler. Even if we disable these
features as discussed earlier, the system will still execute scheduled jobs. It is
recommended to disable the scheduler associated with these features if they are not
used. The Blogs portlet also provides the facility to publish blogs on future dates.
This feature is also implemented using scheduler. The scheduler will change the
status of the blog on the display date. We can also disable the scheduler associated
with this feature using the configuration. To disable these schedulers, we need to add
the following properties to portal-ext.properties:

blogs.linkback.job.interval=-1
blogs.entry.check.interval=-1

Chapter 3

[69]

The Media Library portlet
The Media Library portlet provides a feature to rank documents based on downloads.
Media Library maintains the top n ranks. It doesn't give a rank to every document.
Hence to maintain the top n ranked documents, the system has to clean up data in the
document rank table. This clean up feature is implemented using the scheduler. It is
recommended to disable this scheduler if the file ranking feature is not used. This can
be done by adding the following property to portal-ext.properties:

dl.file.rank.check.interval=-1

The Announcement portlet
The Announcement portlet provides a way to notify the user about the announcement
using e-mails. This feature is implemented using a scheduler. If the Announcement or
Alerts portlet is not used in the solution, it is recommended to disable this scheduler.
It can be done by adding the following entry to portal-ext.properties:

announcements.entry.check.interval=-1

We looked at the features of Liferay Portal that are using scheduler and learned
how to disable them. If none of the preceding features are used and none of the
customer portlets uses a scheduler, it is recommended to disable the scheduler
itself in Liferay Portal. This can be done by adding the following property to
portal-ext.properties:

scheduler.enabled=false

Inline permission checks
Since version 6, Liferay Portal has implemented database query-driven permission
checks while browsing or searching content. This permission check affects the
performance of the system because of heavy database queries. On the other side,
it is useful for mainly social collaboration features. If the Portal is not using social
collaboration features, we should switch off the inline permission check to improve
the performance of the system. Fortunately, Liferay provides a way to disable the
inline permission check using configuration. We need to add the following property
to portal-ext.properties to disable the inline permission check:

permissions.inline.sql.check.enabled=false

Configuration Best Practices

[70]

Lucene Configuration
As discussed earlier, Liferay uses Apache Lucene as a search engine. If the Portal is
heavily using search functionalities, it is required to tune the Lucene search engine.
We can tune the Lucene configuration parameters from portal-ext.properties.
The Lucene engine internally maintains index changes in memory and at certain
intervals persists index changes on the filesystem. If the Portal is designed to create a
large amount of indexes, one of the important configuration is how often we commit
index changes to the filesystem. By default, Liferay is configured to commit every
index change on the filesystem. For a large number of index writes, it will slow down
the system. It is recommended to configure the following parameters in the portal-
ext.properties file as starting values and tune them during a load test:

#Set the value of batch size to configure how many consecutive
#updates will trigger a commit to file.
lucene.commit.batch.size=10000

#Set the commit time interval in milliseconds after which commits
#will be triggered. It works in conjunction with batch size. If batch
#size is greater than zero then if batch size is not reached but time
#interval is reached then commit will be triggered.
lucene.commit.time.interval=300000

Application Server configuration
best practices
In Chapter 1, Architectural Best Practices, we talked about the reference architecture.
We choose Tomcat as an Application Server for Liferay Portal. We can choose to use
any supported Application Server with Liferay Portal. In this section, we will learn
the Application Server configuration best practices. We will focus on the Tomcat
server, which is a part of our reference architecture.

Database connection pool configuration
Liferay Portal uses the database connection pool to perform the database operation.
It is very important to size the database connection pool carefully. If the database
connection pool size is lower than what is needed, it will slow down the system.
Application threads will be in waiting mode because of busy connections. Similarly,
if the database connection pool is oversized, it will consume more resources of both
the Application Server and the Database Server. By default, the database connection
pool is configured using portal-ext.properties. Liferay Portal also supports the
database connection pool configuration through the Application Server. Liferay Portal

Chapter 3

[71]

can access the Application Server level data source using JNDI. It is recommended
to use the JNDI-based database connection pool configuration. Ideally, the database
connection pool should be sized at 20-30 percent of the thread pool configuration. In
other words if we configure the maximum size of the thread pool to 100, the database
connection pool should be sized around 20 to 30. In Chapter 2, Load Balancing and
Clustering Best Practices, we configured the Liferay Portal cluster. Let's learn how
to configure the database connection pool as per the best practices. This is in
continuation to the setup we have done in Chapter 2, Load Balancing and Clustering
Best Practices.

1.	 Stop both the Liferay Portal nodes if they are already running.
2.	 Edit portal-ext.properties of both liferay-node-01 and liferay-

node-02. Comment the following database connection properties:
jdbc.default.driverClassName=com.mysql.jdbc.Driver
jdbc.default.url=jdbc:mysql://<MySQL Database Server IP>/lportal?u
seUnicode=true&characterEncoding=UTF-8&useFastDateParsing=false
jdbc.default.username=<MySQL Database User Name>
jdbc.default.password=<MySQL Password>

3.	 Now, add the following property in the same file:
jdbc.default.jndi.name=jdbc/LiferayPool

4.	 Now, edit the ROOT.xml file located in node-01\liferay-portal-6.1.1-
ce-ga2\ tomcat-7.0.27\conf\Catalina\localhost and add the
following entry within the <Context> tag:
<Resource
auth="Container"
description="Portal DB Connection"
driverClass="com.mysql.jdbc.Driver"
maxPoolSize="75"
minPoolSize="10"
acquireIncrement="5"
name="jdbc/LiferayPool"
user="<MySQL Database User Name>"
password="<MySQL Password>"
factory="org.apache.naming.factory.BeanFactory"
type="com.mchange.v2.c3p0.ComboPooledDataSource"
jdbcUrl="jdbc:mysql://<MySQL Database Server IP>:3306/lportal?useU
nicode=true&characterEncoding=UTF-8&useFastDateParsing=fal
se"/>

Configuration Best Practices

[72]

Change the IP, username, and password with the appropriate
IP, username, and password of the MySQL database server
with which the lportal database is accessible.

5.	 Apply the same changes on node-02 and then restart both the Liferay
Portal nodes.

We changed the database connection properties in the Liferay Portal configuration
to use the JNDI-based data source. We defined the data source in ROOT.xml. We
used the c3p0 type connection pool. It internally uses the c3p0 connection pool
library. We can also use other types of connection pools like DBCP or Tomcat. As
per the given configuration, we defined the maximum connections to 75 and
minimum connections to 10. Connections will be created in bunches of five. It is
recommended to start with the given connection pool configuration and tune the
same during load testing.

JVM configuration
The Java Virtual Machine configuration affects the performance of any Java-based
application greatly. The key areas of JVM configuration include:

•	 Heap configuration
•	 Garbage Collector configuration

Both of these areas affect JVM performance a great deal. Let's learn Garbage
Collection and Heap configuration best practices in terms of Liferay Portal.

Garbage Collection
Garbage Collection is a process which runs frequently within the JVM and destroys
objects which are unused. Java provides different types of Garbage Collectors.
We can choose one of them by providing the JVM arguments. Java 6 provides the
following three types of Garbage Collectors:

•	 Serial Collector: This runs a single thread to perform the whole Garbage
Collection activity

•	 Parallel Collector: This performs minor Garbage Collections in parallel and
provides better performance

•	 Concurrent Collector: This garbage collector performs most of the stuff
in parallel and so will have very little pause in the application because of
Garbage Collection

Chapter 3

[73]

It is recommended to use Concurrent Collector, which gives the best performance.
Here are the recommended Garbage Collector configuration parameters:

-XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:+CMSParallelRemarkEnabled
-XX:ParallelGCThreads=16 -XX:+CMSCompactWhenClearAllSoftRefs -XX
:CMSInitiatingOccupancyFraction=85 -XX:+CMSScavengeBeforeRemark
-XX:+CMSConcurrentMTEnabled -XX:ParallelCMSThreads=2

The preceding JVM options enable the Concurrent Garbage Collector. It configures
to use 16 Parallel Garbage Collector threads. It is recommended to configure Parallel
Garbage Collector threads equal to the number of CPU cores. For example, if the
Liferay Portal server has two quad core CPUs, this parameter should be configured
to 8. It also configures to use two CMS (Concurrent Mark and Sweep) threads.
Garbage Collection is a very vast subject, and it is recommended to go through the
following URL for more details:

http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html

The Java Heap configuration
Another important aspect that affects the performance of Java Virtual Machine is
Java Heap. JVM divides Java Heap into multiple sections. These sections include:

•	 Eden space
•	 Survivor space
•	 Old or tenured space
•	 Permanent generation space
•	 Code cache

It is very important to configure these spaces carefully for better performance. JVM
Heap can be configured using JVM arguments. Here is the recommended JVM Heap
configuration for Liferay Portal installed on a server with less than 8 GB RAM:

-server -XX:NewSize=700m -XX:MaxNewSize=700m -Xms2048m -Xmx2048m
-XX:MaxPermSize=200m -XX:SurvivorRatio=6 –XX:TargetSurvivorRatio=90 –
XX:MaxTenuringThreshold=15

If the RAM of the server is greater than or equal to 8 GB, it is recommended to
configure the Liferay Portal tomcat server with the following JVM parameters:

-server -d64 -XX:NewSize=3072m -XX:MaxNewSize=3072m -Xms6144m
-Xmx6144m -XX:PermSize=200m-XX:MaxPermSize=200m -XX:SurvivorRatio=6
-XX:TargetSurvivorRatio=90 -XX:MaxTenuringThreshold=0-
XX:+UseParNewGC -XX:ParallelGCThreads=16-XX:+UseConcMarkSweepGC
-XX:+CMSParallelRemarkEnabled -XX:+CMSCompactWhenClearAllSoftRefs
-XX:CMSInitiatingOccupancyFraction=85 -XX:+CMSScavengeBeforeRemark

Configuration Best Practices

[74]

-XX:+CMSConcurrentMTEnabled -XX:ParallelCMSThreads=2-
XX:+UseLargePages -XX:LargePageSizeInBytes=256m
-XX:+UseCompressedOops -XX:+DisableExplicitGC -XX:-UseBiasedLocking
-XX:+BindGCTaskThreadsToCPUs -XX:+UseFastAccessorMethods

These JVM configuration settings are recommended
by the Liferay Engineering team and published in the
Liferay Deployment Checklist.

The given JVM configurations are initial configuration and these parameters
should be tuned during the Load Testing phase. Liferay portal tomcat server
includes setEnv.sh and setEnv.bat files where we can set these JVM arguments.

JSP engine configuration
Every J2EE application server uses a JSP engine to implement a JSP Specification.
The Tomcat server uses the Jasper JSP engine to implement the JSP Specification.
The Jasper JSP engine provides various configurations which can impact the
performance of the server. Let's learn how to configure the JSP engine to get the
best performance with Liferay Portal.

1.	 Stop both the Liferay Portal nodes if they are already running.
2.	 Edit web.xml located in the node-01\liferay-portal-6.1.1-ce-ga2\

tomcat-7.0.27\conf\ directory of liferay-node-01 and change the
JspServlet entry with the following line of code:
<servlet>
 <servlet-name>jsp</servlet-name>
 <servlet-class>org.apache.jasper.servlet.JspServlet</servlet-
class>
 <init-param>
 <param-name>development</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>
 <param-name>mappedFile</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>
 <param-name>genStrAsCharArray</param-name>
 <param-value>true</param-value>
 </init-param>
 <load-on-startup>3</load-on-startup>
</servlet>

Chapter 3

[75]

3.	 Apply the same changes to web.xml of liferay-node-02.
4.	 Start both the Liferay Portal nodes.

By default, Tomcat's JSP engine runs in the development mode. In the development
mode, the JSP engine frequently polls the filesystem for changes. In the production
environment, the frequency of JSP file changes is very low. Hence, JSP engine's
development mode adds overhead on the server. We disabled the development
mode by setting it to false. By default, the Jasper JSP engine converts the JSP file
to the servlet in such a way that each line of JSP becomes a print statement. This
feature helps in debugging issues but affects the performance of the server. We
disabled this option by configuring the false value for the mappedFile parameter.
If text strings in JSP are generated as character arrays, it can improve the
performance. We enabled this by adding the genStrAsCharArray parameter.

Thread pool configuration
In Chapter 2, Load Balancing and Clustering Best Practices, we learned about the AJP
connector of the Liferay Portal Tomcat server. We configured ports of the AJP
connector. We configured the Apache Web Server to connect with the Liferay Portal
Tomcat server using the AJP port. For every request, the Tomcat server creates a
worker thread. The Tomcat server maintains a pool of worker threads for better
performance. It is very important to configure this thread pool very carefully. If the
thread pool is configured with a limited number of threads, requests will be queued
up in a waiting state. If the thread pool is oversized, it will consume more server
resources and ultimately affect the performance of the system. It is recommended to
configure the initial thread pool configuration in the server.xml file as follows:

<Connector port="8019" maxHttpHeaderSize="8192"
maxThreads="50" minSpareThreads="50" maxSpareThreads="50"
enableLookups="false" acceptCount="100" redirectPort="8443"
protocol="AJP/1.3"
connectionTimeout="20000" disableUploadTimeout="true"
URIEncoding="UTF-8" />

In the preceding configuration, we have set the maximum number of threads in the
thread pool to 50. This is the initial configuration and during the load test we need to
tune this value. We also configured the maximum allowed waiting requests if all the
worker threads are occupied by using the acceptCount attribute. We also configured
the connection timeout for worker threads.

Please refer to the following URL for more details on connector attributes:
http://tomcat.apache.org/tomcat-7.0-doc/config/ajp.html

Configuration Best Practices

[76]

Apache Web Server configuration
best practices
In Chapter 2, Load Balancing and Clustering Best Practices, we configured the software
load balancer using the Apache Web Server. We discussed that around 20 percent
to 30 percent of the load of the system will be handled by the Apache Web Server.
It is very important to follow performance best practices in Apache Web Server
configuration to get the best performance. In this section, we will learn performance
best practices related to the Apache Web Server configuration.

Static content delivery
In Chapter 1, Architectural Best Practices, we discussed about delivering static
content using the Apache Web Server. Delivering static resources of the Liferay
Portal through the Apache Web Server can improve the response time enormously.
When static resources are delivered through the Apache Web Server, no Application
Server overhead is added and ultimately, it improves the response time and
performance. We learned how to configure the software load balancer using the
mod_jk module of Apache Web Server in Chapter 2, Load Balancing and Clustering
Best Practices. Let's learn how to extend this configuration and deliver static content
directly through the Apache Web Server.

1.	 Stop both the Liferay Portal nodes if they are already running.
2.	 Copy the following content from liferay-node-01 to the <APACHE_HOME>/

htdocs directory of the Apache Web Server:
°° node-01\liferay-portal-6.1.1-ce-ga2\ tomcat-7.0.27\

webapps\ROOT\html

°° node-01\liferay-portal-6.1.1-ce-ga2\ tomcat-7.0.27\
webapps\ROOT\layouttpl

°° node-01\liferay-portal-6.1.1-ce-ga2\ tomcat-7.0.27\
webapps\ROOT\wap

°° node-01\liferay-portal-6.1.1-ce-ga2\ tomcat-7.0.27\
webapps* (except the root directory)

3.	 Edit the mod_jk.conf file located in the <APACHE_HOME>/conf directory,
and add the following line of code after the JkMount /* loadblancer line:
JkUnMount /*.js loadbalancer
JkUnMount /*.png loadbalancer
JkUnMount /*.jpg loadbalancer
JkUnMount /*.gif loadbalancer
JkUnMount /*.ico loadbalancer
JkUnMount /*.swf loadbalancer

Chapter 3

[77]

4.	 Now restart both the Liferay Portal nodes one by one and then restart the
Apache Web Server.

In the given steps, we copied all the content from the Liferay Portal node to the
public directory of the Apache Web Server. We then disabled delivering static
resources through the load balancer. That in turn delivers all unmounted static
resources from the Apache Web Server's htdocs directory. CSS files are also static
files. They can be served from the Apache Web Server. We intentionally did not
configure the Apache Web Server to serve CSS files because Liferay Portal 6.1 CSS
files can have dynamic code. Liferay Portal 6.1 uses the SASS framework to parse
dynamic code of CSS files when they are requested. If you are using an earlier
version of Liferay, we can also serve CSS files through the Apache Web Server.

If we configure static resource delivery through the Apache Web Server, we need to
make sure that we synchronize static resources from the Liferay Portal node to the
Apache Web Server after every deployment. It is recommended to make this process
automatic by creating shell scripts.

One of the UI best practices is to reduce the number of HTTP requests for static
resources. This can be done by merging static resources like JavaScript. Liferay
provides a built-in feature that merges most common JavaScript files dynamically.
Liferay defines the most common JavaScript files used by an unauthenticated user
using the javascript.barebone.files property. Similarly, it defines the most
common JavaScript files used by an authenticated user using the javascript.
everything.files property. Liferay combines these JS files into one file and
stores in the Application Server's temp directory. Each and every page loads
either the barebone or everything JS bundle. They load these JS files by calling
everything.jsp and barebone.jsp.
As Liferay combines lots of JS into one file, it will be useful if we can serve these
large JS files directly through the Web Server. We can do that by performing the
following steps:

1.	 Access barebone.jsp and everything.jsp from the browser and save
them into the local system.

barebone.jsp can be accessed by using http://<Apache
Web Server IP>/html/js/barebone.jsp?mini
fierType=js&minifierBundleId=javascript.
barebone.files and everything.jsp can be accessed
by using http://<Apache Web Server IP>/html/js/
everything.jsp?minifierType=js&minifierBundleId
=javascript.everything.files.

2.	 Now copy the downloaded barebone.jsp and everything.jsp to the
<APACHE_HOME>/htdocs /html/js/ directory.

Configuration Best Practices

[78]

3.	 Edit the mod_jk.conf file located in the <APACHE_HOME>/conf directory,
and add the following line of code after the JkMount /* loadblancer line:
JkUnMount /html/js/barebone.jsp loadbalancer
JkUnMount /html/js/everything.jsp loadbalancer

4.	 Now restart the Apache Web Server.

In these steps, we placed the generated barebone.jsp and everything.jsp
responses on the Apache Web Server in the same context path. We also configured
the Apache Web Server to deliver everything.jsp and barebone.jsp directly
from the Apache Web Server public directory. These two files are required to be
synchronized whenever any of the JS listed in the javascript.barebone.files or
javascript.everything.files property. Even if either of the two properties is
changed in the portal-ext.properties file, it is required to copy the latest version
of everything.jsp and barebone.jsp on the Apache Web Server.

GZip compression configuration
In the servlet filter configuration section, we talked about disabling the GZip filter
of the Liferay Portal server to improve performance. We talked about taking care
of GZip compression, although the Apache Web Server gives better performance.
Most of the browsers support compressed resources. It will improve the network
data transfer if we can compress the HTTP response before sending it to the browser.
Browsers will then decompress the response before rendering.

GZip is a famous compression algorithm supported by almost all the browsers. The
Apache Web Server can be configured to compress the HTTP response using the
GZip compression algorithm. Let's learn this by applying it to our setup.

1.	 Add a new file, mod_deflate.conf, in the <APACHE_HOME>/conf directory,
and add the following content to it:
LoadModule deflate_module modules/mod_deflate.so
SetOutputFilter DEFLATE
SetEnvIfNoCase Request_URI \.(?:gif|jpe?g|png)$ no-gzip dont-vary
SetEnvIfNoCase Request_URI \.(?:exe|t?gz|zip|bz2|sit|rar)$ no-
gzip dont-vary

2.	 Now edit the httpd.conf file located in the <APACHE_HOME>/conf directory
and add the following lines at the bottom:
Include mod_deflate.conf

3.	 Now restart the Apache Web Server.

Chapter 3

[79]

The Apache Web Server ships with a mod_deflate module, which can compress all
the responses. In the preceding steps, we first enabled the mod_deflate module by
adding the LoadModule statement. We then enabled the output filter to compress all
the responses using the mod_deflate module. We also provided the configuration
to skip some of the resources, such as GIF, JPEG, and so on because they are already
in a compressed format. We should skip all such resources that are already in
compressed format.

Cache header configuration
Every browser caches static resources in their cache. This cache is controlled by
the Cache-Control request header attribute. It is a good idea to set a longer cache
expiration period for static resources, so that the browser will download them only
when they are removed from the browser cache on cache expiration. The Apache
Web Server provides a way to configure cache expiration for any resource.

As we use the Apache Web Server in front of Liferay Portal, we can configure a
Cache-Control attribute using the Apache Web Server. Let's learn how to configure
Cache-Control using the Apache Web Server configuration.

1.	 Add a new file, mod_expires.conf, in the <APACHE_HOME>/conf directory,
and add the following content to it:
Turn on Expires and set default to 0
ExpiresActive On
ExpiresDefault A0

Set up caching on media files for 1 year (forever?)
<FilesMatch "\.(flv|ico|pdf|avi|mov|ppt|doc|mp3|wmv|wav)$">
ExpiresDefault A29030400
Header append Cache-Control "public"
</FilesMatch>

Set up caching on media files for 1 week
<FilesMatch "\.(gif|jpg|jpeg|png|swf)$">
ExpiresDefault A604800
Header append Cache-Control "public"
</FilesMatch>

Set up 2 Hour caching on commonly updated files
<FilesMatch "\.(xml|txt|html|js|css)$">
ExpiresDefault A7200
Header append Cache-Control "proxy-revalidate"
</FilesMatch>

Force no caching for dynamic files
<FilesMatch "\.(php|cgi|pl|htm)$">

Configuration Best Practices

[80]

ExpiresActive Off
Header set Cache-Control "private, no-cache, no-store, proxy-
revalidate, no-transform"
Header set Pragma "no-cache"
</FilesMatch>

2.	 Now edit the httpd.conf file located in the <APACHE_HOME>/conf directory
and add the following line at the bottom:
Include mod_expires.conf

3.	 Restart the Apache Web Server.

In the preceding steps, we did not include the LoadModule directive for the
mod_expire module in the mod_expires.conf file because it is normally done
in the default httpd.conf file. If we do not find the LoadModule directive for the
mod_expire module in httpd.conf, we need to add the same in the mod_expire.
properties file. We then configured cache expiration values for various types of
resources. For example, we configured cache expiration to 1 week for images. If the
Portal is stable and we are not making frequent changes to the Portal, it is advisable
to set the expiration period longer. So, it is advisable to review the expiration period
according to the nature of the Portal.

Apache Web Server MPM configuration
Apache Web Server's multiprocessing module is responsible for accepting requests
on the network port on the server. MPM is also responsible for dispatching requests
to children for processing. In order to fine-tune the Apache Web Server, MPM must
be configured correctly. The Apache Web Server ships with different MPM options.
It is important to select the right MPM. Here is the list of different MPM options:

•	 Prefork: This is the MPM that runs in a non-threaded model. Each child
process serves one request at a time.

•	 Worker: This MPM implements a multi-process, multi-threaded model.
•	 Event: This MPM is designed to handle highly concurrent access. This MPM

is excremental in Apache 2.2.

For our solution, it is recommended to use the Worker MPM. Every MPM provides
a way to configure the size of the processes or threads pool. It is very important to
configure these parameters properly to get the best performance. Here is the sample
configuration setting that needs to be added in httpd.conf of the Apache Web Server:

<IfModule worker.c>
ServerLimit 16
StartServers 2

Chapter 3

[81]

MaxClients 150
MinSpareThreads 25
MaxSpareThreads 75
ThreadsPerChild 25
</IfModule>

To know which MPM is used by the Apache Web Server, the
following command can be used:
httpd –l

This command can be run on an Apache Web Server. It returns
a list of modules in which the Apache binary is compiled. If we
find prefork.c in the result, it means that the Apache Web
Server is using the Prefork MPM.

In the preceding configuration, the most important configuration parameter is
MaxClients. This parameter defines the maximum number of concurrent requests
that can be handled by the Apache Web Server at a time. The MaxClients value
must be configured lower than or equal to the maxThreads value of the Tomcat's
AJP connector. If the value of the MaxClients parameter is higher than maxThreads
of the AJP connector, it is possible that the Liferay Portal server hangs up or some
requests are dropped off. The Worker MPM is a multi-threaded MPM. So, each
process starts multiple threads. The ThreadsPerChild parameter configures the
maximum number of threads that can run within one process. The ServerLimit
parameter is used to limit the maximum number of process that can be started by the
server. The value of the ServerLimit parameter must be higher than MaxClients or
ThreadsPerChild. It is advisable to configure these values carefully with respect to
the physical memory on the Apache Web Server. During the load test, these values
should be tuned along with the Tomcat server's thread pool configuration.

Summary
In this chapter, we learned the configuration best practices to deploy a high
performing Liferay-Portal-based solution. We learned how to tweak the Liferay
Portal configuration to achieve the best performance. We also learned how to
configure the Liferay Portal Application Server by applying best practices. We
learned the recommended configurations for the Liferay Portal Application Server.
We extended the Apache Web Server configuration from Chapter 2, Load Balancing
and Clustering Best Practices by applying performance best practices. With this
knowledge, we can easily fine-tune our Liferay-Portal-based solution.

In the next chapter, we will focus on caching best practices to further improve the
performance of the solution. So let's gear up to get started on caching best practices.

Caching Best Practices
Caching is a technique that allows you to transparently store data in temporary
storage, and serve all future requests directly from the temporary storage. With
the use of caching, we can make the system enormously fast by reducing processing
on the application server, the database server, and so on. In Chapter 1, Architectural
Best Practices, we talked about the caching support in Liferay Portal. In the previous
chapter, we learned various performance-related configuration best practices. Now,
in this chapter we will focus on the best caching practices related to the Liferay
Portal solution.

By the end of this chapter we will have learned

•	 How to customize the Ehcache configuration
•	 Ehcache configuration best practices
•	 How to implement the cache using Terracotta

Customizing the Ehcache configuration
In Chapter 2, Load Balancing and Clustering Best Practices, we learned about
Ehcache replication best practices. We learned about multiple ways to configure
Ehcache replication. In this section, we will learn how to provide custom Ehcache
configuration to tune the cache according to the needs of the Portal solution using
the following steps:

1.	 Stop both Liferay Portal nodes if they are running.
2.	 Locate the portal-impl.jar file in the node-01\liferay-portal-6.1.1-

ce-ga2\ tomcat-7.0.27\webapps\ROOT\WEB-INF\lib directory of
liferay-node-01. Copy the JAR file into some temporary directory.

Caching Best Practices

[84]

3.	 Now, using the following command, extract /ehcache/liferay-single-
vm.xml, /ehcache/liferay-multi-vm-clustered.xml, and /ehcache/
hibernate-clustered.xml into the temporary directory:
jar xf portal-impl.jarehcache/liferay-single-vm.xmlehcache/
liferay-multi-vm-clustered.xmlehcache/hibernate-clustered.xml

4.	 The preceding command will create the ehcache directory and extract three
XML files. Now rename the ehcache directory to custom-ehcache.

5.	 Copy the custom-ehcache directory to the node-01\liferay-portal-
6.1.1-ce-ga2\ tomcat-7.0.27\webapps\ROOT\WEB-INF\classes\
directory of liferay-node-01.

6.	 Now add the following properties in the portal-ext.properties file on
liferay-node-01:
net.sf.ehcache.configurationResourceName=/custom-ehcache/
hibernate-clustered.xml
ehcache.single.vm.config.location=/custom-ehcache/liferay-single-
vm.xml
ehcache.multi.vm.config.location=/custom-ehcache/liferay-multi-vm-
clustered.xml

7.	 Repeat steps 2 to 6 on liferay-node-02.
8.	 Now restart both the Liferay Portal nodes.

We copied the existing Ehcache configuration files into our custom folder, and then
informed Liferay Portal to use them by providing properties in the portal-ext.
properties file. Before we discuss the purpose of these Ehcache configuration files,
it is important to recap some of the basics of the Ehcache framework.

The Ehcache framework uses a component called the cache manager, which controls
the life cycle of cached objects. The cache manager contains multiple cache buckets
and each cache bucket stores a list of objects. To identify specific objects within a
cache bucket, the cache manager stores the objects in the form of a key-value pair.

The following diagram provides a better understanding of object storage within
Ehcache. As shown in the diagram, the cache manager has multiple cache buckets.
Each bucket is identified by a unique name. Within each cache bucket, we have
multiple key-value pairs.

Chapter 4

[85]

Cache Manager

Cache 2

Cache 3

Cache N

Cache 1
Key

Value

: 1

: Object 1

Key

Value

: 2

: Object 2

Key

Value

: n

: Object n

Key

Value

: 1

: Object 1

Key

Value

: 1

: Object 1

Key

Value

: 1

: Object 1

Key

Value

: 2

: Object 2

Key

Value

: 2

: Object 2

Key

Value

: 2

: Object 2

Key

Value

: n

: Object n

Key

Value

: n

: Object n

Key

Value

: n

: Object n

Ehcache provides a way to configure each cache bucket. This can be done by
creating an XML configuration file and initializing the cache manager using
the same XML configuration file. In this section, we extracted three different
Ehcache XML configuration files. Internally, Liferay Portal defines three
different cache managers using these configuration files. Let's learn the
purpose of these cache managers.

Hibernate Ehcache CacheManager
Liferay uses the Hibernate framework for its persistence layer. The Hibernate
framework supports two levels of caching:

•	 The first level of caching is implemented by the Hibernate framework itself
•	 The second level of caching is supported by external caching frameworks

In the default implementation, Liferay Portal uses the Ehcache framework for
a second-level cache. Liferay includes a default Ehcache configuration file for a
Hibernate-specific cache manager. It allows for providing a custom configuration file
by adding the net.sf.ehcache.configurationResourceName property in portal-
ext.properties. In the previous section, we extracted the hibernate-clustered.
xml file from Liferay Portal and then configured Liferay to use this external file. In a
clustered setup, this cache manager must be configured for cache replication.

Caching Best Practices

[86]

Single-VM CacheManager
This cache manager is specifically used for caching those resources that do not require
cache replication in a clustered environment. Such resources are static in nature, and
it is OK to maintain a separate cache on each clustered node. One of the examples
of such a resource is velocity templates associated with web content. Liferay Portal
includes a default configuration file for this cache manager. In the previous section,
we configured an external configuration file by adding the ehcache.single.
vm.config.location property in the portal-ext.properties file.

Multi-VM CacheManager
This cache manager is used to cache those resources that are required to be
replicated in a clustered setup. These resources include finder query responses,
entities, service responses, and so on. These resources need to be cluster-aware,
otherwise it will create functional issues. For example, consider a record of an
entity cached on two Liferay Portal nodes. Now on one of the nodes, the same
record is updated by specific functionality. The entity cache on the same node
will be refreshed. If the cache for the same record on another Liferay node is not
refreshed, users connected to that node will refer to an old record from the cache.
Hence, the cache of such resources needs to be cluster-aware so that changes
in the cache are reflected on all the nodes of a cluster. As this cache manager is
cluster-aware, it is called a multi-VM pool. The Liferay bundle includes the default
configuration file for this cache manager. Liferay Portal allows for providing a
custom configuration file through the ehcache.multi.vm.config.location
configuration property. In the previous section, we have a specified, external
Ehcache configuration file by adding this property in portal-ext.properties.

Ehcache configuration best practices
We learned about the basics of Ehcache and also different cache managers used
in Liferay Portal. Now let's focus on the cache manager configuration to tune the
caching mechanism in Liferay. Using the cache manager configuration, we can
provide a cache control parameter for each and every cache bucket. Let's understand
the important configuration parameters by looking at the defaultCache and cache
elements of the Liferay multi-VM cache manager configuration file.

<defaultCache
 eternal="false"
 maxElementsInMemory="10000"
 overflowToDisk="false"
 timeToIdleSeconds="600"
 >

Chapter 4

[87]

 <cacheEventListenerFactory
 class="com.liferay.portal.cache.ehcache.
LiferayCacheEventListenerFactory"
 properties="replicatePuts=false,replicateUpdatesViaCopy=false"
 propertySeparator=","
 />
 <bootstrapCacheLoaderFactory class="com.liferay.portal.cache.
ehcache.LiferayBootstrapCacheLoaderFactory" />
 </defaultCache>
<cacheeternal="false" maxElementsInMemory="10000"
 name="com.liferay.portlet.calendar.service.impl.CalEventLocalUtil"
 overflowToDisk="false"timeToIdleSeconds="600">
 <cacheEventListenerFactory
 class="com.liferay.portal.cache.ehcache.
LiferayCacheEventListenerFactory"
 properties="replicatePuts=false,replicateUpdatesViaCopy=false"
 propertySeparator=","/>
<bootstrapCacheLoaderFactory class="com.liferay.portal.cache.ehcache.
LiferayBootstrapCacheLoaderFactory" />
</cache>

As shown in the preceding code snippet, we have defined one cache bucket with
a name com.liferay.portlet.calendar.service.impl.CalEventLocalUtil.
This cache bucket stores the Calendar-portlet-related service responses in the cache.
We have defined various cache control attributes in the cache tag. Some of the
attributes are related to cache replication. Let's understand the important cache
control attributes of the cache tag:

•	 eternal: This attribute indicates whether the objects placed in the specific
cache can expire or not. If it is set to true, objects in the cache will never
expire. It overrides the value of the timeToIdleSeconds attribute. We
configured its value to false as we need to make sure cached objects
are removed if they are not used.

•	 maxElementsInMemory: This attribute is important to size in-memory cache.
It defines the maximum number of objects that can be stored in RAM. Once
the number of objects in the cache bucket reaches this number, the cache
manager removes the least recently used (LRU) object from the cache, if
the overflowToDisk attribute is set to false.

•	 timeToIdleSeconds: This attribute defines the time for which an object can
be in the cache without utilization. For example, the value of this parameter
is set to 3600 for one of the cache buckets, and there is an object in the cache
bucket which has not been accessed in the last hour. In this situation, such
an object will be removed from the cache bucket. This attribute is also very
important from the point of view of performance.

Caching Best Practices

[88]

•	 overflowToDisk: This flag indicates whether to move cached objects to
the filesystem when the number of objects in-memory exceeds the limit.
Internally, the cache manager uses serialization and deserialization to
read and write objects on the filesystem.

It is not mandatory to define a cache bucket in the configuration file. The Ehcache
framework also allows for creating new cache buckets programmatically. In that
situation, a cache bucket is created with the default cache control attributes. The
default cache control attributes are provided by the defaultCache element in
the configuration file. In the previous snippet, we have set the same cache control
attributes in the defaultCache element.

We learned about the importance and use of cache control attributes. Let's talk
about the best practices associated with them:

•	 It is recommended to disable the overflowToDisk attribute. If it is enabled,
it will generate more IO and will ultimately affect the performance. If
the system is expected to have a huge amount of cache, it is a good idea
to choose a centralized cache such as Terracotta rather than enabling the
overflowToDisk attribute.

•	 It is recommended to set the eternal attribute to false. It is fine to enable
this attribute when the number of elements in the cache bucket is low and
they are accessed frequently by the Portal.

•	 It is recommended to configure the maxElementsInMemory attribute as
per the application need. It has to be calculated properly based on the
application need. If the value is low, cache objects are removed frequently
from the cache.

•	 Depending upon the application need, timeToIdleSeconds should be
properly configured for every cache bucket. If the value is too low, cache
objects are frequently removed from the cache. Similarly, if the value is
high, the system will occupy memory for unused cached objects.

As there are so many cache buckets to tune cache control parameters, we need to first
decide which cache buckets are of our interest. This can be decided based on the kind
of features that we are using. For example, Portal heavily uses collaboration features.
In that situation, some of the important cache buckets could be as follows:

com.liferay.portal.kernel.dao.orm.EntityCache.com.liferay.portlet.
blogs.model.impl.BlogsEntryImpl
com.liferay.portal.kernel.dao.orm.EntityCache.com.liferay.portlet.
wiki.model.impl.WikiPageImpl
com.liferay.portal.kernel.dao.orm.EntityCache.com.liferay.portlet.
messageboards.model.impl.MBCategoryImpl
com.liferay.portal.kernel.dao.orm.EntityCache.com.liferay.portlet.
messageboards.model.impl.MBThreadImpl

Chapter 4

[89]

It is difficult to calculate cache control parameters for all cache buckets in the
beginning. Hence, it is recommended to tune them during the load-testing phase.
During the load-testing phase, we should monitor cache statistics and then the
cache control parameters should be tuned based on the cache statistics result.

Caching using Terracotta
In Chapter 1, Architectural Best Practices, we talked about various caching options
for our Liferay-based solution. We discussed using Terracotta as a centralized cache
server. If the portal is designed to handle huge amounts of traffic and transactions,
it will need a good amount of cache to provide the best performance. In such
situations, it is recommended to go with a high-end, centralized cache server.
Terracotta is one of the most popular products in this space. We can configure
Liferay Portal to cache resources in Terracotta instead of in embedded Ehcache.
Let's learn how to configure Liferay Portal to cache resources in a Terracotta
server. We will configure Terracotta-based caching for our clustered setup
using the following steps:

1.	 Download and install Terracotta in a directory on a separate server. This
directory is referred to as TERRACOTTA_HOME.

The Terracotta community edition can be downloaded from
http://terracotta.org/downloads/open-source/
catalog. We need to download terracotta-x.x.x-
installer.jar. Here, x.x.x is the version of the Terracotta
community edition. We need to follow the installation steps
mentioned at the site to install the Terracotta server.

2.	 Now stop the two Liferay Portal servers if they are running.
3.	 Locate the node-01\liferay-portal-6.1.1-ce-ga2\ tomcat-7.0.27\

webapps\ROOT\WEB-INF\lib directory on liferay-node-01 and remove
the following files:
ehcache*.jar
slf4j*.jar

4.	 Locate the TERRACOTTA_HOME\ehcache\lib\ directory on the Terracotta
server and copy the following JAR files to the node-01\liferay-portal-
6.1.1-ce-ga2\ tomcat-7.0.27\webapps\ROOT\WEB-INF\lib directory
on liferay-node-01:
ehcache*.jar
slf4j*.jar

Caching Best Practices

[90]

5.	 Locate the $TERRACOTTA_HOME\common directory and copy the following JAR
file to the node-01\liferay-portal-6.1.1-ce-ga2\ tomcat-7.0.27\
webapps\ROOT\WEB-INF\lib directory:
terracotta-toolkit*.jar

6.	 Create the terracotta-cache directory in the node-01\liferay-portal-
6.1.1-ce-ga2\ tomcat-7.0.27\webapps\ROOT\WEB-INF\classes\
directory and create the hibernate-terracotta.xml file with
following content:
<ehcache
 dynamicConfig="false"
 name="hibernate-terracotta"
 updateCheck="false"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="ehcache.xsd"
>
 <defaultCache
 eternal="false"
 maxElementsInMemory="100000"
 overflowToDisk="false"
 timeToIdleSeconds="600"
 >
 <terracotta />
 </defaultCache>
 <cache
 eternal="false"
 maxElementsInMemory="100000"
 name="com.liferay.portal.model.impl.UserImpl"
 overflowToDisk="false"
 timeToIdleSeconds="600"
 >
 <terracotta />
 </cache>
<terracottaConfig url="<IP/host name of Terracotta
Server>:<terracotta server port>" />
</ehcache>

Change the host name and port in the terracottaConfig
tag accordingly.

Chapter 4

[91]

7.	 Create the liferay-multi-vm-terracotta.xml file in the node-01\
liferay-portal-6.1.1-ce-ga2\ tomcat-7.0.27\webapps\ROOT\WEB-
INF\classes\terracotta-cache directory with the following content:
<ehcache
 dynamicConfig="false"
 name="liferay-multi-vm-terracotta"
 updateCheck="false"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="ehcache.xsd">
 <defaultCache
 eternal="false"
 maxElementsInMemory="10000"
 overflowToDisk="false"
 timeToIdleSeconds="600">
 <terracotta />
 </defaultCache>
 <cache
 eternal="false"
 maxElementsInMemory="10000"
name="com.liferay.portlet.journalcontent.util.JournalContent"
 overflowToDisk="false"
 timeToIdleSeconds="600">
 <terracotta />
 </cache>
 <terracottaConfig url="<IP/host name of Terracotta
Server>:<terracotta server port>" />
</ehcache>

8.	 Add the following properties in portal-ext.properties of the liferay-
node-01 file to enable Terracotta-based caching:
net.sf.ehcache.configurationResourceName=/terracotta-cache/
hibernate-terracotta.xml
ehcache.multi.vm.config.location=/terracotta-cache/liferay-multi-
vm-terracotta.xml
hibernate.cache.region.factory_class=net.sf.ehcache.hibernate.
SingletonEhCacheRegionFactory

9.	 Repeat steps 3 to 8 on liferay-node-02 and restart the Terracotta server
and both Liferay Portal nodes.

Caching Best Practices

[92]

Terracotta internally uses the Ehcache framework for caching. Hence, we replaced
the Ehcache-related JAR files from the Terracotta installation. We then created the
cache manager configuration file for the Hibernate cache manager and multi-VM
cache manager. These XML files look similar to the Ehcache configuration files.
In addition to the cache bucket configuration, we also provided Terracotta server
details in the file. Within every cache bucket entry, we added the terracotta tag
to inform the cache manager to store cached objects in the Terracotta server.

In the Terracotta configuration files, we configured only one cache bucket. For all
other buckets, it will use cache control attributes of the defaultCache element.
It is recommended to configure all the important cache buckets by adding cache
entry in these configuration files. As it uses the same Ehcache XML schema, we can
optimize each cache bucket by providing the same cache control attributes that we
learned about in the previous section. Unlike Ehcache-based cache implementation,
Terracotta provides a GUI-based tool called Developer Console for monitoring and
diagnosis. This tool is useful to monitor cache buckets during the load test.

We used Terracotta only for caching resources but it also provides a way to store
HTTP sessions and Quartz jobs in it. It is recommended to configure Liferay Portal
to store HTTP sessions and Quartz jobs on Terracotta if we are using Terracotta for
caching. This will reduce the overhead of replication.

Summary
In this chapter, we learned the best caching practices of Liferay Portal. We learned
how to configure the default Ehcache-based caching mechanism to achieve better
performance. We learned the different types of caches in Liferay Portal. We
also learned about advance caching implementation using Terracotta. With this
knowledge, we can improve the performance of our Liferay Portal-based solution
by optimizing the caching mechanism.

So far we learned the architectural best practices, load balancing, and clustering
best practices, configuration best practices, and caching best practices.

Now it's time to gear up for development best practices.

Development Best Practices
In the previous chapters, we learned about various configuration best practices
including caching best practices. Liferay Portal is a portal platform, and portal
solutions are developed on top of it. Hence, it is very important to follow best
practices during the development of custom features to build high performing
portal solutions. In this chapter, we will focus on Liferay-Portal-specific
development best practices. By the end of this chapter, we will learn the
following topics:

•	 UI best practices
°° Reducing the number of JavaScript files
°° Reducing the number of CSS files
°° Using CSS image sprites
°° Minifying JavaScript files
°° JavaScript tag positioning
°° Analyzing web page performance using tools

•	 Java development best practices
°° Use of dynamic query and custom queries
°° Use of the Cache API to cache resources
°° Coding best practices

UI best practices
In any web-based applications, loading and rendering of the user interface in the
browser contributes a lot in overall response time. It can even sometimes affect the
processing on the server. In this section, we will talk about various UI best practices
for improving the performance of the Portal.

Development Best Practices

[94]

Reducing the number of JavaScript files
JavaScript files are an integral part of web pages. There are two ways to include
JavaScript in an HTML response:

•	 One way is to embed JavaScript directly in the response using the
<script> tag

•	 The second is by referring to an independent JavaScript file using the
<script> tag

It is recommended to include JavaScript using the second option. This allows
the browser to cache JavaScript files separately in the browser cache. With the
use of powerful JavaScript frameworks such as jQuery, YUI, Alloy UI, and so on,
it is possible that one HTML page might be loading many different JavaScript
files. This can slow down loading of the page in the browser because of network
transfer. Transferring a number of small files over the network takes more time than
transferring a single large file. Hence, it is recommended to reduce the number of
JavaScript files by merging them together before transferring them over the network.
This technique can improve the overall response time of the system.

Liferay Portal by default includes a lot of JavaScript files to implement various
features. These files are required by either Portal's core features or by bundled portlets.
If these JavaScript files are merged into a single JavaScript before transferring over the
network, it can improve the overall performance of the Portal. This can be done by
statically merging them but it will affect the maintenance of these files. For this reason,
Liferay Portal has implemented a feature with which it dynamically combines these
JavaScript files. Liferay Portal loads the combined JavaScript at once to improve the
response time.

This feature can be enabled by adding the following property in the portal-ext.
properties file:

javascript.fast.load=true

This property is by default configured to true, but sometimes developers
set this property to false to debug JavaScript issues. The same configuration
may be replicated in the production environment by mistake. Hence, it is very
important to make sure this property is enabled in the production environment.
When this property is enabled, Liferay Portal dynamically merges the list of
JavaScript files. This list is known as the JavaScript bundle. Liferay Portal by
default defines two bundles:

•	 The barebone bundle
•	 The everything bundle

Chapter 5

[95]

When the Portal is accessed without authentication, every portal request loads the
barebone bundle in the response. If the user accesses the Portal after authentication,
every portal request loads the everything bundle in the response. Liferay Portal
configures these JavaScript bundles using the configuration property. We can modify
the list of files that are loaded by these bundles. The content of the barebone bundle
can be modified by adding the following property in the portal-ext.properties file:

javascript.barebone.files=

In this property, we need to provide comma-separated JavaScript files. We can
provide a relative path of the JavaScript files from the /html/js directory of the
ROOT web application. For example, suppose we are using an AUI-based dialog
box on most of our pages. It will require loading the aui-dialog.js file located
in the liferay-portal-6.1.20-ee-ga2\tomcat-7.0.27\webapps\ROOT\html\
js\aui\aui-dialog\ directory. Instead of making a separate request for this file
from the browser, we can add this file in the barebone bundle. This can be done
by appending aui\aui-dialog\ aui-dialog.js to the existing values of the
javascript.barebone.files property in portal-ext.properties.

To configure the list of JavaScript files of the everything bundle, we need to add the
following property in portal-ext.properties:

javascript.everything.files=

By default, the everything bundle extends the barebone bundle. So, in the everything
bundle, we need to provide only those JavaScript files that are not there in the
barebone bundle. Liferay also provides a way to disable the barebone bundle. If we
disable the barebone bundle, Liferay Portal loads the everything bundle for both
authenticated and nonauthenticated requests. We can disable the barebone bundle
by adding the following property in the portal-ext.properties file:

javascript.barebone.enabled=false

So far we talked about merging the JavaScript files of the Liferay Portal bundle. But
we use Liferay Portal as a platform and develop portlets on top of it. Portlets also
contain JavaScript files. It is recommended to merge the commonly-used JavaScript
files of a portlet into one portlet to reduce the number of JavaScript requests.

The JavaScript merging feature of Liferay is implemented using
the minifier filter. Hence, it is very important to make sure the
minifier filer is not disabled. The minifier filter is by default
enabled but can be controlled by using the following property:

com.liferay.portal.servlet.filters.minifier.
MinifierFilter

Development Best Practices

[96]

Reducing the number of CSS files
Similar to JavaScript files, CSS files are also an integral part of every web page, and a
web page can have many CSS files loaded through the link tag. Again, inline styles
through the <style> tag are not recommended. Similar to JavaScript merging, CSS
files can also be merged to reduce network overhead. Liferay provides configuration
to automatically merge CSS files of themes. This can be done by enabling the
following property in portal-ext.properties:

theme.css.fast.load=true

If this property is enabled, it will always merge all the CSS files into one and load the
merged CSS files on every page. By default this property is enabled by Liferay Portal.
During development it may be required to disable this property to solve CSS-related
issues. But in the production environment, this property should be set to true to get
the best performance.

This feature only covers theme-related CSS files. We can also have CSS files in
portlets. It is recommended to merge CSS files of the portlets into a single CSS file.

Using CSS image sprites
We looked at reducing the number of JavaScript and CSS file requests by merging
them into a single file. Similar to that, every web page will have many network
requests for images. Unlike CSS and JavaScript files, images are a different kind of
resource and they need to be placed on the HTML page at a certain location. Hence,
it is not possible to simply merge them, unlike CSS and JavaScript files, to reduce
network overhead. To reduce the number of image requests, a technique called CSS
image sprites is used. CSS image sprites are a pure HTML-and-CSS-based technique.
Liferay provides built-in support for CSS image sprites through its tag libraries.
Before we talk about Liferay Portal's CSS image sprites capability, let's understand
how CSS image sprites work.

Suppose we have a simple HTML response with multiple static images as follows:

<html>
 <body>
 Arrow Up :
 Arrow Down :
 Arrow Right :
 Arrow Left :
 </body>
</html>

As shown in this code snippet, we are loading four images in the browser. To reduce
the number of image requests, we need to combine all four images as shown:

Chapter 5

[97]

Now the next step is to change the HTML code to render individual images from
the preceding combined image:

<html>
 <body>
 Arrow Up : <img src='spacer.png' width='16px' height='16px'
style='background:url(arrow_sprite.png) 0 48;' />
 Arrow Down : <img src='spacer.png' width='16px' height='16px'
style='background:url(arrow_sprite.png) 0 0;' />
 Arrow Right : <img src='spacer.png' width='16px' height='16px'
style='background:url(arrow_sprite.png) 0 32;'/>
 Arrow Left : <img src='spacer.png' width='16px' height='16px'
style='background:url(arrow_sprite.png) 0 16;'/>
 </body>
</html>

This means we are now using one large image to load four different images. This
concept is called CSS image sprites. The combined image is called a sprite image.

This technique is very good but it requires a lot of development effort. In the case
of Portal, we need to create many image sprites for portlets, themes, and so on.
We also need to add a lot of CSS styles to use sprite images. Fortunately, Liferay
Portal provides built-in support for CSS image sprites. The Liferay plugin deployer
automatically generates sprite images by combining all the images in one folder.
Along with that it also generates a file called _sprites.properties. This file stores
the size and coordinates of each image. Liferay tag libraries internally read this
information and automatically generate the image tags to load the specific image
from the sprite image.

Let's assume, in our custom theme, that we included the previous four images in
the images\arrows folder. Now when we deploy the theme on Liferay Portal, it
generates the _sprite.png, _sprite.gif, and _sprite.properties files in the
same folder. Both of the images will look similar to the image shown in this section.
The content of the _sprite.properties file will look as follows:

/arrows/01_down.png=0,16,16
/arrows/01_left.png=16,16,16
/arrows/01_right.png=32,16,16
/arrows/01_up.png=48,16,16

Development Best Practices

[98]

As shown in the preceding snippet, the property file defines a key-value kind of
structure. The key is the name of the individual image file. The value contains the
width, height, and top y coordinate of the individual image in pixels. Liferay tag
libraries take image names as an input. With the use of this property file, they can
load individual images from _sprite.png. As mentioned earlier, Liferay Portal
also generates _sprite.gif, which is used for old browsers.

This feature of Liferay Portal can be easily disabled or enabled. By default this
feature is enabled. During the development phase, developers may want to
disable this feature. It can be disabled by adding the following property in
portal-ext.properties:

theme.images.fast.load=false

It is recommended to keep this property set to true in the production environment.

We looked at how CSS image sprites work for built-in features. We can also use Liferay
tag libraries in custom portlets to load images from a theme. To load an image from an
image sprite, we can simple use the icon tag of the liferay-ui tag library. Here is an
example code snippet from a custom portlet that is loading an image from a theme:

<%@ taglib uri="http://liferay.com/tld/theme" prefix="liferay-theme"
%>
<liferay-ui:icon src='<%= themeDisplay.getTheme().
getContextPath()+"/"+ themeDisplay.getTheme().getImagesPath() + "/
common/activate.png" %>' />

As shown in the preceding code snippet, we loaded an image from the theme.
We just provided the path of the image. Internally, depending upon the value of
the theme.images.fast.load property, Liferay loads the individual image or
sprite image.

Minifying JavaScript files
Minification is a technique to reduce the number of characters from JavaScript files
without affecting the functionality. With this technique, we can reduce the size of
JavaScript files and improve the response time. It is recommended to use minified
JavaScript files in the production environment.

Once JavaScript files are minified, it becomes difficult to read, debug, or modify
them. Hence, it is a best practice to keep both minified and nonminified files in a
version control system. In the production environment, only the minified version of
JavaScript files should be deployed. In order to make sure all the JavaScript files are
minified, it is recommended to automate the minification of the files through build
scripts. This can be easily done by adding a target in an ANT build script.

Chapter 5

[99]

To minify JavaScript files of a specific plugin of the Liferay plugin SDK
automatically, we need to add an ANT task in the build.xml file of
the plugin. From the ANT task, we need to call minifier to minify
all JavaScript files of the plugin. YUI Compressor is one of the most
popular open source JavaScript minifiers. It can be called from the
ANT task. The following URL provides more details on how to call
the YUI Compressor from an ANT task:
https://code.google.com/p/yui-compressor-ant-task/

JavaScript positioning
As per the HTTP/1.1 specification, the browser should not download more than
two resources per host name. But with JavaScript files, this rule works differently.
When the browser is downloading JavaScript, it blocks all other download requests
irrespective of the host name. This affects the overall response time. The Yahoo! team
found out that if JavaScript files are placed outside of the html tag, this problem can
be avoided and pages load faster. Here is an example code from yahoo.com:

</html>
<!-- dnr= -->
<!-- bid=704 -->
<!-- sid=97684142 -->
<!-- myproperty:myservice-in:0:Success -->
<script language=javascript>
if(window.yzq_p==null)document.write("<scr"+"ipt language=javascript
src=http://l.yimg.com/d/lib/bc/bcr_2.0.5.js></scr"+"ipt>");
</script>

As shown here, the <script> tag is placed after the end of the <html> tag. This is
against the specification but all browsers support it. Hence, it is recommended to
place JavaScript files outside the <html> tag in the footer. It is not possible to place
all JavaScript files in the footer but whenever possible, we should place the files
like this.

This is a good technique but in case of Portal, we develop portlets and they do not
have <html> or <body> tags. They just render HTML fragments. Fortunately, Liferay
provides a way to add JavaScript files in the page footer from any portlet. This can be
done by providing the <footer-portal-javascript> tag in liferay-portlet.xml
as shown:

<footer-portlet-javascript>/html/portlet/users_admin/js/main.js</
footer-portlet-javascript>

https://code.google.com/p/yui-compressor-ant-task/
https://code.google.com/p/yui-compressor-ant-task/

Development Best Practices

[100]

Limiting the use of DOM operations
Document Object Model (DOM) is a convention for representing HTML objects.
With the use of DOM operations, we can change the state of HTML objects displayed
on the browser. With DOM, it will be very easy to programmatically manipulate
HTML content rendered on the browsers. Frameworks such as jQuery, AUI, or
YUI reduces the amount of code required to perform DOM operations. DOM
operations are browser-dependent. Each browser provides its own implementation
for DOM. Some of the browsers such as IE7 or IE8 are not optimized to perform
DOM operations. DOM operations slow down the rendering of web pages in the
browser. It is recommended to use fewer DOM operations in the code to make the
system run faster.

Analyzing web page performance using tools
In this section, we talked about some of the key UI best practices. UI is a very vast
field and there are many such best practices. These best practices can be applied to
any web-based applications. It is very difficult to find out areas of the UI where we
are not following such best practices. Fortunately, there are many tools available to
find out improvement areas from the UI point of view. Here are some of the more
popular tools, which we can use to find out areas of improvements:

•	 YSlow: YSlow is an open source tool to point out issues that can affect
the performance of the system. It checks the web page against around 23
rules. Based on the result it gives a performance grade. It can be installed
as a browser plugin. It supports most of the popular browsers. For more
information please refer to http://yslow.org/.

•	 PageSpeed: This is another web page analysis tool to point out bad practices.
It checks the pages against web page performance best practices. It is open
source and can be used as a browser plugin. It can also be configured
on Apache Web Server. For more information please refer to https://
developers.google.com/speed/pagespeed/https://developers.
google.com/speed/pagespeed/.

•	 Compuware dynaTrace AJAX Edition: This tool installs an application
agent in the browser. With that it can record all requests. Based on the
analysis it points out areas of improvement. It also gives a performance
grade to each page. This tool persists performance reports and so it makes
it easy to compare the results after applying changes. For more information
please refer to http://www.compuware.com/application-performance-
management/ajax-performance-testing.html.

https://developers.google.com/speed/pagespeed/
https://developers.google.com/speed/pagespeed/
https://developers.google.com/speed/pagespeed/
http://www.compuware.com/application-performance-management/ajax-performance-testing.html
http://www.compuware.com/application-performance-management/ajax-performance-testing.html

Chapter 5

[101]

There are many other tools available in the market but I have listed out some of the
key tools based on my experience.

Portlet development best practices
We talked about some of the key UI best practices. Now let's talk about some of the
key portlet development best practices to achieve best performance.

Limiting the use of dynamic queries
To implement the service and persistence layer in custom portlets, Liferay provides
a very good code generator called Service Builder. Service Builder generates a
persistence layer using the Hibernate framework. Service Builder also generates code
in the Service and Persistence classes to cache responses in a multi-VM cache pool.
Service Builder provides a way to define finder methods using an XML configuration.
Responses of these finder methods are also cached in a multi-VM cache pool. Liferay
Service Builder also provides a way to execute dynamic queries using the dynamic
query API. Service Builder generates methods in the service and persistence layer to
execute dynamic queries. Here is an example of dynamic query execution:

DynamicQuery query = DynamicQueryFactoryUtil.forClass(CalEvent.class)
.add(PropertyFactoryUtil.forName("groupId").in(new Long[]
{new Long(1L),new Long(2L)})) .add(PropertyFactoryUtil.
forName("startDate").ge(CalendarFactoryUtil.getCalendar().getTime())).
addOrder(OrderFactoryUtil.asc("startDate"));
List events2 = CalEventLocalServiceUtil.dynamicQuery(query);

As shown in the preceding code snippet, a dynamic query makes it easy to query
the database without creating the specific finder. But unlike regular finder methods,
Liferay does not generate code to cache dynamic query responses. To cache a query
response, Liferay needs a unique cache key. For regular finder methods, the key is
generated from method arguments. But for a dynamic query, it will be difficult to
generate a unique key from arguments. Also it will be difficult to implement cache
invalidation logic for dynamic queries.

It is recommended to limit the use of dynamic queries because they are not cached.
They increase the load on the database server and ultimately affect the performance
of the system. They can be used along with a custom caching implementation.

Development Best Practices

[102]

Liferay caching API
In Chapter 4, Caching Best Practices, we discussed Liferay's caching capabilities in
detail. We talked about different cache pools used by Liferay Portal. We talked
about the cluster-enabled multi-VM cache pool and nonclustered single-VM cache
pool. Liferay provides an API to add custom cache buckets in both cache pools. This
API can be used by custom portlets or plugins for caching. By using Liferay's caching
APIs, we can leverage Liferay's built-in cache support. We do not need to worry
about cache replication, cache monitoring, or cache configuration. They are handled
at the portal level.

To use Liferay's caching API, first we need to decide which cache pool we want to
use. As discussed in Chapter 4, Caching Best Practices, a single-VM cache pool is ideal
for resources that are unique per node and do not require cache replication. Here is
an example class from a custom portlet that utilizes a single-VM pool:

package com.connectsam.development;

import com.liferay.portal.kernel.cache.SingleVMPoolUtil;
import java.util.ArrayList;
import java.util.List;

public class SingleVMPoolExample {
 public List<String> getTestList(String key){
 List<String> listOfStrings = null;
//Retrieve List from Single-VM Pool by passing Cache Name and Key of
cached object
listOfStrings = (List<String>) SingleVMPoolUtil.get("com.connectsam.
development.SingleVMPoolExample",key);
 if(listOfStrings == null){
//If object not found in cache then retrieve the object from source
 listOfStrings = getSampleList();
 //Put the retrieved object in cache
SingleVMPoolUtil.put("com.connectsam.development.SingleVMPoolExample"
,key, listOfStrings);
 }
 return listOfStrings;
 }
 private List<String> getSampleList(){
 List<String> list = new ArrayList<String>();
 list.add("Single VM List");
 return list;
 }
}

Chapter 5

[103]

As shown in the preceding code snippet, we used the SingleVMPoolUtil class to
store objects in the cache. It is recommended to define the Utility class within the
custom portlet for handling cache-related functions. To use the multi-VM cache
pool, we can use the exact same approach as previously mentioned. Instead of
using SingleVMPoolUtil, we will need to use the MultiVMPoolUtil class to store
and retrieve objects from the cache. As discussed in Chapter 4, Caching Best Practices,
a multi-VM cache pool should be used for caching those resources that require cache
replication across the cluster.

Coding best practices
We briefly talked about some of the key Liferay-Portal-specific best practices. But it
is proven that most of the time performance issues arise from poorly-written code.
For example, if database connections are not properly closed, even caching will
not improve the performance. It is recommended to use standard automated code
analysis tools to find out coding violations. Automated code analysis tools help us
to locate performance-specific violations such as open JDBC connections, unused
variables, and so on. Here are some of the popular code analysis tools:

•	 PMD
•	 CPD
•	 FindBugs
•	 SONAR

It is also required to perform manual code reviews to point out low-level
design issues.

Summary
We learned various performance-specific UI and portlet development best practices.
We learned how to use Liferay Portal's JavaScript bundle mechanism to reduce the
number of JavaScript requests. We learned how to reduce the number of image
requests using CSS image sprites. We learned how to use Liferay Portal's cache API
to cache objects in custom portlets. We also learned about automated code analysis
and web page analysis tools to point out performance issues. With this knowledge,
we can ensure we develop the best performing code during the development phase.

Now let's gear up to learn about load testing and tuning Liferay-based systems.

Load Testing and
Performance Tuning

In Chapter 5, Development Best Practices, we learned about performance-related
development best practices. Throughout the book, we learned many best practices
to improve the performance of Liferay-Portal-based solutions. Even after applying
those best practices, it is very important to verify whether the system meets
performance expectations under the anticipated peak load. This can be done by
performing load testing. We also talked about many dynamic configurations as well,
which can be further tuned during load testing to meet performance expectations. In
this chapter, we will learn load testing and performance tuning best practices for a
Liferay-Portal-based solution.

In this chapter, we will cover the following topics:

•	 Getting ready for load testing
°° Capturing load testing requirements
°° Selecting a load testing tool
°° Writing load testing scripts
°° Setting up the load testing environment
°° Conducting load tests

•	 Resource monitoring and performance tuning
°° Liferay Portal server – monitoring and tuning
°° Apache web server – monitoring and tuning
°° Monitoring the database server
°° Monitoring logfiles

Load Testing and Performance Tuning

[106]

Getting ready for load testing
Load testing is an exercise to validate the system's capability to handle expected
peak load. The maximum number of concurrent requests that the system is expected
to handle is known as the peak load. Load testing is performed by artificially
generating a number of concurrent requests on the system using load testing tools.
To begin with the load testing exercise, the first step would be to capture that load
testing requirements.

Capturing load testing requirements
To perform load testing, we need to design load testing scenarios, set up load
testing environments, and so on. Load testing scenarios heavily depend on load
testing or performance-related requirements. Also, depending on the performance
requirements, a load testing environment has to be set up. Here is a brief checklist
to capture all load-testing-related requirements:

1.	 Concurrent users: It is very important to know the maximum amount
of load that is expected on the system. It is measured by the number of
users accessing the system at the same time. This is the most important
requirement to be captured to conduct load testing. Sometimes concurrent
user requirements are more specific, such as X number of concurrent users
who will access page Y. If such requirements are available, load testing
scenarios can be designed realistically. This requirement acts as an input
for a load testing exercise.

2.	 Response time: It is also very important to measure the response time
of every request when the system is heavily loaded. Every system has
accepted the response time limit. Here is some examples of response
time requirements:

°° The response time for all pages except the home page should be less
than or equal to 4 seconds. The home page response time should be
less than or equal to 8 seconds.

°° It is impossible to make sure that the response time of all requests stays
within the expected limits. Hence, most of the time the response time
is referred to as the average response time. Sometimes requirements
specifically state that an X percentage of requests must have a response
time in the given range. It is very important to capture such details
to design load testing scenarios and acceptance criteria accordingly.
Response time requirement acts as an acceptance criteria for the load
testing exercise.

Chapter 6

[107]

3.	 Transactions per second (throughput): In transaction centric portals,
it is important to measure the number of transactions executed per second.
This is called TPS or throughput. It is very important to capture the expected
throughput under pick load. Again, throughput-related requirements act as
acceptance criteria for the load testing exercise.

Selecting load testing tools
Load testing requires generating artificial user requests. This can be done by
load testing tools. There are many proprietary and open source load testing tools
available in the market. It is very important to choose the right tool for the load
testing exercise. In this section, we will briefly talk about some of the open source
or cloud-based load testing tools.

Apache JMeter
Apache JMeter is the most popular open source tool for conducting load testing. It is
shipped as a desktop application and provides a user-friendly GUI for creating load
testing scripts. Apache JMeter is highly extensible and supports external plugins.
It comes with many built-in plugins. It has many plugins to generate user-friendly
output reports. It also comes up with many plugins that allow the exporting of
load testing reports to various formats such as CSV, XLS, and so on. Apache JMeter
supports load testing of the following type of requests:

•	 HTTP or HTTPS
•	 SOAP
•	 LDAP
•	 JMS
•	 Database via JDBC
•	 SMTP, POP3, or IMAP
•	 Shell scripts

BlazeMeter
BlazeMeter is a cloud-based load testing tool. Internally, it runs a cluster of JMeter
instances. Hence, it supports generating a huge amount of load. Similar to JMeter, it
supports similar types of requests. It provides good interactive reporting. It supports
generating load from different geographic locations to perform realistic load tests. It
also supports scheduling load tests.

Load Testing and Performance Tuning

[108]

Apache Benchmark (ab)
Apache Benchmark is a command-line load testing tool to perform simple load
tests for HTTP requests. It uses a single operating system thread for generating
load. Hence, it is not advisable to use it for a large number of concurrent requests.
It generates load on the server by requesting the given URL concurrently. It does
not download subsequent resources such as CSS, JS, Images, and so on. It does not
provide user-friendly reporting as well. Also, it doesn't support testing multiple
URLs at the same time.

Other than these three tools, there are many popular and powerful proprietary tools
available in the market. Some of the popular tools include HP LoadRunner and IBM
Rational Performance Tester. If we are looking for powerful open source load testing
tools, JMeter is the best option. In this chapter, we will consider JMeter as the load
testing tool.

Preparing load testing scripts
As discussed earlier, load testing is conducted using load testing tools. Irrespective
of any load testing tool, load testing scripts are required to run specific load testing
scenarios. The syntax for writing load testing scripts will vary from one tool to the
other but the concept remains the same. In this section, we will talk about some of
the best practices for writing load testing scripts. We will consider JMeter as the
load testing tool for understanding the concepts and best practices.

Load testing scripts are written with a sequence of operations that are performed by
multiple concurrent threads. Here are some of the key parameters for JMeter load
testing scripts that should be configured correctly to make load testing more realistic:

•	 Concurrent threads: This parameter controls how many concurrent executions
of the load testing operations should be performed. This parameter should
be configured carefully. This parameter also depends upon the machine from
which we are running the load test. If it is configured to a very high value, the
JMeter instance may go out of memory or it may not give accurate load testing
results. To test a very high amount of concurrent threads, it is advisable to run
load tests through multiple machines.

•	 Loop count / duration: This parameter defines how many times or for how
much time concurrent executions should happen. In order to get accurate
results, load tests should be executed for a longer duration. It should not be
less than 30 minutes unless there is a specific need.

Chapter 6

[109]

•	 The ramp-up period: This parameter controls the period within which
the load testing tool will create a maximum number of concurrent threads
configured in the script. For example, if a portal is expected to have 2000
concurrent users during pick time, all 2000 users will not start accessing the
portal at the same time. They will start accessing the portal one by one and
at a certain point in time all 2000 users will be accessing the Portal. So, here
the time interval within which the number concurrent users reach from zero
to 2000 is the ramp-up period. If it is configured incorrectly, it may give
unrealistic load test results.

•	 The think time: This parameter controls the wait time between two
operations of the load testing script. Let's take an example of a user
accessing a portal. He/she will first log in to the portal, then access page
X and then access page Y, and so on. The user will take some time after
logging in and before accessing page X. This time is called the think time.
This parameter should be configured properly to generate a realistic load
on the system. If it is configured to a very low value, the portal will be
flooded with a number of requests. And it will not be a realistic scenario.

Apart from the aforementioned parameters, there are some of the Liferay-specific
best practices that should be followed while writing test scripts. They are as follows:

•	 Login is one of the costliest operations in Liferay Portal. It is recommended
to write realistic test scenarios where the user first signs in and then performs
various operations and finally signs out.

•	 JMeter provides a way to read CSV- or XLS-based inputs to perform any
operations. It is recommended to create a number of dummy users in Liferay
Portal and perform a load test with those dummy users. If load tests are
performed with a single user, it will not generate a realistic load.

•	 JMeter instances should be configured on the machine that is in the same
network as Portal. If JMeter instances are not part of same network as Portal,
the load test may give inaccurate results because of varying Internet speed.
The purpose of load testing is not to determine the bottleneck of a network
between the user and server. Hence, it is recommended to run load tests
from the same network.

Load Testing and Performance Tuning

[110]

Setting up the load testing environment
Load testing is normally performed after functional testing is done. Once we
are ready with load testing scripts, the next step is to set up the load testing
environment. The load testing environment should be of one that is in production
such as hardware and deployment configuration. As the purpose of load testing is
to verify if the system passes performance expectation with the pick time load, load
testing and tuning should be done on a production-like environment. All necessary
resource monitoring tools should be installed and configured. Enough space should
be allocated for storing various monitoring logfiles.

JMeter should be set up on separate machines with enough memory and CPU
capacity. If the number of concurrent users is too high, it is recommended to run
load tests from multiple machines. In general, we can run load tests with around 300
concurrent users from a machine with 2 GB RAM allocated to the JMeter application.

Conducting load tests
Load testing is an iterative exercise. It is highly integrated with the resource
monitoring and performance tuning exercise. The following diagram explains
the iterative process of conducting load tests:

1. Test Execution

2. Result Analysis

3. Performance

Tuning

As shown in the diagram, the first step is to execute the load test and monitor
resources. The second step is to analyze the load test results and the resource
monitoring data. Based on the analysis, necessary changes in the environment,
source code or load testing scripts should be produced and then again the same
cycle should be followed until expected performance targets are achieved.

As mentioned earlier, JMeter provides good GUI-based reporting plugins. Using many
reporting plugins can slow down JMeter. Hence, it is recommended to use only those
reports that are necessary. Most of the time, we would like to capture average response
time, response time of 90 percent requests, throughput, error percentage, and so on.
These results can be captured using the aggregate report of JMeter.

Chapter 6

[111]

In the next section we will talk about the resource monitoring and performance
tuning steps in detail.

Resource monitoring and
performance tuning
One of the most important steps in a load testing exercise is resource monitoring
and performance tuning. In Chapter 1, Architectural Best Practices, we looked at
the reference architecture of a Liferay-Portal-based solution. In the reference
architecture, we have used different components to build a high performing portal
solution. Performance of the solution depends upon each of the components of
reference architecture. Hence, during a load test, monitoring the performance of
every component is required. In this section, we will talk about resource monitoring
of various components. We will also learn about how to read resource monitoring
data and tune the system.

Liferay Portal server – monitoring and tuning
As we know, Liferay Portal runs on an application server. In our reference
architecture, we used Tomcat as the application server. There are many resources
of Liferay Portal, such as JVM, thread pool, or cache engine, which can affect the
overall performance of the system. It is required to closely monitor these resources
during a load test to optimize the performance. Before we proceed with individual
resource monitoring and tuning, let's learn about some of the key monitoring tools
and how to configure them with Liferay Portal.

JConsole
JConsole is a GUI-based tool for monitoring applications launched using JVM. It
is a Java Management Extension (JMX) compliant tool. It can be used to monitor
JVM Heap, CPU usage, garbage collection, threads, and JMX-enabled beans. It is a
very lightweight tool and adds a minor overhead on the running application. The
JConsole utility comes as a part of Oracle JDK installation. It can connect to any
remote or local Java-based applications. In order to connect JConsole with a remote
application, the JMX port on the remote JVM has to be configured. Let's learn how
to configure our Liferay Portal nodes to enable JConsole-based monitoring:

1.	 Stop both the Liferay Portal nodes if they are running.

Load Testing and Performance Tuning

[112]

2.	 Now add the following environment variable in the node-01\liferay-
portal-6.1.1-ce-ga2\ tomcat-7.0.27\bin\setEnv.bat file of liferay-
node-01:
set CATALINA_OPTS=-Dcom.sun.management.jmxremote -Dcom.sun.
management.jmxremote.port=9999 -Dcom.sun.management.jmxremote.
ssl=false -Dcom.sun.management.jmxremote.authenticate=false

If the Liferay Portal server is deployed on a Linux- or
Unix-based environment, the same changes need to be
done in the setEnv.sh file.

3.	 Apply the same changes as mentioned in step 2 on liferay-node-02.
4.	 Restart the two Liferay Portal nodes.
5.	 Now from the command prompt run the jconsole command from the

<JAVA_HOME>\bin directory.
6.	 The system will show a connection dialog box, as shown in the

following screenshot:

7.	 Enter the values in the Remote Process field as shown in the preceding
screenshot and then press Connect. The system will open the Overview tab.

Chapter 6

[113]

In the startup configuration file of the Liferay Portal Tomcat server, we enabled
JMX-based monitoring and configured the JMX port. We will talk about how to read
and analyze monitoring output in the following sections.

VisualVM
VisualVM is an open source resource monitoring tool for Java. It is actually
considered as the next generation of monitoring tools as compared to the
lightweight JConsole. VisualVM is included as part of the Oracle JDK installation.
It is implemented using the plugin-based architecture, hence, it allows additional
plugins for resource monitoring. JConsole can also be used as one of the plugins of
VisualVM. VisualVM also includes profiling capabilities. VisualVM allows taking
snapshots of monitoring data at any time. This enables us to compare application
states at certain events. Similar to JConsole, VisualVM also allows us to connect to
local as well as remote Java applications. To connect VisualVM with a remote Liferay
Portal Tomcat server, we will need to enable the JMX port. We learned how to enable
the JMX port in the previous section. Let's learn how to connect VisualVM with the
Liferay Portal Tomcat server.

1.	 From the command prompt run the following command to start VisualVM:
<JDK_HOME>/bin/jvisualvm

2.	 The system will open the VisualVM application. Now click on File | Add
JMX Connection…. The system will open a dialog box as shown in the
following screenshot:

Load Testing and Performance Tuning

[114]

3.	 Enter the value in the Connection test field as shown in the screenshot and
then click on the OK button.

4.	 Now from the Applications section, double-click on Local | localhost:9999.
5.	 On the right tab view, the system will add a new tab and open the

Overview subtab.

JVM – monitoring and tuning
We learned how to configure the Liferay Portal server with JConsole and
VisualVM. Both of these tools can be used to monitor Liferay Portal JVM. In
Chapter 3, Configuration Best Practices, we learned how to configure Liferay Portal
JVM parameters. We also learned the recommended JVM parameters for the Liferay
Portal server. In most cases, the recommended parameters will work well. But there
is scope to optimize them according to the developed solution during load testing.
The most important areas that need close monitoring during a load test are heap
memory and garbage collection. JConsole's Memory tab (as shown in the following
screenshot) allows us to closely monitor the heap memory and garbage collection
activities of the Liferay Portal server:

Chapter 6

[115]

JVM divides heap memory into multiple regions or memory pools. Objects are
moved from one pool to the other after garbage collection. Before we talk about
what should be monitored on JConsole's Memory tab, let's briefly understand
heap memory pools:

•	 The Eden space: When an object is created, it will occupy memory space in
this pool.

•	 The Survivor space: When the objects that are stored in the Eden space
survive at least one garbage collection, they are moved to the Survivor space.

•	 The Tenured space (old generation): When the objects stay in the Survivor
space for some time they are then moved to the Tenured Space.

•	 Permanent generation space: This space mainly stores the reflective data of
JVM such as class objects. It is also considered as non-heap memory.

•	 Code cache: When HotSpot JVM is used, the Just-in-time (JIT) compiler
stores the compiled classes in this memory pool. It is also considered as
non-heap memory.

Objects move from Eden to Survivor and Survivor to Tenured space by garbage
collection until they are cleared from the memory. When the garbage collector cleans
up objects from the Tenured space, it is called major garbage collection (major GC).
Major garbage collection consumes more resources and also pauses other threads
for some time. Frequent major GCs will affect the overall performance of the system.
When to go in for major GC or minor GC depends upon the size of these pools.
Hence, the size of these memory pools needs to be monitored and optimized
during a load test.

As shown in the preceding screenshot, JConsole by default shows a line chart
representing the heap memory usage over time. In the bottom-right corner of
the Memory tab, it shows the memory usage by different memory pools. We can
monitor memory usage of individual memory pools by selecting the respective
memory pool from the Chart drop-down box.

In the Details section of the Memory tab, JConsole displays the following
memory matrices:

•	 Used: This field displayed the memory occupied by all the objects in heap.
•	 Committed: This field displays memory that is occupied by JVM irrespective

of whether it is used by objects or not. The JVM may release—time to
time—unoccupied memory to the system. The value of this field will be less
than or equal to the maximum heap size allocated using the JVM parameter.

Load Testing and Performance Tuning

[116]

•	 Max: This field shows the maximum memory that can be used for
memory management.

•	 GC Time: This field shows the total GC time spent by the garbage collector.
It shows the time for which other threads were stopped to perform GC.

During monitoring, if we find that the Survivor space is full most of the time,
it indicates the size of the young generation (Eden plus Survivor space) is not
enough. Because of that it will move more objects into the old generation space.
This will increase the possibility of a major GC. Hence, the young generation size
should be tuned. The following JVM parameters help in the configuration of the
young generation:

•	 NewRatio: This parameter controls the size of the young generation. If
the value of this parameter is four, the size of the young generation space
(Eden plus Survivor) will be one fourth of the total heap. The rest of the
space will be used by the Tenured space.

•	 NewSize: This parameter defines the minimum size of the young
generation space.

•	 MaxNewSize: This parameter defines the upper limit of the young
generation size.

•	 SurvivorRatio: This parameter defines the ratio of the Survivor and Eden
space. If it is configured to six, the Survivor space will be one sixth of the
total young generation space.

During a load test, if the trend of the heap memory chart is going upward throughout
the load test, it indicates the possibility of a memory leak in the application. In order
to conclude this we should run the load test for a longer duration.

During the load test, if it is found that garbage collection is happening again and
again, the heap size needs to be tuned. It may be because the young generation is
not configured properly or the total heap size is not configured correctly.

During the load test, if it is found that the Permanent generation size is reaching
near the maximum Permanent generation size, it is recommended to increase the
Permanent generation space.

JVM tuning in itself is a vast topic. We learned a few of the
important JVM tuning options. For more information about
garbage collection tuning, please refer to the following URL:
http://www.kgs.ku.edu/Publications/ancient/f15_
snails.html

Chapter 6

[117]

Tomcat thread – monitoring and tuning
In Chapter 3, Configuration Best Practices, we learned to configure the Liferay
Portal-Tomcat server with the recommended thread pool configuration. We
configured the maximum and minimum size thread pool. The recommended
thread pool configuration works in most of the cases, but depending upon the
concurrent user requirements, the thread pool configuration should be tuned.
In order to fine-tune the thread pool configuration, we will need to monitor the
thread pool during load tests. The Tomcat server exposes thread pool statistics
using JMX MBeans. JConsole supports monitoring JMX MBeans. Let's learn how
to monitor a Tomcat thread pool:

1.	 Open JConsole and connect JConsole with the respective Liferay
Portal node.

2.	 In JConsole, navigate to the MBeans tab.
3.	 In the MBeans tab navigate to Catalina | Thread Pool in the tree.
4.	 In the Thread Pool node, you will find AJP and/or HTTP connector

nodes. Expand the respective connector and then click on the Attributes
subnode. The system will show thread pool attributes as shown in the
following screenshot:

Load Testing and Performance Tuning

[118]

As shown in the preceding screenshot, we can get current values of various thread
pool attributes. We can use the Refresh button to refresh the values. We can keep
monitoring the values of thread pool attributes to find out any issues. In order to
fine-tune thread pool sizing, the following attributes should be closely monitored:

•	 currentThreadCount: This attribute tell us how many threads are created
by the Liferay Portal-Tomcat server. It includes both busy threads and
idle threads.

•	 currentThreadsBusy: This attribute tell us how many threads are busy
in serving requests.

•	 maxThreads: This attribute tells us how many maximum threads
are configured.

During the load test, if it is found that the value of the currentThreadsBusy
attribute is nearing the maxThreads value, it indicates some issue with the thread
pool configuration. The issue could be with the maxThreads value. In such a
situation, the maxThreads value should be increased. If the same issue persists
even after increasing the maxThreads value, further analysis of threads should be
done. This can be done by taking the thread dump. We can take the thread dump of
the Liferay Portal server through the control panel. We can also monitor individual
threads using JConsole. The Threads tab of JConsole provides a way to monitor all
the threads as shown:

Chapter 6

[119]

Here, JConsole displays a line chart representing the number of threads over time.
It considers all the threads of the Tomcat server and not only thread pool threads;

it also allows the reviewing of the stack trace by individual threads.

During a load test, if it is found that CPU usage of Liferay Portal is very high
all the time, one of the reasons could be because of a thread deadlock. Using
JConsole we can detect such thread locks. As shown in the preceding screenshot,
at any time during the test we can click on the Detect Deadlock button to find any
thread deadlocks.

During a load test, if it is found that the value of the currentThreadsBusy attribute
is always very low compare to the value of the maxThreads attribute, it indicates that
the thread pool might be oversized. We can reduce the thread pool size by modifying
the value of the maxThreads attribute.

Database connection pool – monitoring and tuning
A database connection pool impacts a lot on the overall performance of the Liferay
Portal server. In Chapter 3, Configuration Best Practices, we learned how to configure a
JNDI-based database connection pool. We learned about the recommended database
pool configuration. For most of the Liferay Portal solutions, this configuration works
well. But there is always scope for improvement, so it is recommended to monitor
the database connection pool during a load test. Database connection pool statistics
are exposed using JMX MBeans by the Liferay Portal-Tomcat server. Here are the
steps to monitor a database connection pool using JConsole:

1.	 Open JConsole and connect JConsole with the respective Liferay Portal node.
2.	 In JConsole, navigate to the MBeans tab and then navigate to the com.

mchange.v2.c3p0 node in the MBeans tree.
3.	 From this node, select a subnode starting with the name PooledDataSource.

Load Testing and Performance Tuning

[120]

4.	 Then, select the Attributes subnode. The system will display the database
connection pool attributes as shown in the following screenshot. Keep
refreshing the values of the attribute by using the Refresh button at
the bottom.

There are many attributes exposed by the database connection pool MBean.
The following list outlines the important attributes that should be tracked
during a load test:

•	 numBusyConnections: This attribute tells us how many database
connections are in use by the Liferay Portal server.

•	 maxPoolSize: This attribute tells us the maximum number of connections
that can be created in a database connection pool. This attribute is static
and the value of this attribute is controlled by the database connection
pool configuration.

•	 numConnections: This attribute tells us how many connections are created
in the database connection pool. It includes both busy and idle connections.

During the load test, if it is found that the value of the numBusyConnections
attribute is always nearing the value of the maxPoolSize attribute, it indicates
an issue with the database connection pool. It could be because of the undersized
database connection pool. If the same issue persists even after increasing the
database connection pool size then the issue might be because of open database
connections or slow query executions.

Chapter 6

[121]

Similarly, if the value of the numBusyConnections attribute is very low as compared
to the value of the maxPoolSize attribute, it indicates that the database connection
pool is oversized.

Cache – monitoring and tuning
In Chapter 4, Caching Best Practices, we spoke about how to provide custom
configuration for default Ehcache-based caching. Liferay creates many cache
instances for both multi-VM and Hibernate cache managers. Liferay includes the
default cache configuration for each cache instance. Depending upon the Portal,
requirement-specific cache instances can be tuned to improve performance. Liferay
Portal exposes cache information using JMX MBeans. Liferay Portal exposes two
types of cache information: one is related to actual cache objects and the other one is
for overall cache statistics. During load testing, cache statistics should be monitored.
By default, cache statistics are not exposed via JMX MBeans. It is required to enable
cache statistics using the Liferay Portal configuration. Here are the steps to enable
cache statistics in our setup:

1.	 Stop both Liferay Portal nodes if they are already running.
2.	 Now add the following properties in portal-ext.properties of the

two nodes:
#
To enable cache statistics for Single VM, Multi VM
Cache Managers
#
ehcache.statistics.enabled=true
#
To enable cache statistics for Hibernate cache manager
#
hibernate.generate_statistics=true

3.	 Restart both the Liferay portal nodes.

We enabled cache statistics for both Liferay Portal's cache manager and Hibernate's
cache manager. Once cache statistics are enabled, we can monitor cache statistics
using JConsole. Here are the steps to monitor the cache using JConsole:

1.	 Open JConsole and connect JConsole with the Liferay Portal node.
2.	 In JConsole, navigate to the MBeans tab and then expand net.sf.ehcache |

CacheStatistics | liferay-multi-vm-clustered.

Load Testing and Performance Tuning

[122]

Under the liferay-multi-vm-clustered tree node, we can find all the cache
instances as subnodes. Click on the Attributes subnode of the specific cache.
The system will display cache statistics of the selected cache instance as shown
in the following screenshot:

Cache statistics provide information of various attributes, but here are the key
attributes that should be monitored during a load test:

•	 ObjectCount: This attribute tells us how many objects there are in the cache.
•	 OnDiskHits: This attribute tells us how many requests are successful in

locating objects from a filesystem-based cache. This attribute is useful if
we enabled overflow to the disk attribute of the cache instance.

•	 InMemoryHits: This attribute tells us how many requests are successful in
retrieving objects from an in-memory cache.

•	 CacheHits: This attribute tells us how many requests are successful in
retrieving objects from the cache. It includes both in-memory and
disk-based caches.

•	 CacheMisses: This attribute tells us how many requests are unsuccessful in
retrieving objects from the cache.

Chapter 6

[123]

We learned that there are many cache instances in Liferay Portal. It is not possible
to monitor every instance during load tests. Hence, cache monitoring is done based
on specific performance issues. Depending on the most used functionalities of the
Portal, cache instances should be identified and monitoring those cache instances
should be done during a load test.

During a load test, if it is found that the value of the CacheMisses attribute is very
high, it indicates that the cache is undersized. In that case, the size of the cache
should be increased.

Apache web server – monitoring and tuning
In our reference architecture, we have used an Apache web server in front of Liferay
Portal servers. During a load test, we need to monitor the following resources of the
Apache web server.

•	 CPU and memory
•	 Worker threads

There are many tools available in the market to monitor CPU and memory
consumption of the Apache web server. On a Linux- or Unix-based server, we can
simply use the TOP command to monitor CPU and memory consumption. With
this option, it will be difficult to monitor resource usage over time. For this kind of
monitoring, any SNMP-based monitoring tool can be used. Nagios is one of the most
powerful open source monitoring tools. The Apache web server can be configured
with Nagios to monitor CPU and memory consumption. With the use of Nagios, we
can monitor worker threads as well.

The Apache web server also comes up with a simple monitoring module called
mod_status. It can be used to monitor worker threads. The following are the
steps to enable this tool:

1.	 Locate the httpd.conf file in the <APACHE_HOME>/conf directory on the
Apache web server and add the following configuration into it:
LoadModule status_module modules/mod_status.so
ExtendedStatus On
<location /server-status>
 SetHandler server-status
 Order allow,deny
 Allow from all
</location>

2.	 Restart the Apache web server.
3.	 From the browser, access http://localhost/server-status.

http://localhost/server-status
http://localhost/server-status

Load Testing and Performance Tuning

[124]

We enabled the mod_status module and configured the server's status page.
The server status page provides the following monitoring statistics:

•	 The number of on-going requests
•	 The number of idle worker threads
•	 Process details
•	 The total access requests
•	 The number of requests served per second

During a load test, if it is found that most of the time there are no idle workers and
requests are not going through, it is recommended to resize Apache threads / max
client configuration. If the problem still persists, requests might not be processed
because the Liferay Portal server is taking more time to respond. If the memory
usage is consistently high, it is recommended to reduce the Apache thread / max
client pool size.

Monitoring the database server
Liferay Portal is database agnostic. We can configure any JDBC-supported database
server with the Liferay Portal server. In our reference architecture, we have used
MySQL. Most of the database products provide their own monitoring and tuning
tools. In this section we will discuss which items should be monitored during
load tests.

CPU and memory usage
CPU and memory usage of the database server must be monitored during a load
test to find any performance bottlenecks. As discussed in the previous section, the
easiest way to monitor CPU and memory is through the TOP command. But it is
recommended to configure SNMP-based tools such as Nagios for CPU and memory
usage monitoring. There could be multiple reasons of high CPU or memory usage.
After the load test, further investigation will be required to find out the root cause
of this.

Slow queries
It is very important to identify database queries that are taking more time. It is also
important to find out database queries that are executed many times during the load
test. Every database product provides one way or an other to get slow queries or the
top n queries.

Chapter 6

[125]

There are multiple reasons for queries being slow. It could be because of improper
indexing, improper query logic, or improper database configuration parameters.
During a load test, a list of such queries should be identified, and then before the next
load test for run, the necessary performance-related changes should be carried out.

Connections
We learned to monitor and tune the database connection pool in the Database
connection pool – monitoring and tuning section. But that is one side of it. Performance
issues may arise because of improper connection configuration at the database server
level as well. So it is very important to monitor connections at the database server
level. Every database server provides one way or another to monitor a number of
open and idle connection objects in the database. During the load test, these statistics
must be closely monitored.

Lock monitoring
Database servers use the locking mechanism to support concurrent access.
Sometimes heavy database queries lock database objects for a long time. It will
slow down the processing of other requests that are dependent on the same objects.
It could be one of the causes of a high number of busy connections on the Liferay
Portal server. Most of the database products provide lock-monitoring features.
During a load test, database locks should be closely monitored.

Monitoring logfiles
We talked about monitoring various resources using tools. But, sometimes,
performance bottlenecks are because of errors in some of the components. Hence,
as part of the load testing process, all the logfiles should be monitored after the load
test. It is recommended to clear all logfiles before starting the load test. Here is a list
of logfiles that should be monitored:

•	 Liferay Portal logfile
•	 Application server logfile
•	 Apache web server access logfile
•	 Apache web server error logfile
•	 Apache web server mod_jk logfile
•	 Database server error logfile
•	 Error logfiles of every application-specific integration components

Load Testing and Performance Tuning

[126]

Summary
We learned about the load testing process. We learned how to monitor JVM,
the Liferay Portal thread pool, the database connection pool, and so on. We also
learned about Apache web server monitoring. We talked about all the key items to
be monitored in a database server. With this knowledge anyone can go ahead and
conduct load testing and performance tuning exercises.

Index
A
Active Directory tier 10
Advance File System store 16
AlloyUI 94 9
Amazon S3 10
Announcement portlet

about 69
scheduler, disabling 69

Apache Benchmark (ab) 108
Apache JMeter 107
Apache Lucene

about 26
index storage on SAN 26
Lucene Index replication, Cluster Link

used 27
Apache Solr 27-29, 54
Apache web server

monitoring 123
tuning 124
used, for configuring load balancer 35

Apache web server based software load
balancing 32

Apache web server configuration best
practices 76

Apache Web Server MPM
configuration 80, 81

cache header configuration 79, 80
GZip compression configuration 78
static content delivery 76, 77

Apache web server MPM
configuration 80, 81

Application Server configuration best
practices

about 70
database connection pool configuration 70,

72
JSP engine configuration 74, 75
JVM configuration 72
thread pool configuration 75

Application tier 9
asset view counter 66
auto login filter 60, 61
auto login hooks

configuring 63

B
barebone 77
barebone bundle 95
best practices, Ehcache clustering 47
best practices, load balancing 41
BlazeMeter 107
Blogs portlet

about 68
scheduler, disabling 68

C
cache control attributes

eternal 87
maxElementsInMemory 87
overflowToDisk 88
timeToIdleSeconds 87
using 88

cache header configuration 79, 80
CacheHits attribute

monitoring 122
cache manager 84
CacheMisses attribute

monitoring 122
cache replication

about 44

[128]

Ehcache clustering best practices 47
Ehcache configuration, JGroups used 46
Ehcache replication, Cluster Links used 47
Ehcache replication, RMI used 45

cache statistics
attributes 122
enabling 121
monitoring 121

caching
about 22, 83
Terracotta, using 89-92

caching architecture 22
caching options, Liferay Portal

Ehcache replication, Cluster Link used 23
Ehcache replication, RMI used 22, 23
Ehcache used 22
Terracotta used 24
web resource caching, Varnish used 25, 26

Calendar portlet
about 67
scheduler, disabling 67

CAS filter 61
CAS SSO integration 60
CDN

about 21
configuring 21

Central Authentication Service (CAS) 61
clustering 31
clustering best practices, Media Library 52
clustering best practices, search engine 56
cluster, Liferay Portal

configuring 33
Cluster Link

about 47
configuring, for search indexes replication

54
used, for Ehcache replication 23
used, for Lucene Index replication 27

Cluster Link-based Ehcache replication
configuring 47

CMIS-based repository 10
CMIS store 17
CMS (Concurrent Mark and Sweep)

threads 73
code analysis tools

CPD 103
FindBugs 103

PMD 103
SONAR 103

code cache 115
coding best practices 103
Compuware dynaTrace AJAX Edition

about 100
URL 100

Concurrent Collector 72
concurrent threads parameter 108
concurrent users 106
configuration settings, Liferay Portal

about 60
auto login hooks 63
counter increment 63
Direct Servlet Context 64
Googles blog search ping integration 66
pingbacks method 65
plugin repositories 65
servlet filter configuration 60
trackbacks method 65
user session tracker 64

content delivery
through, web server 21

Content Delivery Network. See CDN
Content Management Interoperability

Services store. See CMIS store
counter increment

configuring 63
counter service

about 63
configuring 64

CPD tool 103
CSS files

reducing 96
CSS image sprites

about 96
using 96

currentThreadCount attribute
monitoring 118

currentThreadsBusy attribute
monitoring 118

D
database 10
database architecture

about 18

[129]

database sharding 19, 20
read/write database 18, 19

database connection pool
about 119
attributes 120
monitoring 119

database connection pool
configuration 70, 72

Database Repository tier 10
database server

connections, tuning 125
CPU and memory usage, monitoring 124
locking mechanism 125
monitoring 124
slow queries, monitoring 124, 125

database sharding 19, 20
Database store 16
defaultCache element 88
deployment sizing approach

about 12, 13
example 15
performance benchmark test 14
reference hardware 13

Developer Console 92
Direct Servlet Context 64, 65
Document Object Model. See DOM
Documents and Media Library architecture

about 15
Advance File System store 16
CMIS store 17
Database store 16
File System store 16
JCR store 17
S3 store 18

DOM 100
DOM operations usage

limiting 100
dynamic queries usage

limiting 101

E
Eden space 115
Ehcache

about 22
replicating, Cluster Link used 23
replicating, RMI used 22, 23

used, for caching 22
Ehcache clustering best practices 47
Ehcache configuration

customizing 83-85
Ehcache configuration best practices 86-89
Ehcache configuration, customizing

Hibernate Ehcache CacheManager 85
Multi-VM CacheManager 86
Single-VM CacheManager 86

Ehcache replication
RMI used 45

eternal attribute 87
everything bundle 95
example Portal solution

sample performance requisites 15
sizing calculation 15

examples, servlet filter configuration
CAS SSO integration 60
NTLM SSO integration 60
SharePoint integration 60

F
fault tolerance, reference architecture 11
File System store 16
FindBugs tool 103

G
Garbage Collection

about 72
URL 73

Garbage Collectors
Concurrent Collector 72
Parallel Collector 72
Serial Collector 72

Googles blog search ping integration
about 66
asset view counter 66
document ranks, recording 66
inline permission checks 69
Lucene Configuration 70
scheduler configuration 67
view count, recording 66

GZip 78
GZip compression configuration 78
GZip filter 62

[130]

H
hardware load balancer 32
heap memory pools

code cache 115
Eden space 115
ESurvivor space 115
Permanent generation space 115
Tenured space 115

Hibernate Ehcache CacheManager 85
high availability, reference architecture 11
HP LoadRunner 108

I
IBM Rational Performance Tester 108
inline permission check 69
InMemoryHits attribute

monitoring 122

J
Java Content Repository (JCR) 10
Java Content Repository store. See JCR store
Java Heap configuration 73
Java Management Extension (JMX) compli-

ant tool 111
JavaScript bundle 94
JavaScript files

minifying 98
reducing 94, 95

JavaScript positioning 99
JConsole

about 111
memory matrices, displaying 115

JConsole-based monitoring
enabling 111, 113

JCR store 17
JGroup-based Ehcache replication

configuring 46
jQuery 94
JSP engine configuration 74, 75
Just-in-time (JIT) compiler 115
JVM 114
JVM Configuration

about 72
Garbage Collection 72, 73
Java Heap configuration 73

JVM parameters
MaxNewSize 116
NewRatio 116
NewSize 116
SurvivorRatio 116

JVM tuning 116

L
LDAP integration

about 68
scheduler, disabling 68

least recently used (LRU) object 87
Liferay

about 7
Announcement portlet 69
barebone bundle 95
Blogs portlet 68
Calendar portlet 67
everything bundle 95
LDAP integration 68
Media Library portlet 69
Message board portlet 68
Web Content portlet 68

Liferay caching API
about 102
using 102, 103

Liferay Portal
Apache Web Server configuration best

practices 76
Application Server configuration best

practices 70
caching architecture 22
configuration settings 60
configuring, with Solr 54
database architecture 18
deployment sizing approach 12
Documents and Media Library

architecture 15
portlet development best practices 101
reference architecture 7
search architecture 26
search integration options 26
static content delivery 20
UI best practices 93

Liferay Portal cluster
configuring 32, 33

[131]

Liferay Portal cluster configuration
about 41
cache replication 44
Media Library 48
Quartz scheduler configuration 56
search engine configuration 53
session replication 42

Liferay Portal nodes
setting up 33, 34

Liferay Portal server
cluster, configuring 32, 33
monitoring 111
tuning 111

Liferay-specific best practices, test
scripts 109

load balancer configuration
Apache Web Server used 35
mod_jk module used 35-37
mod_proxy_ajp used 37, 38
mod_proxy_http used 39, 40

load balancing
about 32
best practices 41
levels 32

load testing
about 106
performing 110
requisites 106

load testing environment
setting up 110

load testing requisites
capturing 106
concurrent users 106
response time 106
TPS(throughput) 107

load testing scripts
concurrent threads 108
loop count / duration 108
preparing 108
ramp-up period 109
the think time 109

load testing tools
Apache Benchmark (ab) 108
Apache JMeter 107
BlazeMeter 107
selecting 107

load tests

conducting 110
lock-monitoring features 125
logfiles

Apache web server access logfile 125
Apache web server error logfile 125
Apache web server mod_jk logfile 125
Application server logfile 125
Database server error logfile 125
Error logfiles 125
Liferay Portal logfile 125
monitoring 125

loop count / duration parameter 108
Lucene

configuring, for storing index files 53
Lucene Configuration 70

M
major garbage collection (major GC) 115
maxElementsInMemory attribute 87
MaxNewSize parameter 116
maxPoolSize attribute 120
maxThreads attribute

monitoring 118
Media Library 48
Media Library configuration

about 48
clustering best practices 52
database storage, DBStore used 52
database storage, JCR store used 49-52
network file storage, Advanced File

System store used 48
Media Library portlet

about 69
scheduler, disabling 69

Media Repository tier 10
Message Board portlet

about 68
scheduler, disabling 68

minification 98
mod_jk module

used, for configuring load balancer 35-37
mod_proxy_ajp module

used, for configuring load balancer 37, 38
mod_proxy_http module

used, for configuring load balancer 39, 40
mod_status module 124

[132]

monitoring tools
cache 121
database connection pool 119
JConsole 111
JVM 114
Tomcat thread 117
VisualVM 113

MPM
about 80
event option 80
options 80
prefork option 80
worker option 80

Multi-VM CacheManager 86

N
Nagios 123
Networking tier 9
NewRatio parameter 116
NewSize parameter 116
NTLM SSO filter 61
NTLM SSO integration 60
numBusyConnections attribute 120
numConnections attribute 120

O
ObjectCount attribute

monitoring 122
OnDiskHits attribute

monitoring 122
OpenAM 61
OpenSSO filter 61
overflowToDisk attribute 88

P
PageSpeed

about 100
URL 100

Parallel Collector 72
peak load 106
performance benchmark test 14
performance, reference architecture 11
performance tuning

about 111
Apache web server 123

Liferay Portal server 111
Permanent generation space 115
pingbacks 65
ping service 66
plugin repositories 65
PMD tool 103
portlet development best practices

about 101
coding best practices 103
dynamic queries usage, limiting 101
Liferay caching API 102, 103

Presentation tier 9

Q
Quartz scheduler configuration 56, 57

R
ramp-up period parameter 109
read/write database 18, 19
reference architecture

about 7
Active Directory tier 10
Application tier 9
characteristics 10
Database Repository tier 10
Media Repository tier 10
Networking tier 9
Presentation tier 9
Search Repository tier 10
Web tier 9

reference architecture characteristics
about 10
fault tolerance 11
high availability 11
performance 11
scalability 11
security 11

reference hardware 13
resource monitoring

about 111
Apache web server 123
database server 124
Liferay Portal server 111
logfiles 125

response time 106

[133]

RMI-based replication
working 45

RMI (Remote Method Invocation)
about 45
used, for Ehcache replication 22, 23

S
S3 store 18
SAN 10
scalability, reference architecture 11
scheduler configuration 67
search architecture 26
search engine configuration

about 53
Apache Solr search engine, using 54, 55
clustering best practices 56
Lucene index replication, Cluster

Link used 54
Lucene index storage, on network

storage 53
search integration options

Apache Lucene 26
Apache Solr 27

Search Repository tier 10
security, reference architecture 11
Serial Collector 72
Service Builder 101
servlet filter configuration

about 60
examples 60

servlet filters
auto login filter 60
CAS filter 61
GZip filter 62
NTLM SSO filter 61
OpenSSO filter 61
SharePoint filter 62
Strip filter 62
ValidHtml filter 63

session replication
about 42
configuring 42, 44

SharePoint filter 62
SharePoint integration 60
Single-VM CacheManager 86
sizing 12

SONAR tool 103
sprite image 97
static content delivery

about 20, 76
CDN 21
configuring, through Apache Web

Server 76, 77
content delivery, through web server 21

Storage Area Network. See SAN
Strip filter 62
SurvivorRatio parameter 116
Survivor space 115

T
Tenured space 115
Terracotta

Developer Console 92
downloading 89
installing 89
used, for caching 24, 89, 91, 92

Terracotta community edition
URL 89

the think time parameter 109
thread pool attributes

currentThreadCount 118
currentThreadsBusy 118
maxThreads 118
monitoring 118

thread pool configuration 75
timeToIdleSeconds attribute 87
Tomcat thread

monitoring 117, 118
tuning 118

trackbacks 65
Transactions per second (throughput) 107

U
UI best practices

about 93
CSS files, reducing 96
CSS image sprites, using 96-98
DOM operations usage, limiting 100
JavaScript files, minifying 98
JavaScript files, reducing 94, 95
JavaScript positioning 99

[134]

web page performance, analyzing with
tools 100

user session tracker
configuring 64

V
ValidHtml filter 63
Varnish

used, for web resource caching 25, 26
VisualVM

about 113
connecting, with Liferay Portal Tomcat

server 113

W
web application accelerators 25
Web Content portlet

about 68
scheduler, disabling 68

web page performance
analyzing, tools used 100

web resource caching
Varnish used 25, 26

Web tier 9

Y
YSlow

about 100
URL 100

YUI 94

Thank you for buying
Liferay Portal Performance Best Practices

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Instant Liferay Portal 6
Starter
ISBN: 978-1-78216-966-6 Paperback: 54pages

Create your portal with Liferay and learn its concepts
on the go!

1.	 Learn something new in an Instant! A short,
fast, and focused guide delivering immediate
results

2.	 Get acquainted with Liferay's interface

3	 Learn the core concepts and terms of Liferay

Liferay User Interface
Development
ISBN: 978-1-84951-262-6 Paperback: 388 pages

Develop a powerful and rich user interface with
Liferay Portal 6.0

1.	 Design usable and great-looking user interfaces
for Liferay Portals

2.	 Get familiar with major theme development
tools to help you create a striking new look for
your Liferay Portal

3.	 Learn the techniques and tools to help you
improve the look and feel of any Liferay Portal

Please check www.PacktPub.com for information on our titles

Liferay Portal Systems
Development
ISBN: 978-1-84951-598-6 Paperback: 546 pages

Build dynamic, content-rich, and social systems on
top of Liferay

1.	 Use Liferay tools (CMS, WCM, collaborative
API, and social API) to create your own Web
sites and WAP sites with hands-on examples

2.	 Customize Liferay portal using JSR-286
portlets, hooks, themes, layout templates, webs
plugins, and diverse portlet bridges

3.	 Build your own websites with kernel
features such as indexing, workflow, staging,
scheduling, messaging, polling, tracking,
auditing, reporting, and more

Liferay Beginner's Guide
ISBN: 978-1-84951-700-3 Paperback: 396 pages

Quick and easy techniques to build, deploy, and
maintain your own Liferay Portal

1.	 Detailed steps for installing Liferay Portal and
getting it running, for people with no prior
experience of building portals

2	 Follow the example of building a
neighbourhood site with preinstalled portlets
and custom portlets

3.	 Create your own communities, organizations
and user groups, and learn how to add users to
them

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Architectural Best Practices
	The Liferay Portal reference architecture
	The Presentation tier
	The Networking tier
	The Web tier
	The Application tier
	The Database Repository tier
	The Search Repository tier
	The Media Repository tier
	The Active Directory tier
	Reference architecture characteristics
	Scalability
	Performance
	High availability and fault tolerance
	Security

	The Deployment sizing approach
	The reference hardware
	The performance benchmark test summary
	An example of sizing calculations
	Sample performance requirements
	Sizing calculations

	The Documents and Media Library architecture
	File System and Advanced File System stores
	The Database store
	The JCR store
	The CMIS store
	The S3 store

	The database architecture
	The read/write database
	Database sharding

	Static content delivery
	Content Delivery Network
	Content delivery through the web server

	The caching architecture
	Caching using Ehcache
	Ehcache replication using RMI
	Ehcache replication using Cluster Link

	Caching using Terracotta
	Web resource caching using Varnish

	The search architecture
	Apache Lucene
	Index storage on SAN
	Lucene Index replication using Cluster Link

	Apache Solr

	Summary

	Chapter 2: Load Balancing and Clustering Best Practices
	The basics of load balancing and clustering with Liferay
	Setting up Liferay Portal nodes
	Software load balancer configuration using the Apache Web Server
	Load balancer configuration using mod_jk
	Load balancer configuration using
mod_proxy_ajp
	Load balancer configuration using
mod_proxy_http
	Load balancing best practices

	Liferay Portal cluster configuration
	Session replication configuration
	Cache replication
	Ehcache replication using RMI
	Ehcache configuration using JGroups
	Ehcache replication using Cluster Links
	Ehcache clustering best practices

	Media Library configuration
	Network file storage using the Advanced File System store
	Database storage using the JCR store
	Database storage using DBStore
	Media Library clustering best practices

	Search engine configuration
	Lucene index storage on network storage
	Lucene index replication using Cluster Link
	Using the Apache Solr search engine
	Clustering best practices for the search engine

	Quartz scheduler configuration

	Summary

	Chapter 3: Configuration Best Practices
	Liferay Portal configuration best practices
	Servlet filter configuration
	The auto login filter
	The CAS filter
	The NTLM SSO filter
	The OpenSSO filter
	The SharePoint filter
	The GZip filter
	The Strip filter
	The ValidHtml filter

	Auto login hooks
	Counter increment
	User session tracker
	Direct Servlet Context
	Plugin repositories
	Pingbacks and trackbacks
	Google's blog search ping integration
	The asset view counter
	Document ranks and view count
	Scheduler configuration
	Inline permission checks
	Lucene Configuration

	Application Server configuration
best practices
	Database connection pool configuration
	JVM configuration
	Garbage Collection
	The Java Heap configuration

	JSP engine configuration
	Thread pool configuration

	Apache Web Server configuration
best practices
	Static content delivery
	GZip compression configuration
	Cache header configuration
	Apache Web Server MPM configuration

	Summary

	Chapter 4: Caching Best Practices
	Customizing the Ehcache configuration
	Hibernate Ehcache CacheManager
	Single-VM CacheManager
	Multi-VM CacheManager

	Ehcache configuration best practices
	Caching using Terracotta
	Summary

	Chapter 5: Development Best Practices
	UI best practices
	Reducing the number of JavaScript files
	Reducing the number of CSS files
	Using CSS image sprites
	Minifying JavaScript files
	JavaScript positioning
	Limiting the use of DOM operations
	Analyzing web page performance using tools

	Portlet development best practices
	Limiting the use of dynamic queries
	Liferay caching API
	Coding best practices

	Summary

	Chapter 6: Load Testing and Performance Tuning
	Getting ready for load testing
	Capturing load testing requirements
	Selecting load testing tools
	Apache JMeter
	BlazeMeter
	Apache Benchmark (ab)

	Preparing load testing scripts
	Setting up the load testing environment
	Conducting load tests

	Resource monitoring and
performance tuning
	Liferay Portal server – monitoring and tuning
	JConsole
	VisualVM
	JVM – monitoring and tuning
	Tomcat thread – monitoring and tuning
	Database connection pool – monitoring and tuning
	Cache – monitoring and tuning

	Apache web server – monitoring and tuning
	Monitoring the database server
	CPU and memory usage
	Slow queries
	Connections
	Lock monitoring

	Monitoring logfiles

	Summary

	Index

