

Liferay Portal
Systems Development

Build dynamic, content-rich, and social systems on top
of Liferay

Jonas X. Yuan

 BIRMINGHAM - MUMBAI

Liferay Portal Systems Development

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First Edition: May 2009

Second Edition: January 2012

Production Reference: 1190112

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-598-6

www.packtpub.com

Cover Image by Rakesh Shejwal (shejwal.rakesh@gmail.com)

Credits

Author
Jonas X. Yuan

Reviewers
Piotr Filipowicz

Christianto Sahat Kurniawan

Szymon V. Gołębiewski

Acquisition Editor
Sarah Cullington

Lead Technical Editor
Hyacintha D'Souza

Technical Editors
Ankita Shashi

Manasi Poonthottam

Sakina Kaydawala

Azharuddin Sheikh

Copy Editors
Leonard D'Silva

Brandt D'Mello

Project Coordinator
Joel Goveya

Proofreaders
Lesley Harrison

Stephen Silk

Indexer
Tejal Daruwale

Graphics
Manu Joseph

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Dr. Jonas X. Yuan is an expert on Liferay Portal and Content Management
Systems (CMS). As an open source community contributor, he published four
Liferay books from 2008 to 2010. He is also an expert on Liferay integration with
Ad Server OpenX, different search engines, enterprise contents including videos,
audios, images, documents, records and web contents, social media, and other
technologies, such as, BPM Intalio and Business Intelligence Pentaho, LDAP, and
SSO. He holds a Ph.D. in Computer Science from the University of Zurich, where
he focused on Integrity Control in Federated Database Systems. He earned his M.S.
and B.S. degrees from China, where he conducted research on expert systems for
predicting landslides. Previously, he worked as a Project Manager and a Technical
Architect in Web GIS (Geographic Information System). He is experienced in
Systems Development Lifecycle (SDLC) and has deep, hands on, skills in J2EE
technologies. He developed a BPEL (Business Process Execution Language) Engine
called BPELPower from scratch in the NASA data center. As the chief architect, Dr.
Yuan led and successfully launched several large scale Liferay/Alfresco projects for
millions of users each month.

He has worked on the following books: Liferay Portal Enterprise Intranets, 2008,
ISBN 13: 978-1-847192-72-1; Liferay Portal 5.2 Systems Development, 2009, ISBN 13:
978-1-847194-70-1; Liferay Portal 6 Enterprise Intranets, 2010, ISBN 13: 978-1-849510-
38-7; and Liferay Portal User Interface Development, 2010, ISBN 978-1-849512-62-6.

Acknowledgement

I would like to thank all team members at Liferay; especially Raymond Auge, Brian
Chan, Jorge Ferrer, Michael Young, Bryan Cheung, Jerry Niu, Ed Shin, Craig Kaneko,
Brian Kim, Bruno Farache, Thiago Moreira, Amos Fong, Scott Lee, David Truong,
Alexander Chow, Mika Koivisto, Julio Camarero, Douglas Wong, Ryan Park, Eric
Min, John Langkusch, Marco Abamonga, Ryan Park, Eric Min, John Langkusch,
Marco Abamonga, Michael Han, Samuel Kong, Nate Cavanaugh, Arcko Duan,
Richard Sezov, Joshua Asbury, Shuyang Zhou, Michael Saechang, Juan Fernández,
James Falkner, Olaf Kock, Zsolt Berentey, Dennis Ju, Sergio Gonzalez, Zsolt Balogh,
Jonathan Mak, Eduardo Lundgren, Iliyan Peychev, Bruno Basto, Jonathan Lee, Aaron
Delani, and Angelo Jefferson of Liferay for providing all the support and valuable
information. Much thanks to all my friends in the Liferay community.

I sincerely thank and appreciate Sarah Cullington and Hyacintha D'Souza,
Acquisition Editor and Lead Technical Editor respectively at Packt Publishing for
criticizing and fixing my writing style. Thanks to Joel Goveya, Sakina Kaydawala,
Azharuddin Sheikh, Ankita Shashi, Manasi Poonthottam, and the entire team at
Packt Publishing; it is really joyful to work with them.

Last but not least, I would like to thank my parents and my wife, Linda, for their
love, understanding, and encouragement. My special thanks to my wonderful and
understanding kid, Josua.

About the Reviewers

Piotr Filipowicz is a technical architect and software developer with eo Networks
S.A., Poland. He is an expert in Content Management Systems (CMS). He currently
holds the position of a team leader in a group tasked with developing Liferay-
based software. His accomplishments in enhancing and creating various Liferay
components are evident in the number of successful implementations. His experience
and knowledge are supported by certifications as a Liferay Portal Administrator,
Sun Certified Web Component Developer for the Java Platform, Sun Certified
Programmer for the Java 2 Platform.

Since 2002 he has created various kinds of IT systems, from desktop applications
through CMS applications supporting large banking and financial systems. His main
interest lies in web applications. He uses Java and J2EE technologies on a daily basis,
but his mind is open to other technologies and solutions. He holds a Master's in
Software Systems from Politechnika Białostocka, Poland.

Christianto Sahat Kurniawan is a software engineer who has been using
Java as his programming language since 2001, and using Liferay since 2007. After
having experience implementing Liferay for a big global bank and few other
companies while working in Singapore and Germany, he decided to start a company
focusing on enterprise portal development and training. You can read his blog at
www.javaenterpriseportal.com.

I would like to thank the Liferay team, especially Jorge Ferrer, Olaf
Kock, Amos Fong, and Ray Augé, who have contributed a lot in
answering questions on Liferay's forum. And for the rest of Liferay
team who have created a great open source software.

Szymon V. Gołębiewski is the Chief of Competence Center for Portals at eo
Networks S.A.—a Poland-based company noted in Deloitte Technology Fast 50.

In his work, Szymon and his team focus on using Liferay as a tool for bringing best
solutions for the company's clients. His team is responsible for commencing usability
tests, preparing in-depth analysis of customer needs and delivering stable tools for
company developers. One of his competences is managing product cycle of Liferay
inside his company with all custom-made plugins and portlets. His vast knowledge of
internet and usability standards gives him a useful advantage, when participating in
Liferay programs like 100 PaperCuts program, Community Leadership, BugSquad.

His commitment to Liferay community development has resulted in participating at
the East Coast Symposium 2011 as a speaker.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

This book is dedicated to:

my wife Linda, my son Joshua, and my parents, Daxian and Zhengzi.

This book would not have been possible without your love and understanding.

Thank you from the bottom of my heart.

Table of Contents
Preface 1
Chapter 1: Liferay Enterprise Portal 7

Liferay functionalities 8
Document and media library—CMS 8
Web content management—WCM 8
Personalization and internalization 9
Workflow, staging, scheduling, and publishing 9
Social network and social office 10
Monitoring, auditing, and reporting 10
Tagging 11
Integration 11

Framework and architecture 12
Service Oriented Architecture 12
Enterprise Service Bus 13
Standards 14

Terminologies 15
Multi-tenancy 16
Role-based access control 17

Resource, role, and permission 18
User 19
Group 19

Systems development 20
Ext plugin 22
Hook plugin 22
Portlet, layout template, and web plugins 24
Theme plugin 24
Development strategies 25

Level I development 25
Level II development 26
Level III development 27

Table of Contents

[ii]

An example: Knowledge base management 27
More useful information 29
Summary 30

Chapter 2: Service-Builder and Development Environment 31
Plugins SDK development environment 31

Required tools 32
JDK 32
Ant 33
Maven 33

Databases 33
MySQL 33

Application servers 34
Tomcat 34

IDE 35
Eclipse IDE 35
Workspace 36
Subclipse 36

Portal and plugins structure 36
Portal source code 37

Portal source code structure 38
Plugins SDK source code 40

Plugins SDK structure 41
Portal runtime structure 42

Ant target clean 43
Ant target start 43
Ant target deploy 44
What is happening? 45

Plugins runtime structure 46
Ant target clean 46
Ant target deploy 46

Portal service and implementation 47
Interface and implementation 47
JAR-based fix patch 49

Service-Builder 50
Ant target build-service 51
Database structure definition 51

Author, namespace, and exceptions 52
Entity 53

Attribute list declarations 53
Column 54
Finder 56
Reference 57
Order and tx-required 58

Reserved names 59
Reserved alias names 59

Table of Contents

[iii]

Reserved table names 60
Reserved column names 60
Reserved JSON types 61

Mappings 61
Data types 61
Models and services 62
SQL scripts, properties, and JSON JavaScript 64
Spring and Hibernate 65

Element convert-null 66
Service-Builder improvement 68
More services 70

Ant target build-db 70
Ant target build-lang 70
Ant target build-wsdd 71
Ant target build-client 73

Default data population 73
Release information 74
Data population 75

Database case-sensitive queries 76
Verifying processes 77

Default project creation and templates 77
Plugins default project creation—Ant targets 77
Plugins default project templates 79

Fast development 79
What is happening? 81

Summary 81
Chapter 3: Generic MVC Portlets 83

Plugin portlet project 84
Naming conventions and filter mappings 84
Portlet project default template 84
Knowledge base portlet project 85

Basic MVC portlet 86
Project structure 86

Portlet definition 86
Liferay portlet registration 87
Liferay portlet display 87
Liferay plugin package 88
View specification 88

Portlet XSD and DTD 89
Portlet app XSD 89
Liferay portlet app DTD 90
Liferay display DTD 91
The Liferay plugin package DTD 93

Table of Contents

[iv]

What's happening? 94
MVC portlet bridge 94

MVC portlet extension 95
Portlet JSP/JavaScript/CSS loading 96

AJAX and render weight 96
Header JavaScript/CSS and footer JavaScript/CSS 96
Predefined objects 97
Direct JSP servlet 99

What's happening? 100
Advanced MVC portlet 100

Portlet bridge extension 100
Bringing portlets into the Control Panel 102
Portlet configuration and preferences 103

Portlet configuration 103
Portlet preferences 105

Portlet keys, title, and description 106
Message 107

Redirect 107
Render URL 108
Action URL 109

Interacting with the database 110
Rebuilding services 113

What's happening? 113
Model hints 114

Other databases in plugins 116
What's happening? 118

Dynamic query API 118
Queries in plugins 119

Dynamic query factory 120
Dynamic query operations 120

SQL joins 122
Joining tables inside a plugin 122
Joining tables from different plugins 123
Joining tables from plugins and portal core 124

Custom query 125
What's happening? 127

Security and permissions 128
Adding resources 128

What's happening? 129
Registering permission 130

Permission algorithm 130
Permission actions registration 130

Assigning permissions 131

Table of Contents

[v]

Checking permission 132
What's happening? 133

Summary 135
Chapter 4: Ext Plugin and Hooks 137

Ext plugin 138
Ext plugin project default template 138

Creating an Ext plugin project 139
Advanced customization 140

Advanced configuration 143
Advanced portal core API overwriting 144
Advanced portal web overwriting 145

Upgrading a legacy Ext environment 147
What's happening? 148

Deploy processes 148
What's happening? 149

Deployer 150
Sandbox deploy 151

Sandbox deploy listener 152
Auto deploy 152

Auto deploy listener 154
Auto deployer 155

Hot deploy 156
Hot deploy listener 157

Class loader proxy 159
Generating the class loader proxy 159
Sharing plugin services 161

Hooks 161
Hook plugin project default template 161
Liferay hook DTD 162
Portal properties hooks 165

Event handlers 166
Model listeners 168
What's happening? 173

Language properties hooks 174
Multiple languages 175
What's happening? 175

Custom JSP hooks 177
Custom JSP files and path mapping 178
What's happening? 179

Indexer post processor hooks 180
What's happening? 181

Service wrappers hooks 181
What's happening? 183

Table of Contents

[vi]

Servlet filter and servlet filter mappings hooks 183
What's happening? 185

Struts actions hooks 186
What's happening? 188

Summary 191
Chapter 5: Enterprise Content Management 193

Image management 194
Models and services 194

Models 194
Base model 197
Services 198
Usage 200
Image processor 201
Image sprite processor 202

Permissions 204
Resource action mapping 205

Video management 207
Adding default document types 208
Video and audio processors 208
Antivirus scanner 209

Document management 209
Models and services 210

Models 211
Services 212
Attachments 213

Document versioning 214
Converting document 214
Comparing versions 216
Previewing a live document 217
Document check-in and check-out 218
Moving document 220
Document indexing 220

WebDAV 222
WebDAV storage 222
WebDAV models and services 223

Multiple repositories 224
Repository interface 224
Document hooks 225
Converting repositories 226
CMIS consumer and producer 227
SharePoint integration 229
Documentum integration 230
Alfresco integration 231

Records management 233
Records in Document Library 233

Record model 236

Table of Contents

[vii]

Records validation and classification 237
Records indexing 237
OCR engines 238

Building relationship 239
Model 240
Services 241
Portal-instance level relationship 242

Content authoring 242
Content archiving 244

Summary 245
Chapter 6: DDL and WCM 247

Web content management 248
Models and services 248

Models 249
Services 251
Comparator services 252
Journal content services 253
Journal tokens 254
Retrieving structures, templates, and articles 256

Structure 257
Types 257
Value format 259

Template 259
Language types 260
Variables and values 261
Custom CSS 261
Custom JavaScript 262

Localization 262
Localized column 262
Value format 263
Localization interface 264

Indexer 264
XML security 266
Sanitizer 267

Antisamy 268
ClassName-classPK pattern 269

WYSIWYG editor 270
CKEditor integration 270

CKEditor structure 271
CKEditor diffs 272

CKEditor plugins 273
Custom plugins 273

Table of Contents

[viii]

Expando—custom attribute 274
Models and services 275

Models 275
Services 276
Taglib 277
Data types 277

Indexer 278
NoSQL adapter 279

Dynamic data lists and dynamic data mapping 279
Models and services 279

Models 280
Services 281

Storage adapter 282
Asset, tagging, and categorization 282

Models and services 283
Models 284
Services 286
View count 286

Tag 287
Services 288
Tags cloud 288

Category 289
Services 289
Categories cloud 290
Category tree 290

Asset query 291
Related content 292
Range query 292

Asset publishing 293
Asset renderer framework 293

Summary 294
Chapter 7: Collaborative and Social API 295

Collaboration 296
Wiki 296

Wiki models 296
Wiki services 297
Wiki engines 298

Blogs 299
Shared calendar 300
Announcements 301
Message Boards 301

Models 302
Services 303

Table of Contents

[ix]

Bookmarks 304
Polls 305

Asset management 306
Software Catalog 306

Private messaging 307
Microblogs 307

Shopping cart 308
Advanced calendar 310
Tasks management 310

Online chat and mail 311
Chat 311
Mail 312
Asset management system 314
Human resource management 315
Marketplace 315

Assets collaboration 315
Asset ratings 316

UI taglib liferay-ui:ratings 316
Asset comments 317

Model 317
Service 317
UI taglib liferay-ui:discussion 318

Asset flags 318
UI taglib liferay-ui:flags 319

Assets subscription 319
E-mail notification 320
RSS feeds 321
Attached model 322

Social identity repository 323
Social networking 323

Models 324
Services 324
Social coding 325

Social office 326
Models 327
Services 327
Hooks 328
Contacts 330

Social activity 331
Models 332
Services 333
UI taglib liferay-ui:social-activities 333
Adding social activity tracking 334
Requests and activities 334
Social bookmarks 335

Table of Contents

[x]

Social equity 336
Models 336
Services 337
Adding social equity services on custom assets 337
Social activity statistics and top users 338

OpenSocial 339
Gadget models 339
Gadget services 340
Shindig services extension 340
Gadget portlets 341

Summary 341
Chapter 8: Staging, Scheduling, Publishing, and
Cache Clustering 343

The pattern: Portal-Group-Page-Content 344
Portal 345

Base models 345
Model listener 347
Portal instance 349

Group 350
Services 351
System groups 351
User 353
Layout set 354

Layout 355
Layout template 355
Portlet 356

LAR export and import 356
Portlet data handler 357

Interface 357
Portlet data context 358
Portlet data context listener 359
Services 359
Portal core assets 360
Portlet exporter and importer 361

Setup archive 362
Configuration action 363
Portlet preferences and portlet item 363

Local staging and publishing 364
Activating staging 364
Local staging interface 365
Local staging services 366

Remote staging and publishing 367
Activating remote live 368
Remote staging services 369

Table of Contents

[xi]

Tunnel-web services 369
Copying remote layouts 370
HTTP services 371
Securing users' information 372

Scheduling and messaging 373
Scheduler 373

Interfaces 374
Services 374
Clustering scheduler 376

Messaging 376
Scheduling layouts publishing 378
Scheduling portal core assets and custom assets 378

Cache clustering 379
Portal cache interfaces 380
Ehcache 380

Replicated cache 381
Replicated caching with JGroups 383
Clustered caching via Terracotta 383

Memcached 384
Cache clustering 385

Clustering models and interfaces 386
Clustering settings 386

Summary 387
Chapter 9: Indexing, Search, and Workflow 389

Webs plugins 390
Web plugin project 390

Web deployer and listener 391
Web applications integrator 391

What's happening? 391
Indexing and search 392

Overview 392
Indexer 393

Interface 394
Indexing core assets 395
Registering custom asset indexers in plugins 397
Lucene 399
Solr 402

Search engine 404
Interfaces 405
Search context 407
Faceted search 408
Query parser syntax 409

Look-ahead typing—auto complete 411
Models and services 411
AutoComplete 412

Table of Contents

[xii]

OpenSearch 414
Interface and services 414
Configuration 415
What's happening? 416
Applying OpenSearch on plugin portlets 417

Workflow 417
Kaleo-web models 418
Kaleo-web services 420

Custom SQL 423
Hooks 424
Web 425
Spring beans and messaging 425

Portal workflow services 426
Global models 426
Global services 427
Workflow permissions 428

Workflow definition 429
Workflow definition XSD 429
Kaleo workflow definition 430
Sample workflow 431
BPMN 2 432

Workflow designers 432
BPMN2 Visual Editor for Eclipse 433

jBPM and Drools 433
Activiti 433

Applying workflow to assets 434
Portal core assets 434
Plugin custom assets 435

Summary 437
Chapter 10: Mobile Devices and Portlet Bridges 439

Layout template plugins 440
Layout template 440
Layout template DTD 441
Sample layout template 442
Layout template services 443

Theme plugins 444
Theme default template 444

Default themes 445
Building themes 445
look-and-feel DTD 446

What's happening after deploying themes? 449
Theme services 450

Theme factories 452

Table of Contents

[xiii]

Template engines 452
Template engine services 455
Template services 455
Template variables 456

Alloy UI 457
Structure—HTML 5 458
Style—CSS 3 458
Behavior—YUI 3 458

Mobile device detectors 458
WURFL 459

WAP theme 460
WAP layout template 460
jQuery and UI 461
jQuery mobile 461
Building a WAP theme 462
Sample WAP page and page transitions 463

Portlet bridges 465
An overview of built-in portlet bridges 465

Alloy portlet 466
Base BSF portlet 466
Scripting portlet 467
Ruby portlet 467
Python portlet 468
Groovy portlet 468
JavaScript portlet 469
PHP portlet 469
MVC portlet 470
WAI portlet 470

Vaadin widgets 471
Sample portlets 472

OpenLaszlo 472
JSON 472
YUI 473
Ext JS 473
Dojo Toolkit 473
DWR—Direct web remoting 474
jWebSocket 474
Apache Wicket 474

Struts 2 portlet 474
Struts 2 portlet-bridge 475
Sample Struts 2 portlet 476

JSF 2 portlet 477
Portlet faces bridge 477

JBoss portlet bridge 478
MyFaces portlet bridge 480
PortletFaces 482

Table of Contents

[xiv]

Sample ICEfaces 2 portlet 483
Sample MyFaces 2 portlet 484
Sample RichFaces 4 portlet 484

Spring 3 MVC portlet 484
Spring MVC portlet bridge 485
Sample Spring 3 MVC portlet 486

Summary 486
Index 487

Preface
Liferay portal is one of the most mature portal frameworks in the market, offering
many key business benefits that involve personalization, customization, content
management systems, web content management, collaboration, social networking,
and workflow. Liferay delivers enterprise solutions for portals, publishing content,
social and collaboration. Dynamic, content-rich, and social systems are built fast and
easily on top of Liferay portal.

Liferay Portal Systems Development is a development cookbook explaining how to
use Liferay kernel as a framework to develop custom web and WAP systems, which
will help you to maximize your productivity gains. Get ready for a rich, friendly,
intuitive, social and collaborative end-user experience! Its explicit instructions are
accompanied by plenty of source code. If you are a Java developer who wants to
build custom websites and WAP sites using Liferay portal, this book is all you need.

The book shows you exactly how to build dynamic, content-rich, and social systems
in Liferay:

•	 Use Liferay tools (CMS, WCM, collaborative API, and social API) to create
your own websites and WAP sites with hands-on examples

•	 Customize Liferay portal using the JSR-286 portlets, hooks, ext plugins,
themes, layout templates, web plugins, and diverse portlet bridges

•	 Build your own websites with kernel features, such as indexing, workflow,
staging, scheduling, publishing, messaging, polling, tracking, auditing,
reporting, and more

Preface

[2]

The clear, practical examples in the sample application that runs throughout this
book will enable professional Java developers to build custom websites, portals,
intranet, and mobile applications using Liferay portal as a framework. You will learn
how to make all of your organization's data and web content easily accessible by
customizing Liferay into a single point of access. The book will also show you how to
improve your inter-company communication by enhancing your websites and WAP
sites, so that you can share content with colleagues.

By the end of this book, you will clearly understand shared documents, discussions,
collaborative wikis, social activities, and more in a single, searchable portal.
The portal is a great choice for intranets and Internets, easy-to-use, open source,
extensible, integrated with other tools and standards. Service builder and Plugins
SDK provide portal systems development and customization environments with
plugins like ext, themes, layout templates, webs, portlets and hooks.

What this book covers
Chapter 1, Liferay Enterprise Portal, addresses what Liferay can offer your intranets
and Internets. Liferay delivers enterprise solutions for portals, publishing content,
social and collaboration. Dynamic, content-rich, and social systems will be built fast
and easily on top of Liferay portal.

Chapter 2, Service-Builder and Development Environment, discusses how to set up, build,
and deploy portal core and plugins in the Eclipse IDE. Then it discusses how to use
service builder to generate services and models, and how to add new features on
service builder. It also addresses how to populate default data, how to use default
project creation and templates, and how to set up fast development of plugins
with Tomcat.

Chapter 3, Generic MVC Portlets, first introduces how to develop a portlet project
with default templates. Then it addresses how to construct basic MVC portlets by
viewing the title and adding an action, and how to build advanced MVC portlets.
Finally, it discusses how to build and re-build services, how to bring portlets
into Control Panel, how to set security and permissions, dynamic query, and
custom SQL.

Chapter 4, Ext Plugin and Hooks, addresses Ext plugin and project default templates,
upgrading a legacy Ext environment, deploying processes and what it does,
class loader proxy and how it works, hooks and project default templates, portal
properties hooks, language properties hooks and multiple languages support,
custom JSP hooks, indexer post processors, service wrappers hooks, servlet filters
and servlet mappings hooks, and struts actions hooks.

Preface

[3]

Chapter 5, Enterprise Content Management, introduces video, audio, and image
management. It also discusses document and media library and document
management, WebDAV implementation, multiple repositories integration, CMIS
consumers and producers, web scanning, OCR and record management, content
relationship, content authoring, and content archiving.

Chapter 6, DDL and WCM, addresses how to customize web content models and
services, to build web content structure and template, to publish web content via
asset publisher, to integrate CKEditor and its plugins, to use Expando – custom
attributes, to leverage DDL (Dynamic Data Lists) and DDM (Dynamic Data
Mapping), to manage assets, asset links, tags and categories and to publish
assets with asset query.

Chapter 7, Collaborative and Social API, first introduces how to use collaborative
tools—wiki, blogs, calendar event, message boards, polls, bookmarks. Then it
addresses how to manage more collaborative assets—both core assets and custom
assets, and how to collaborate assets—both core assets and custom assets. Afterwards,
it introduces how to use social networking, social coding, and social office. Finally, it
addresses social activity, social equity capabilities, and OpenSocial API.

Chapter 8, Staging, Scheduling, Publishing, and Cache Clustering, introduces in depth:
the Portal-Group-Page-Content (PGPC) pattern, LAR exporting and importing, local
staging and publishing, remote staging and publishing, scheduling and messaging,
caching and clustering.

Chapter 9, Indexing, Search, and Workflow, addresses web plugins and WAI first. Then
it shows how to build web plugins using cas-web and solr-web plugins as examples,
how to index and search assets—both portal core assets and plugins custom assets,
how to set up solr-web plugin, and how to apply workflow on assets and employ
kaleo-web plugin.

Chapter 10, Mobile Devices and Portlet Bridges, introduces layout template plugins,
theme plugins, and WAP mobile themes first. The mobile devices detectors and
WURFL get addressed, too. Then it addresses the portlet bridges, Struts 2 portlets,
JSF 2 portlets, and Spring 3 MVC portlets.

Chapter 11, Common API, addresses user management, password policy,
authentication and authorization, LDAP and SSO, tracking and auditing, rules
engine and reporting engine, scripting engine, polling, web services, WSRP
producers and consumers, and OSGi framework.

Chapter 11 is not present in the book. You can download it from
the Packt website at https://www.packtpub.com/sites/
default/files/downloads/5986_11.pdf.

Preface

[4]

What you need for this book
This book uses Liferay portal version 6.1 with the following settings:

•	 MySQL database 5.1
•	 Java SE 6
•	 Liferay portal bundled with Tomcat 7

Although this book explores in depth the various technologies used in Liferay
portal, it explains all the topics in an easy-to-understand way. This book is for
any Java developers.

If you have some basic knowledge in web applications including servlets and
portlets, you will understand better the discussions in this book.

Most importantly, if you like problem-solving and have an eye for perfection, this
book is written for you.

We have opened our arms to welcome you to the Liferay world.

Who this book is for
This book is for Java developers who don't need any prior experience with Liferay
portal. Although Liferay portal makes heavy use of open source frameworks, no
prior experience of using these is assumed.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "By the way, we use $JDK_MAJOR_VERSION
to represent the major version of JDK."

A block of code is set as follows:

public interface AuditedModel
{
 public long getCompanyId();
 // see details in AuditedModel.java
 public void setUserUuid(String userUuid);
}

Preface

[5]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public interface AuditedModel
{
 public long getCompanyId();
 // see details in AuditedModel.java
 public void setUserUuid(String userUuid);
}

Any command-line input or output is written as follows:

svn://svn.liferay.com/repos/public/portal/trunk/portal-impl/src/com/
liferay/portlet/documentlibrary/service.xml

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important
for us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[6]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Liferay Enterprise Portal
As the world's leading open source portal platform, Liferay is the market's leading
provider of open source portal, web publishing, content, social and collaboration
enterprise solutions, providing a unified web interface to data and tools scattered
across many sources. Within Liferay, a portal is composed of a number of portlets,
which are self-contained interactive elements that are written to a particular
standard. Dynamic, content-rich, social systems could be built quickly and easily
on top of Liferay Portal.

Liferay was created in 2000 to provide an enterprise portal solution for non-profit
organizations. In 2004, the company was incorporated under the name Liferay.
In 2011/2012, Liferay was going to bring several enhancements and new features
such as an improved document library (renamed as document and media library),
Dynamic Data Lists (DDL), Dynamic Data Mapping (DDM), setup wizard,
mobile device enhancements, multiple repository mounting and apps store
(called marketplace).

This book will show you how to develop and/or customize portal systems with
Liferay Portal. In this chapter, we will look at:

• The features that Liferay Portal has
• Why Liferay Portal is an excellent choice for building custom systems
• The Liferay Portal framework and architecture for customization
• What portal development strategies are and how they work
• Finding more technical information about what Liferay is and how it works

So let's begin by looking at exactly what Liferay Portal is and how to customize it.

Liferay Enterprise Portal

[8]

Liferay functionalities
Liferay currently has the following four main functionalities:

• Liferay Portal—JSR-168/JSR-286 enterprise portal platform
• Liferay CMS and WCM—JSR-170 content management system and web

content management
• Liferay social collaboration—Collaboration software such as blogs, calendar,

web mail, message boards, polls, RSS feeds, Wiki, presence (AJAX chat
client, dynamic friend list, activity wall, and activity tracker), alert and
announcement, asset links, asset tagging and classification, social equity,
social activities, OpenSocial, and more

• Liferay social office—A social collaboration on top of the portal; a dynamic
team workspace solution – all you have to do is log in and work the way
you want to, at your convenience

Generally speaking, a website built by Liferay might consist of a portal, CMS and
WCM, collaboration, and/or social office.

Document and media library—CMS
Document and Media Library is a useful tool to manage any media such as basic
documents, images, records, videos, and audios with built-in features, for example,
dynamic data list, dynamic data mapping, dynamic document type and metadata
runtime creation, authoring, versioning, imaging, check-in / check-out, archiving,
access control, and indexing. In particular, multiple repositories are supported
as well as CMIS. For example, in the document and media library, you can add
document types and metadata sets as well as folders and subfolders to manage
and publish documents. The document and media library make up the Content
Management Systems (CMS) available to power both intranets and extranets. The
CMS is equipped with customizable document types and folders, and acts as a
web-based shared drive for all your team members, no matter where they are. As
content is accessible only to those authorized by administrators, each individual file
is as open or as secure as you need it to be.

Web content management—WCM
Your company may have a lot of HTML text, audio, videos, images, records, and
documents using different structures and templates, and you may need to manage
all of these as well. Therefore, you require the ability to manage a lot of web content,
and then publish that web content to intranets or Internets.

Chapter 1

[9]

We will see how to manage and publish web content within Liferay. Liferay Journal
(renamed as Web Content) not only provides the ability to publish, manage, and
maintain web content and documents, but it also separates content from layout.
WCM allows us to create, edit, and publish web content (formerly called Journal
articles) as well as article templates for one-click changes in layout. It has built-in
workflow, article versioning, search and metadata.

The portal also provides dynamic data lists (DDL) and dynamic data mapping
(DDM). Through DDL and DDM, we can define web forms, document types,
metadata sets, and columns of various input styles, such as free form, drop-down
lists, combo boxes, date, number, text, and pre-defined list values such as lists of
users, order types, inventory types, and more.

Personalization and internalization
All users get a personal space that can be either made public (published as a website
with a unique, friendly URL) or kept private. In fact, users can have both private and
public pages at the same time. You can also customize how the space looks, what
tools and applications are included, what goes into the document and media library,
and who can view and access any of this content.

In addition, you can use your own language. Multilingual organizations get out-
of-the-box support for up to 42 languages (such as Hindi, Hebrew, Ukrainian, and
Romanian), and new languages can be added easily within the portal framework.
Users can toggle between different language settings with just one click and
produce/publish multilingual documents and web content. You can also easily
add other languages in your public pages, private pages, or other organizations.

Workflow, staging, scheduling, and publishing
You can use workflows to manage definitions, instances, and tasks. There are many
workflow engines such as jBPM workflow, Kaleo workflow, Activiti BPM, and
Intalio | BPMS, and all of these can be integrated easily with Liferay. And then, with
a workflow engine as the backend, a portal user can add workflow functionality to
any activity such as CMS content approval and the like. In addition, Liferay Portal
allows you to define publishing workflows that track changes to web content as well
as the pages of the site in which they live.

Staging is a major feature of Liferay Portal. The staging environment allows us to make
changes to the site in a specialized staging area, and then publish the whole site to Live
when you are done, either locally or remotely. Scheduling is another major feature of
Liferay Portal, using a built-in Quartz job scheduling engine. Before going live, you are
able to schedule events to publish selected pages with all included content.

Liferay Enterprise Portal

[10]

The Site snapshot feature means that branching and versioning of staged layouts
are supported as well. Thus at the end of a workflow, you would be able to keep the
current version of the layout as history; this is done in case the users want to use an
old version of the layout at a later time.

Social network and social office
Liferay Portal supports social network—you can easily connect your accounts in
Liferay with Facebook, MySpace, Google+, Twitter, and more. Of course, you can
also manage your instant messenger accounts in Liferay Portal, such as AIM, ICQ,
Jabber, MSN, Skype, and YM. In addition, you are able to track social activities and
social equity as well.

Social office gives us social collaboration on top of the portal—a full virtual
workspace that streamlines communication and builds up group cohesion. All
components in social office are tied together seamlessly, getting everyone on the
same page by sharing the same look-and-feel. More importantly, the dynamic
activity tracking gives us a bird's-eye view of who has been doing what and
when within each individual site.

Monitoring, auditing, and reporting
The portal provides abilities to monitor portlets and portal transactions. This
includes—but is not limited to—average transaction time per portlet for each phase
of the portlet life cycle, minimum and maximum transaction time for each portlet
transaction, average time for portal requests (inclusive of all portlets), and minimum
and maximum time for each portal request. By the way, statistics are exposed using
JMX MBeans.

An audit trail of user actions is required by many organizations. Fortunately, the
portal provides audit service, which is a method for storing the audit trail from
the portal and plugins. Then the information processed by the audit service plugin
can be stored in a log file or database. Note that audit services employ Liferay
Lightweight Message Bus and Plugin architecture. The audit service itself is a
plugin, handling the processing and logging of the audit messages sent through
the Message Bus. Therefore, any plugin can produce audit messages to the audit
Message Bus destination.

Chapter 1

[11]

The Liferay JasperReports Report Engine provides an implementation of Liferay
BI using Jasper. JasperReports is an open source Java reporting tool that can write
to screen, a printer, or to PDF, HTML, Microsoft Excel, RTF, ODT, CSV (Comma
Separated Value) formats, and XML files. The portal provides full integration of
JasperReports with its reporting framework. The portal provides the ability to
schedule reports and deliver them using document and media library and e-mail. In
addition, the portal supports Jasper XLS data sources in its reporting framework.

Tagging
The portal tagging system allows us to tag web content, documents, message board
threads, and more, as well as to dynamically publish assets by tags. Tags provide a
way of organizing and aggregating content. Folksonomies are a user-driven approach
to organizing content through tags, cooperative classification, and communication
through shared metadata. The portal implements folksonomies through tags.
Taxonomies are a hierarchical structure used in scientific classification schemes.
The portal implements taxonomies as vocabularies and categories, which includes
category hierarchy, in order to tag contents and classify them.

Integration
In particular, the portal provides a framework so that you can integrate external
applications easily. For example, you could integrate external applications such as
Alfresco, Documentum, SharePoint, OpenX, LDAP, SSO CAS, Facebook, NTLM,
OpenSSO, SiteMinder, SAML 2.0, Orbeon Forms, KonaKart, PayPal, Solr, Coveo,
Salesforce.com, SugarCRM, JasperForge, Drools, jBPM, and more. With the portal,
integrating standalone Java web applications into the portal is not an easy task.
However, Liferay makes it possible to achieve near-native integration with minimal
effort using the WAI (Web Application Integrator) portlet or the IFrame portlet.

In addition, the portal uses the OSGi framework, that is, the portal supports a
module system and service platform for the Java programming language that
implements a complete and dynamic component model. Please refer to
http://www.osgi.org for more information.

In a word, the portal offers compelling benefits to today's enterprises—reduced
operational costs, improved customer satisfaction, and streamlined business processes.

Liferay Enterprise Portal

[12]

Framework and architecture
Liferay Portal architecture supports high availability for mission-critical
applications using clustering, as well as fully-distributed cache and replication
support across multiple servers.

The following diagram depicts various architectural layers and portlet functionality:

Portlets JSR168 / JSR286 Web Services

util-java/taglib/bridges Portal-Service (Kernel)

Portal-Implementation

Service Interface (Spring)

CMS Events Hibernate

JSR 170/JSR 283 Message Bus JDBC

Mail
Engine SSO LDAP

Servlet Container

External Web
Applications

XML, JSON, REST,
RMI, SOAP, etc

Enterprise Service Bus

Multiple JCR
Repositories

BPM, Rule,
Workflow

BI Xform
Reporting

Share
Point

Databases

Service Oriented Architecture
Liferay Portal uses Service Oriented Architecture (SOA) design principles
throughout, and provides the tools and framework to extend the SOA to other
enterprise applications. Under the Liferay enterprise architecture, not only can the
users access the portal from traditional and/or wireless devices, but the developers
can also access it from the exposed APIs using REST, SOAP, RMI, XML-RPC, XML,
JSON, Hessian, Burlap, and custom-tunnel classes.

In addition, Liferay Portal is designed to deploy portlets that adhere to the portlet
API, which is compliant with both JSR-168 and JSR-286. A set of useful portlets built
on top of Struts 1.2.9 are bundled with the portal, such as document and media
library, calendar, message boards, blogs, wikis, and so on. They can be used as
examples for adding custom portlets.

Chapter 1

[13]

In a nutshell, the key features of Liferay include using SOA
design principles throughout, reliable security, integrating
with SSO and LDAP, multitier and limitless clustering, high
availability, caching pages, and dynamic virtual hosting.

Enterprise Service Bus
The Enterprise Service Bus (ESB) is a central connection manager that allows
applications and services to be added quickly to an enterprise infrastructure. When
an application needs to be replaced, it can be easily disconnected from the bus at
a single point. Liferay Portal can use either Mule or ServiceMix as the ESB.

Through the ESB, the portal can integrate with SharePoint, BPM (such as jBPM
workflow engine, Intalio | BPMS engine), a rule engine (Drools), BI Xforms
reporting, JCR repository, and so on. It adds another layer like JSR-170, where
the repository can be abstracted. Furthermore, it supports events' system with
asynchronous messaging and Lightweight Message Bus.

Liferay Portal uses Spring framework for its business and data services layers. It also
uses Spring framework for its transaction management. Based on service interfaces
(Spring framework), portal-implementation (portal-impl) is implemented
and exposed only for internal use—for example, they are used for the extension
environment or Ext plugins. Both portal-kernel and portal-service (these two
packages are merged into one known as portal-service) are provided for
both external and internal use—for example, they are used for the Plugins SDK
environment. Custom portlets, both JSR-168 and JSR-286, and web services can be
built based on portal-kernel and portal-service.

In addition, the Web 2.0 Mail portlet and Chat portlet are supported. More
interestingly, scheduled staging and remote staging and publishing serve as a
foundation via tunnel web for web content management and publishing.

Liferay Portal supports web services to make it easy for different applications in an
enterprise to communicate with each other. Java, .NET, and proprietary applications
can work together easily because its web services use XML standards. It also supports
REST-style JSON web services for lightweight, maintainable code, and it also supports
AJAX-based user interfaces.

Liferay Enterprise Portal

[14]

Liferay Portal uses industry-standard, government-grade encryption technologies,
including advanced algorithms such as DES, MD5, and RSA. Liferay was
benchmarked as one of the most secure portal platforms using LogicLibrary's
Logiscan suite. Liferay offers customizable single sign-on with Yale CAS, JAAS,
LDAP, NTLM, Netegrity, Microsoft Exchange, Facebook, and more. Open ID,
OpenAuth, Yale CAS, Facebook, Siteminder, and OpenSSO (renamed as OpenAM)
integration are offered by the portal out-of-the-box.

In short, Liferay Portal uses the ESB in order to provide an abstraction layer on
top of an implementation of an enterprise messaging system. It allows integration
architects to exploit the value of messaging without having to write the code. As you
can see, understanding the framework and architecture will be helpful if you want to
customize the portal correctly.

Standards
Liferay Portal runs on existing application servers, databases, and operating systems
to eliminate new expenses on infrastructure. Moreover, Liferay Portal is built based
around common standards. This is a more technical benefit, however, a very useful
one if you ever want to use Liferay in a more specialized way.

Liferay is developed based on standard technologies that are popular with
developers and other IT experts. Liferay is standards compliant, namely, open
standards for content, portlets, web services, and frontend technologies to reduce
development cost. The main features are listed as follows:

• Built using Java: Java is a very popular programming language that can run
on just about any computer. There are millions of Java programmers in the
world, so it won't be too hard to find developers who can customize Liferay.

• Based on tried and tested components: With any tool, there's a danger of
bugs. Liferay uses lots of well known, widely-tested components to minimize
the likelihood of bugs creeping in. If you are interested, these are some of the
well known components and technologies Liferay uses—Apache ServiceMix,
Mule, ehcache, Hibernate, ICEfaces, Java J2EE/JEE, jBPM, Intalio | BPMS,
JGroups, Alloy UI, Lucene, and Solr, Seam, Spring and AOP, Struts and Tiles,
Tapestry, Vaadin, Velocity, and FreeMarker. Especially, Liferay runs PHP,
Ruby, Python, Grails and other lightweight scripting technologies within a
robust Java framework.

Chapter 1

[15]

• Uses standard methods to communicate with other software: There are
various standards established for sharing data between pieces of software.
Liferay uses these so that you can easily get information from Liferay
into other systems. The standards implemented by Liferay include AJAX,
iCalendar, Microformat, JSR-168, JSR-127, JSR-170, JSR-286 (Portlet 2.0), and
JSR-314 (JSF 2.0), OpenSearch, Open platform with support for web services
(including JSON, Hessian, Burlap, REST, RMI, and WSRP), WebDAV, and
CalDAV.

• Makes publication and collaboration tools WCAG 2.0 (Web Content
Accessibility Guidelines) compliant: This is the new W3C recommendation
to make web content accessible to a wide range of people with disabilities,
including blindness and low vision, deafness and hearing loss, learning
disabilities, cognitive limitations, limited movement, speech disabilities,
photosensitivity, and combinations of these. For example, the portal is
integrated with CKEditor, which supports standards W3C (WAI-AA and
WCAG), 508 (Section 508).

• Supports HTML 5, CSS 3, and YUI 3 (Yahoo! User Interface Library).
• Supports Apache Ant 1.8 and Maven 2: Liferay Portal could be run through

Apache Ant by default, where you can build services, clean, compile, build
JavaScript CMD, build language native to ASCII, deploy, fast deploy,
and support most application servers such as Tomcat, JBoss, Websphere,
Weblogic, and so on. Moreover, Liferay supports Maven 2 SDK, providing
Community Edition (CE) releases through public Maven repositories as well
as allowing Enterprise Edition (EE) customers to install Maven artifacts in
their local Maven repository.

Many of these standards are things that you will never need to know much about,
so don't worry if you've never heard of them. Liferay is better for using them, but
mostly, you won't even know they are there.

Terminologies
Earlier, we have addressed many terminologies regarding Liferay Portal. So here
we're going to introduce a pattern: Portal-Group-Page-Content (PGPC). As you
would expect, we are trying to summarize the main features and behaviors of the
portal in a simple pattern.

Liferay Enterprise Portal

[16]

First of all, let's examine a high-level overview of terminologies, scope and hierarchy
in the portal. As shown in the following diagram, the portal is implemented by
Portal Instances. The portal can manage multiple portal instances in one installation.
Of course, you can also install multiple portal instances in multiple installations,
separately.

c Portal Instance c Group Instance c Layout c Portlet
* * *

Portal Group Page Content

Each portal instance can have many groups, which are implemented as organizations,
communities, user groups, and users. Note that each user can be represented as
a group by itself, since if a user is a power user, they will get public pages and
private page as any group does. Here we can use the term Group Instance to present
organizations, locations, communities, user groups, and users (there is only one user
in a group). Each portal instance has complete isolation of the users, organizations,
locations, and user groups. In particular, organizations have a hierarchical, for
example, parent organization, child organizations, and location. Note that one
page can have only one parent organization and many child organizations.

Each group has two sets of pages (that is, public pages and private pages, called
layout-set); each page is implemented as a layout. Most interestingly, there is a
hierarchy in layouts too, such as parent pages and child pages. Note that a page
can have one and only one parent page and many child pages.

Each page may contain different content, which would be implemented as
portlets. Thus the content will have different scopes. For example, the content
would be scoped into page, group, portal instance and portal. This pattern is known
as Portal-Group-Page-Content. We will address these terminologies, scope and
hierarchy in detail in the coming sections and chapters.

Multi-tenancy
Liferay Portal allows us to run more than one portal instance on a single installation.
Data used for each portal instance is maintained separately from every other portal
instance. Portal data, however, can be kept either in the same database or in different
databases. This is called database sharding.

Chapter 1

[17]

This feature should be useful for Multi-tenancy, which is a principle in software
architecture where a single instance of the software serves multiple client organizations
(called tenants). With a multi-tenant architecture, the portal is designed to virtually
partition its data and configuration and each client organization works with a
customized virtual portal instance.

Portal Instance

Shard Company

Account_

VirtualHost

c

c

c

c

Portal

c

Let's have a brief look at multi-tenant capabilities. As shown in the previous diagram,
a portal instance is implemented as a set of database tables such as Company,
Account_, Shard, and VirtualHost. As you can see, portal instances are presented
as different values of companyId; each portal instance has its own account information
(presented as database table Account_), possible database (implemented as database
table Shard_), and virtual host settings (presented as database table VirtualHost).

Role-based access control
Traditional membership security models address two basic criteria: authentication
(who can access) and authorization (what they can do):

• Authentication is a process of determining whether someone or something is,
in fact, who or what it is declared to be

• Authorization is a process of finding out if the person, once identified, is
permitted to have access on a resource

Liferay Enterprise Portal

[18]

The portal extends the security model by terminologies: resources, users,
organizations, locations, user groups, communities, teams, roles, permissions, and so
on. The portal provides a fine-grained, role-based permission security model (known
as RBAC) – a full access control security model:

Rolec

Groupc

User Groupc

Userc

Teamc

*

*

*

*

*

**

*

* *

Permission

Site

c

c

*Resource

Organization

Location

c

c

c

* *

*

*

Resource, role, and permission
As shown in the preceding diagram, a resource is a base object. It can be a portlet
(message boards, calendar, document and media library, and so on), an entity
(message board topics, calendar event, document and media library folder, and
so on), or a file (documents, images, applications, and so on). Resources are
scoped into portal, group, page, and content – model-resource and application
(or called portlet).

Permission is an action on a resource. Portal-level permissions can be assigned to
the portal (users, user groups, communities, and organizations) using roles. Group-
level permissions can be assigned to groups such as organization and communities.
Page-level permissions can be assigned to page layouts. Model permissions can
be assigned to model resource such as blog entries, web, and content. Portlet
permissions can be assigned to portlets such as View and Configuration.

A role is a collection of permissions. Roles can be assigned to a user, user group, site,
location, or organization. If a role is assigned to a user group, site, organization, or
location, then all the users who are members of that entity receive the permissions
of that role.

Chapter 1

[19]

User
A user is an individual who performs tasks using the portal. Depending on what
permissions have been assigned, the user either has the permission or doesn't have
the permission to perform certain tasks.

Additionally, a registered user who has the permission can have public pages and
private pages. More interestingly, a user's private pages and public pages have the
ability to use page templates which can be used to customize a set of pages. The
pages – private/public – are configurable in properties. You can turn on or turn off
access to these pages. Also, only a power user can use a private/public page. A guest
is also a user.

Group
A group is implemented as an organization, user, and user group. A user is a group
with only one member, that is, the user itself. An organization could be a regular
organization and location.

Organizations represent the enterprise-department-location hierarchy.
Organizations can contain other organizations as sub-organizations. Moreover,
an organization acting as a child of a top-level organization can also represent
departments of a parent corporation.

A location is a special organization, having only one parent organization associated
and having no child organization associated. Organizations can have any
number of locations and sub organizations. Both roles and users can be assigned
to organizations (locations or sub organizations). By default, locations and sub
organizations inherit permissions from their parent organization using roles.

A community (renamed as site) is a special organization with a flat structure. It
may hold a number of users who share common interests. Thus we can say a site
is a collection of users who have a common interest. Both roles and users can be
assigned to a site.

A user group is a special group with no context, which may hold a number of users.
In other words, users can be gathered into user groups. Users can be assigned to user
groups, and permissions can be assigned to user groups using roles. Therefore, every
user that belongs to that user group will receive those role-based permissions.

Liferay Enterprise Portal

[20]

A team is a group of users under a community or an organization. A community
or organization can group a set of users and create a team. The notion of a team is
somewhat similar to a role, but a role is a portal-wide entry, while a team is restricted
to a particular site or organization. Therefore, you can manage the permissions of
a team like a role. That is, a team is like a site or organization role, but specific to a
certain site or organization. A team is different from a User Group too. A user group
has the scope of a portal, while a team is always exclusive to a site or organization.

In addition, each group can have public pages and private pages. Thus users in a
user group can share private and public pages. More interestingly, a group's private
and public pages do have the ability to apply page templates or site templates in
order to customize a set of pages in a fast way.

Systems development
Liferay is, first and foremost, a platform where you can build your applications with
the tools you feel most comfortable using, such as JSF 2 - ICEfaces, Struts 2, Spring 3
MVC, Vaadin, jQuery, Wicket, Dojo and more.

When developing systems, the Model–View–Controller (MVC) pattern is followed
throughout the book. The model manages the behavior and data of the portal
domain, responds to requests for information about its state from the view, and
responds to instructions to change its state from the controller. The view (like JSP,
XHTML, JavaScript) renders the model into a form suitable for interaction, typically
a user interface element; while the controller (such as actions, controllers) receives
input and initiates a response by making calls on model objects.

In Liferay, there's a concept called a plugin, which is a WAR file that can be
hot-deployed into the portal at runtime. Plugins can be categorized as portlets,
themes, layout templates, hooks, and webs. These plugins can be developed using
the Plugins SDK. Prior to Liferay 6, there used to be an ext environment, where
the developer could customize the core portal module. Since Liferay 6, it has been
replaced by the Ext plugins approach.

Service-Builder is a Liferay tool to generate persistence and service-layer code, by
reading an XML file.

Of course, you're not required to write a lot of code yourself. You can use
Service-Builder to generate a lot of the code for building the models and services.
Generally speaking, the Service-Builder is a tool built by Liferay to automate the
creation of interfaces and classes that are used by a given portal or portlet. The
Service-Builder is used to build Java services that can be accessed in a variety of
ways, including local access from Java code, as well as remote access using
web services.

Chapter 1

[21]

In general, the Service-Builder is a code generator. Using an XML descriptor,
it generates:

• Java Beans
• SQL scripts for database tables creation
• Hibernate Configuration
• Spring Configuration
• Axis Web Services
• JSON JavaScript Interface

The Plugins SDK Environment is a simple environment for the development of
Liferay plugins, such as ext, themes, layout templates, portlets, hooks, and webs
(web applications). It is completely separated from the Liferay Portal core services
by using external services only if required.

The portal supports six different types of plugins out-of-the-box. They are Portlets,
Themes, Layout Templates, Webs, Hooks, and Ext:

• Portlets: Web applications that run in a portion of a web page
• Themes: Look-and-feel of pages
• Layout Templates: Ways of choosing how the portlets will be arranged

on a page
• Hooks: Allow hooking into the portal core functionality
• Webs: Regular Java EE web modules designed to work with the portal such

as ESB (Enterprise Service Bus), and SSO (Single Sign-On). Note that a web
is a pure web application where a thin layer is added to provide checking for
dependencies. A web also adds support for embedding hook definitions or
Service Builder services within a plain old web application. And finally, you
can deploy them using the auto-deploy mechanism the same way that you
can with other plugins.

• Ext: ext environment as a plugin means you can use the extension
environment as a plugin in the Plugins SDK environment.

As you can see, you can generate code for plugin Portlets, Webs, and Ext. Normally,
you would have one project for each plugin, for example, theme, layout template,
hook, ext, or web; you can have many portlets in one plugin project portlet. Hook
plugins can be standalone, or they could be included with portlets and web. This
means, in one plugin project portlet or web, you can have hooks and many portlets
or a web as one WAR file. What are the advantages of aggregating many portlets
into one WAR? We have shared database workspace with many portlets and can
implement collaboration between each other.

Liferay Enterprise Portal

[22]

Liferay IDE is used to provide best-of-breed Eclipse tooling for the Liferay Portal
development platform for version 6 and greater. The availabilities of Liferay IDE
cover, but are not limited to, the plugins SDK support, plugin projects support,
project import and conversion, wizards, code assist such as portlet taglibs,
customizable templates, and XML catalog (XSD) contributions.

Ext plugin
The Extension environment provides the capability to customize Liferay Portal
completely. As it is an environment which extends Liferay Portal development
environment, it has the name "Extension", (called "Ext"). With Ext, we could modify
internal portlets which are also called by the out-of-the-box portlets. Moreover,
we could override the JSP files of the portal and out-of-the-box portlets. This kind
of customization is kept separate from the Liferay Portal source code. That is, the
Liferay Portal source code does not have to be modified, and a clear upgrade path
is available in the Ext.

Starting with version 6, Ext environment is available as a plugin called Ext plugin.
As shown in the following diagram, custom code will override Liferay Portal source
code in the Ext plugins only. In the deployment process, custom code is merged with
Liferay Portal source code. That is, developers can override the Liferay Portal source
code. Moreover, custom code and Liferay Portal source code will be constructed
as a customized Liferay Portal first, and then the customized Liferay Portal will be
deployed to an application server. In addition, both direct deploy (ant direct-deploy)
and standard deploy (ant deploy) are available.

Ext Plugins
Custom Code

Liferay Portal
Source Code

Customized
Liferay Portal

Application
Server

Override Merge Deploy

Hook plugin
Hooks are a feature to catch hold of the properties and JSP files into an instance of
the portal, as if we were catching them with a hook. Hook plugins are more powerful
plugins that complement portlets, themes, layout templates, and web modules. A
hook plugin can, but does not have to, be combined with a portlet plugin or a web
plugin. For instance, the portlet called so-portlet is a portlet plugin for social office
with hooks; a hook plugin can simply provide translation or override a JSP page.

Chapter 1

[23]

In general, hooks are a very helpful tool to customize the portal without touching
the code of the portal, as shown in the following diagram. In addition, you could
use hooks to provide patches for portal systems or social office products.

In general, there are several kinds of hook parameters:

• portal-properties (called portal properties hooks),
• language-properties (called language properties hooks),
• custom-jsp-dir (called custom JSPs hooks),
• custom-jsp-global (applying custom JSPs hooks globally or locally),
• indexer post processors (called indexer hook),
• service (called portal service hooks) – including model listeners and

service wrappers,
• servlet-filter and servlet-filter-mapping (called servlet-filter hooks),
• struts-action (called portal struts action hooks)

Liferay Portal
Portal Properties, Languauge

Properties, CustomJSPs,
Indexer, Servlet-filter, Service,

Struts Action

Hook Plugins
Custom Code

Liferay Portal
+

Application Server

Override Deploy

As you can see, JSPs hooks can set a custom-jsp-dir that will overwrite portal
JSPs. You can also add <custom-jsp-global>false</custom-jsp-global>
(default to true) so that JSPs hooks will not apply globally but only to the current
scope. Each site (or organization) can choose to have that hook apply just for that
site (or organization).

In addition, Liferay allows portal JSPs to be overloaded by theme templates – this
pattern will require that within the theme's templates folder, the complete path to
the original JSP be maintained with the file extension replaced to match that of the
theme's chosen template language.

Liferay Enterprise Portal

[24]

Portlet, layout template, and web plugins
As you can see, the Plugins SDK is a simple environment for the development
of Liferay plugins, including portlets, layout templates, and webs (that is, web
applications). It provides the capability to create hot-deployable hooks, themes,
layout templates, portlets, and webs.

How does it work? As shown in the following diagram, the Plugins SDK provides an
environment for developers to build portlets and webs. Later, it uses the Ant Target
Deploy or Maven to form a WAR file and copy it to the Deploy directory. Then, Liferay
Portal together with the application server will detect any WAR files in the Deploy
(auto deploy, hot deploy, or sandbox deploy) folder, and automatically extract the
WAR files into the application server deployment folder. Note that the portal is able to
recognize the type of the plugin and enhance it appropriately before hot-deploying
it. For example, for portlets it will modify web.xml by adding required listeners
and filters.

During customization, you could use the Service-Builder to generate models and
services in portlets and/or web plugins. In general, the Service-Builder is a code
generator using an XML descriptor. For a given service.xml XML file, it will
generate SQL for creating tables, Java Beans, Hibernate configuration, Spring
configuration, Axis Web Service, and JSON JavaScript Interface. Of course, you
can add hooks in portlets and/or webs plugins.

DeployDeploy

Layout Template,
Portlet and Web

Plugins

Deploy Directory
Liferay Portal

+
Application Server

Theme plugin
A theme specifies the styles of all major global portlets and content; therefore, it
controls the way the portal will look. In general, a theme uses CSS, images, JavaScript,
and Velocity (or FreeMarker) templates to control the whole look-and-feel of the
pages generated by the portal.

Chapter 1

[25]

As shown in the following diagram, the theme plugin can use default themes as a
basis, building differences on top.

DeployOverride

Theme Plugins
Custom Code

Liferay Portal
Default themes classic,_styled

or_unstyled

Liferay Portal
+

Application Server

Development strategies
As mentioned earlier, there are at least three development environments: portal core
source code, Ext plugin, and normal plugins. Thus, you may ask: Which kind of
development environment is suitable for our requirements? When should we use
the Ext plugin? And when should we use other plugins, or even Liferay Portal
source code? Let's take a deep look at the development strategies.

As shown in the following diagram, Liferay Portal is extensible on at least three
levels, for example the Plugins SDK Environment (Level I), Ext plugin (Level II),
and Liferay Portal source code (Level III). As you can see, each level of extensibility
offers a different compromise of flexibility with different migration requirements to
future versions. Thus we need to choose the appropriate level for the requirements
at hand ; one which allows for the easiest future maintainability.

Plugins SDK - portlet, hook, theme, layout template and web

Plugins SDK - ext plugin

Portal source code

Level I

Level II

Level lll

Level I development
In Level I, we can develop portlets, themes, layout templates, hooks, and webs as
independent software components. Moreover, these plugins can be distributed and
deployed as WAR files, and can be organized in plugin repositories. Liferay Portal
provides the Plugins SDK to help us with the development of these plugins.

Liferay Enterprise Portal

[26]

In addition, portlets developed in the Plugins SDK can only import classes from the
portal API (Portal-Service), not Portal-Impl. This means, portlet development in
the Plugins SDK does not touch portal properties, language properties, core services,
and JSP files related to Portal-Impl. Fortunately, hooks provide the capability to
access portal properties, language properties, struts actions, core services related
to Portal-Impl, and custom JSP files.

Level II development
In Level II, we can manage configuration files, custom source code, custom JSP files,
and modified JSP files related to the Portal-Impl. This means that the, Ext plugin
provides different sublevels (for example, configuration files, custom source code,
custom JSP files, and modified JSP files) of extensibility.

Among the configuration files, portal-ext.properties has the main configuration
options: layouts, deployment, themes, Hibernate, cache, instance settings, users,
groups, language, session, auth, integration, and events. Meanwhile, the system-ext.
properties file is a convenient way to provide and extend the Java System properties
used by Liferay Portal. We can also create custom classes for the most common
extensibility, which need to be configured through the portal.properties file.
Examples are authentication chain, upgrade and verification processes, deployment
processes, database access and caching, user fields' generation and validation, session
events, permissions, and model listeners.

For custom source code, we can use Spring-based dependency injection mechanisms
configured in the ext-spring.xml file as follows:

1. Add the Servlet extended in the web.xml file.
2. Add the Struts action extended in the struts-config.xml file.
3. Moreover, create portlets that access Portal-Impl, or events extending its

models and services.

For custom JSP files and modified JSP files, we can customize any of the JSP files
used by the out-of-the-box portlets and management tools. This is a very flexible
extension mechanism.

Without a doubt, it is easier to develop portlets in Ext
plugin, where you can easily access and use all of the Portal
APIs, taglibs, JSP files, and almost everything else. This isn't
the case with the other plugins.

Chapter 1

[27]

Starting with version 6, the Extension environment becomes the Ext plugin. Golden
rule: support for Service-Builder in Ext plugins will be deprecated in future versions.
Ext plugins are designed to override the portal's core code in ways that can't be done
with hooks, layout templates, portlets, or themes. Ext plugins aren't meant to contain
new custom services. Thus any 5.x service.xml in Ext environment should be
migrated into a portlet plugin.

Level III development
In Level III, we can modify the Liferay Portal source code. This approach can
only be used for sponsored development or providing patches for bug fixes, new
features/improvements, and portal core contribution development. This means, you
can develop specific features for specific projects first and then contribute back to
Liferay Portal source code, or provide patches to override Portal-Impl, Util-Java,
Util-Taglib and Util-Bridges partially.

In brief, if your requirements are related to customize and/or extend Portal-Impl
(for example, UI changing, LDAP import algorithms, document and media library
lock mechanism, forms for user registration or organization creation, integration,
modifying the out of the box portlets, and so on.), you should use Ext plugin.
Otherwise, it is better to use other Plugins. Note that with hooks, you can hook up
portal properties, language properties, core services, and Struts actions related
to Portal-Impl.

Keep in mind that Ext plugin is designed to override the portal's core code in ways
that can't be done with hooks, layout templates, portlets, or themes; and Ext plugin
shouldn't contain any custom services.

An example: Knowledge base
management
What's a knowledge base? According to Business Dictionary (refer to http://www.
businessdictionary.com/definition/knowledge-base.html), a knowledge base
is defined as:

"Organized repository of knowledge (in a computer system or an organization)
consisting of concepts, data, objectives, requirements, rules, and specifications. Its
form depends on whether it supports an (1) artificial intelligence or expert system-
based retrieval, or (2) human-based retrieval. In the first case, it takes the form of
data, design constructs, couplings, and linkages incorporated in software. In the
second case, it takes the form of physical documents and textual information."

http://www.businessdictionary.com/definition/knowledge-base.html
http://www.businessdictionary.com/definition/knowledge-base.html

Liferay Enterprise Portal

[28]

How to implement a knowledge base in the portal? A knowledge base could be
implemented as a set of portlets plus hooks with the following major requirements. Of
course, you can add your specific requirements in knowledge base management (KB).

• Modeling knowledge base as articles plus article templates, article comments,
private messages, contacts, and tasks

• Versioning and authoring articles, and organizing them in a hierarchy of
navigable and scope-able articles

• Supporting multiple languages on title, content, and description of articles
• Ability to lock and unlock articles
• Supporting look-ahead typing in articles search
• Supporting caching, asynchronous threads, indexing, and advanced search
• Representing knowledge base management as a set of JSR-286 portlets,

for example, Admin, Private Messaging, Contacts, Tasks, Docs Viewer,
Aggregator, Display, Search, and List; and supporting inter-portlet
communication (IPC – events and public render parameters) among portlets
Aggregator, Display and List; and leveraging different portlet bridges such
as Struts 2, JSF 2, Spring 3 MVC, Wicket, and so on

• Leveraging dynamic data list and dynamic data mapping to build dynamic
document types and meta-data sets

• Leveraging dynamic query APIs and custom SQL
• Adding permission checker on articles
• Ability to add attachments and images to articles
• Ability to add asset links, asset ratings, and asset view counts
• Ability to add asset comments to articles and votes on comments
• Ability to add hierarchy of asset categories
• Ability to add asset tags to articles
• Ability to add RSS feeds and to subscribe to articles
• Ability to add polls on articles
• Exporting and converting articles to PDF and other formats
• Supporting configurable workflow
• Ability to add custom attributes (called custom fields)
• Ability to archive (import and export) and to remotely publish articles
• Allowing use of auditing, rule engine (Drools), and reporting engine

(JasperReports)

Chapter 1

[29]

• Ability to import a semantic mark-up language for technical documentation
called DocBook, referring to http://www.docbook.org

• Providing web services for knowledge base articles
• Providing JSON services for knowledge base articles
• Providing RESTful services for knowledge base articles
• Integrating CAPTCHA or reCAPTCHA with knowledge base articles
• Applying JavaScript such as jQuery and mash-ups when building portlets
• Supporting asset rendering in the Asset Publisher portlet
• Integrating social activity and social equity
• Ability to apply portal core and other features to knowledge base articles

This book is going to show you how to develop portal systems via a real example
– knowledge base management. By the end of this book, you will be familiar
with major portal features, be able to apply them to knowledge base articles, and
implement the aforementioned requirements as well. Of course, you will know
the portal in-depth from a systems development viewpoint, and moreover, on
top of Liferay Portal, you will be able to cook your own favorite dishes quickly
and concisely.

More useful information
In this chapter, we have looked at what Liferay can do for your corporate intranet,
and we have briefly seen why it's a good choice.

If you want more background information on Liferay, the best place to start is the
Liferay corporate website (http://www.liferay.com) itself. You can find the latest
news and events, various training programs offered worldwide, presentations,
demonstrations, and hosted trials. More interestingly, Liferay eats its own dog food;
corporate websites with forums (called message boards), blogs, and wikis are built
by Liferay using its own products. It is a real demo for the Liferay Portal.

Liferay is 100 percent open source and all downloads are available from the Liferay
Portal website (http://www.liferay.com/web/guest/downloads/portal) and
the SourceForge website at http://sourceforge.net/projects/lportal/files.
The source code repository is available at http://svn.liferay.com/repos/public
(credentials—the username is Guest and no password) and Github (https://github.
com/liferay), and source code can be explored at http://svn.liferay.com.

Liferay Enterprise Portal

[30]

Liferay's website wiki (http://www.liferay.com/web/guest/community/
wiki) contains documentation such as a tutorial, user guide, developer guide,
administrator guide, roadmap, and more.

Liferay's website discussion forums can be accessed at http://www.liferay.com/
web/guest/community/forums and the blogs at http://www.liferay.com/web/
guest/community/blogs. The road map can be found at http://www.liferay.
com/web/guest/community/wiki/-/wiki/Main/RoadMap. The official plugins
are available from http://www.liferay.com/web/guest/downloads/official_
plugins.

The community plugins are available from http://www.liferay.com/web/guest/
downloads/community_plugins. They are the best places to share your thoughts,
to get tips and tricks about Liferay implementation, to examine the road map, and
to use and contribute community plugins.

If you would like to file a bug or know more about the fixes in a specific release, then
you should visit the bug tracking system at http://issues.liferay.com/.

Alloy UI Forms is a set of taglibs built on top of the Alloy UI JavaScript + CSS
framework. For more information about the framework, you can visit: http://
alloy.liferay.com. CSS3, CSS level 3, is available from http://www.w3.org/
Style/CSS/current-work. A detailed description of HTML5 is available from
http://dev.w3.org/html5/spec/Overview.html.YUI 3 is Yahoo!'s next-generation
JavaScript and CSS library at http://developer.yahoo.com/yui/3/.

Summary
In this chapter, we have looked at what Liferay can offer to your intranets and
Internet. Particularly, we saw:

• The portal provides shared documents, videos, audios, images, and records,
discussions, collaborative wikis, social activities, dynamic web content,
web forms, and more in a single, searchable portal

• The portal is a great choice for intranets and Internets, easy-to-use, open
source, extensible, integrated with other tools and standards

• Service-Builder and the Plugins SDK provide portal systems development
and customization environments with plugins such as Ext, themes, layout
templates, webs, portlets, and hooks

In the next chapter, we're going to introduce the Service-Builder and the
development environment.

Service-Builder and
Development Environment

Before moving on to develop JSR-286 portlets, we have to set up our development
environment properly. Fortunately, Liferay provides a development environment,
namely, the Plugins SDK environment (Plugins SDK) for developing Ext plugin,
portlets, hooks, themes, layout templates, and webs. Liferay portal also provides
Service-Builder as a tool to build Java services that can be accessed in a variety of
ways. This chapter will first introduce how to set up Plugins SDK and how to build
it. Then, it will address how to use Service-Builder and what happens when the
portal starts from scratch.

By the end of this chapter, you will have learned how to:

•	 Set up a development environment
•	 Navigate through the portal and plugins structure
•	 Use Service-Builder
•	 Populate database schema and default data
•	 Use default project creation and templates
•	 Develop portlets within Tomcat in a fast way

Plugins SDK development environment
Plugins SDK is a simple environment for plugins development such as Ext (Ext
stands for extension) plugins, themes, layout templates, portlets, hooks, and webs
(web applications). It is completely different from the Liferay portal core services as
it uses external services portal-service only if required.

Service-Builder and Development Environment

[32]

In order to set up the development environment, Plugins SDK for development,
customization, deployment, and debugging, we need to consider the following
aspects: required tools, databases, application servers, IDE (Integrated Development
Environment), portal runtime bundle, and portal source code. We will have a deeper
look at these aspects.

Of course, you can use Liferay Developer Studio, where all aspects are packaged as
one simple bundle or Liferay IDE. Liferay IDE is an extension of the Eclipse platform
that supports development of plugins projects such as portlets, hooks, layout
templates, themes, and Ext plugins—as you can see, webs are not involved. Liferay
Developer Studio is a shrink-wrapped productized version of Eclipse, pre-installed
with Liferay IDE and also bundled with Portal EE (Enterprise Edition) and Plugins
SDK along with several example projects.

Here we will not show you how to use the out-of-the-box Liferay Developer Studio
and Liferay IDE; instead, we will show you how to build your own development
environment—getting the same or similar functions as that of Liferay Developer
Studio and Liferay IDE.

Required tools
Liferay portal is a Java-based portal application that uses the Ant build tool. Thus
the required tools are JDK and Ant; Maven would be an alternative to Ant. For
these tools, we recommend you use the latest version.

JDK
First, you need to download the latest version of JDK. It is available at http://www.
oracle.com/technetwork/java/javase/downloads/index.html for every OS.
The installation instructions can also be found there. When you install it, make a note
of the location as you will need it when you set the JAVA_HOME variable. Note that
Liferay supports JDK 1.5 or above.

Next, you need to set the JAVA_HOME variable. You should set up the JAVA_HOME
variable in Windows, Linux, Unix, or Mac operating systems as you can run Liferay
portal on any OS.

You can check whether your OS recognizes Java, and also if it is the correct version,
by typing the command java -version. By the way, we use $JDK_MAJOR_VERSION
to represent the major version of JDK. For example, the value of $JDK_MAJOR_
VERSION could be 1.5, 1.6, or 1.7.

Chapter 2

[33]

Ant
Apache Ant is a Java library and command-line tool to drive processes described in
build files as targets and extension points that depend on each other. You need to
download the latest version of Apache Ant. It is available at http://ant.apache.
org for every OS. The installation instructions can also be found there. When you
install it, make a note of the location as you will need it when you set up the
ANT_HOME variable.

Then, you need to set the ANT_HOME variable in a similar manner as the JAVA_HOME
variable was set. You can check whether your OS recognizes Ant, and also if it is the
correct version by running the command ant –version.

Maven
Based on the concept of a project object model (POM), Maven can manage a
project's build, reporting, and documentation from a central piece of information.
You need to download the latest version of Apache Maven. It is available at
http://maven.apache.org for every OS. The installation instructions can also
be found there. When you install it, make a note of the location as you will need
it when you set up the MAVEN_HOME variable.

Databases
Liferay portal supports many databases. Databases which the Liferay portal can
run on include Apache Derby, IBM DB2, Firebird, Hypersonic, Informix, InterBase,
JDataStore, Oracle, PostgreSQL, SAP, SQL Server, Sybase, MySQL, and almost any
database. Eventually, you can use any one of them. For demo purposes, here we will
use MySQL.

MySQL
You need to download the latest version of MySQL. It is available at http://www.
mysql.com for every OS. The installation instructions can also be found there. When
you install it, make a note of the location as you will need it when you set up the
MYSQL_HOME variable. Then, you need to set the MYSQL_HOME variable in a similar
manner as the JAVA_HOME variable was set. Similarly, you can check whether your
OS recognizes MySQL, and also if it is the correct version, by running the command
mysql --version.

Service-Builder and Development Environment

[34]

In addition, we need to prepare a database bookpub and
username/password lportal/lportal, which has full access
to the database bookpub. Of course, you can have a different
database name, username, and password. We use bookpub as the
value of database, and lportal/lportal as the values of the
username/password for demo purposes.

Application servers
Liferay portal supports almost any application server. The application servers (or
the servlet containers) that the Liferay portal can run on include Borland ES, Apache
Geronimo, GlassFish, JBoss AS, JOnAS, JRun, Oracle AS, Orion, JSAS, WebLogic,
WebSphere, Jetty, Resin, Tomcat, and almost any application server.

Of course, it is up to you to choose one of them. However, for demo purposes, we
will use Tomcat for testing, debugging, and developing. Optionally, there are a
set of Liferay portal bundles, available at http://www.liferay.com/downloads/
liferay-portal/available-releases, bundled with application servers. You
can use one of them for the servlet container or the full Java EE application server.
It is easy to use Liferay portal bundles—simply downloads one bundle from the
preceding URL and unzips it to the specific folder on your local machine.

Why use Tomcat, and not Liferay portal bundled with Tomcat? Naturally, it is better
to use Liferay portal bundled with Tomcat as it is preconfigured. However, you will
lose an opportunity to learn how to configure Tomcat with Liferay portal from a
new installation. We will here choose Tomcat and will show you how to configure
Tomcat to support the Liferay portal.

Tomcat
Before installing Tomcat, we need to set the working folder $LIFERAY_PORTAL
variable. Logically, you can have a different folder name. However, in order to be
referred to simply and easily, we use a folder named Liferay-Portal, that is, the
folder $LIFERAY_PORTAL setting has a value, Liferay-Portal. More specifically,
you will have a value for $LIFERAY_PORTAL—C:\Liferay-Portal in Windows,
or /opt/Liferay-Portal in Linux, Unix, and MacOS. You will see some specific
examples and diagrams in this book with these values related to a specific
OS—Windows.

Chapter 2

[35]

First of all, you need to download the most recent version of Tomcat. It is available
at http://tomcat.apache.org for every OS. It is a ZIP file named $TOMCAT_ZIP_
FILENAME.zip (you can download a ZIP file named $TOMCAT_ZIP_FILENAME.tar.
gz also). Here, the TOMCAT_ZIP_FILENAME is the actual ZIP filename, for example,
apache-tomcat-version. The version is made up of a major version named
$TOMCAT_MAJOR_VERSION and a minor version named $TOMCAT_MINOR_VERSION.

In order to install Tomcat, we need to unzip the ZIP file into the folder,
$LIFERAY_PORTAL, and set the value of the variable $CATALINA_HOME to
$LIFERAY_PORTAL/$TOMCAT_ZIP_FILENAME.

Why do we need to install Tomcat under the $LIFERAY_PORTAL folder?
In the runtime, Liferay portal will create two folders, data and deploy,
under the $LIFERAY_PORTAL folder sharing the same parent folder
$LIFERAY_PORTAL, with the folder $TOMCAT_ZIP_FILENAME. Thus, if
we install Tomcat in the folder, $LIFERAY_PORTAL, it would be easy to
refer to the data and deploy folders as $LIFERAY_PORTAL/data and
$LIFERAY_PORTAL/deploy, respectively.

IDE
Why do we need an IDE? An IDE or Integrated Development Environment provides
comprehensive facilities for software development. An IDE normally consists
of a source code editor, a compiler, an interpreter, build automation tools, and a
debugger. Of course, you can develop portlets in Liferay portal without using any
IDE. An IDE is designed to maximize the programmer's productivity by providing
tightly knit components with similar user interfaces. Thus we plan to use an IDE.

There are a set of IDEs you may choose from—Eclipse IDE, NetBeans IDE, and
IntelliJ. We will use Eclipse IDE for development, customization, deployment,
and debugging custom code based on the Liferay portal.

Eclipse IDE
You can download the most recent version for every OS available at http://www.
eclipse.org. There are still a lot of download choices—Eclipse Classic, Eclipse
IDE for Java EE Developers, Eclipse IDE for Java Developers, and so on. For demo
purposes, we will choose Eclipse Classic.

Service-Builder and Development Environment

[36]

You can install Eclipse IDE anywhere. When you install it, make a note of the
location, as you will need it when you set up ECLIPSE_IDE_HOME. For convenience,
we prefer to install Eclipse IDE under the folder $LIFERAY_PORTAL. Thus the
$ECLIPSE_IDE_HOME setting has the value $LIFERAY_PORTAL/eclipse.

Workspace
Before starting the Eclipse IDE, we need to build a workspace and a folder to
store projects. Logically, you could create the folder for the workspace anywhere
and give it any name. For the sake of convenience, we use the name workspace as
the folder for the workspace. Moreover, place the folder workspace under the folder
$LIFERAY_PORTAL. Thus we can refer to the folder for the workspace simply as
$LIFERAY_PORTAL/workspace.

When starting Eclipse IDE, you are asked to provide the workspace path—enter it as
$LIFERAY_PORTAL/workspace. After that, you will have your own Eclipse IDE.

Subclipse
In order to get Liferay portal source code, we have to use Subclipse in the Eclipse
IDE. Subclipse is an Eclipse Team Provider plugin providing support for Subversion
(an open source version control system) within the Eclipse IDE. You may refer to
http://subclipse.tigris.org for more information.

As you can see, there are a set of version control systems for source management, for
example, Fast Version Control System (Git, refer to http://git-scm.com), Concurrent
Versions System (CVS), Perforce, Subversion (SVN), IBM Rational ClearCase, and
so on. Why do we need SVN or GIT? As the Liferay portal source code is managed
through Subversion and GitHub (refer to https://github.com/liferay), we have to
use SVN or Git. Let's install the Subclipse plugin in the Eclipse IDE.

Portal and plugins structure
Before navigating to the portal runtime structure, portal source code structure,
plugins runtime structure, and plugins SDK source code structure, let's first build
a portal source code Java project named portal-trunk (represented as a variable
$PORTAL_SRC_HOME) and a plugins SDK source code Java project named
plugins-trunk (represented as a variable $PLUGINS_SDK_HOME).

•	 Check out svn://svn.liferay.com/repos/public/portal/trunk as the
Java project portal-trunk in Eclipse IDE; of course, you can use any name
for this project. We are using this name only for ease-of-reference.

Chapter 2

[37]

•	 Check out svn://svn.liferay.com/repos/public/plugins/trunk as the
Java project plugins-trunk in Eclipse IDE; again, you can use any name for
this project. This name is used for ease-of-reference.

Using the IDE, you will see the portal source code Java project portal-trunk and
the plugins source code Java project plugins-trunk.

In addition, you may be interested in Alloy UI source code. Therefore, check
out svn://svn.liferay.com/repos/public/alloy/trunk as the Java project
alloy-ui-trunk in Eclipse IDE or a different project name.

Portal source code
Where do we get the source code for the portal? In general, there are four kinds of
portal sources: the officially released version, the tag version, the branch version, and
the trunk version. Let's take a deeper look at these options. The officially released
version has only one version (either the major version, for example 6.1, or the minor
version, for example 2). If you need the new version, say 6.1.3 or 6.1.4, then you
have to download the latest version and install it again.

The tag version is functionally the same as the officially released version. You
can check this out on a specific tag at svn://svn.liferay.com/repos/public/
portal/tags.

The branch version provides the portal source code with a fixed major version. You
can check out the latest branch at svn://svn.liferay.com/repos/public/portal/
branches. Note that there is only one major version (for example, 6.1), but you can
get the latest minor version from the SVN update. However, if you need a new major
version, say 6.2 or 7, you have to get another branch and install it again.

The trunk version provides the portal source code with the latest version—both
major and minor. For demo purposes, we will use the trunk version. Note that
the trunk version is not recommended for production because it is still under
development, and not stable. Moreover, it is better to use the branch version
because it is the latest stable release with a bug fix.

Service-Builder and Development Environment

[38]

Portal source code structure
The portal source code has the following folder structure:

Folder name Description
benchmarks Covers benchmarks.properties, build.xml, grinder.

properties, the folder scripts, and the file login.py.
Definitions Covers DTD files and XSD files, such as hibernate-mapping-

3.0.dtd, liferay-service-builder_6_1_0.xsd, liferay-
workflow-definition_6_1_0.xsd, and so on.

Lib Lib JAR files are grouped into three folders: development, global,
and portal; dependent JAR versions are specified in version.
html, versions.xml. For example, ROME JAR /portal/rome.jar
is used to generate and convert all of the popular RSS and
Atom formats

portal-
client

Generates an Axis web service client, covering buil.xml,
namespace-mapping.properties, and portal-client.jar.

portal-impl Contains implementation of portal kernels, models, and services;
generates JAR portal-impl.jar, including build.xml, folders
src, and test. In particular, it covers portal.properties and
system.properties.

portal-
service

Contains portal interfaces of kernels, models, and services; generates
JAR portal-service.jar, including build.xml, folders src and
test

portal-web Contains the web application root; generates WAR portal-web.
war, including build.xml and the folders docroot, test, test-
ant-templates, and third-party; as a normal web application,
the WAR portal-web.war is deployable in application servers.

Sql Contains SQL build files, such as build.xml and build-parents.
xml, and SQL files, such as indexs.sql, portal-tables.sql,
sql.properties, indexes.properties, sequence.sql,
update-*.sql, and so on.

support-
maven

Contains Maven support, including pom.xml and the folders
archetypes and plugins

support-
tomcat

Contains Tomcat support libraries; including build.xml and the
source code folder src, more specifically, com.liferay.support.
tomcat;

Chapter 2

[39]

Folder name Description
Tools Contains a set of tools folders such as db-upgrade, maven, putty,

selenium, servers, and zip_tmpl, for example, the default
settings of setenv.bat and setenv.sh are specified at /tools/
servers/tomcat/bin; similarly, you can find the default settings
for Geronimo, jetty, and resin.

tunnel-web Contains tunnel web, including build.xml and the web application
folder docroot/WEB-INF; generates the WAR tunnel-web.war

util-bridges Contains bridges, utilities, libraries, including build.xml and the
source code folder src – it covers the folder com.liferay.util.
bridges; generates the JAR util-bridges.jar

util-java Contains Java utilities libraries, including build.xml and the source
code folder src – it covers the folder com.liferay.util and the
WSDD file client-config.wsdd; generates the JAR util-java.
jar

util-taglib Contains tag libraries, including build.xml, the source code
folder—it covers the folders com.liferay.taglib and META-
INF; under the folder META-INF, there are a set of XML files, such
as faces-config.xml and liferay-faces.taglib.xml and
TLD files, such as liferay-aui.tld and liferay-faces.tld;
generates the JAR util-taglib.jar

In addition, you will find a set of XML files and properties files under the folder
$PORTAL_SRC_HOME. The following are some of these files:

File name Description Comments
app.server.
properties

Specifies application server info,
for example, app.server.type
could be geronimo, glassfish,
jboss, jetty, jonas, oc4j,
resin, tomcat, and so on. By
default, it is specified as Tomcat.
It also specifies Clean processes,
such as clean.log.dir, clean.
temp.dir, and clean.work.dir.

Do not update the properties
of this file. Instead, create a
separate properties file named
app.server.${user.
name}.properties with
the properties to overwrite.

build-common-
java.xml

Ant build; specifies the Ant
common Java targets

Ant targets: compile, clean,
deploy, jar, jar-javadoc, jar-
source, javadoc, manifest, and
so on.

build-common-
web.xml

Ant build; specifies the Ant
common web targets

Ant targets: clean, compile,
deploy, war

Service-Builder and Development Environment

[40]

File name Description Comments
build-common.
xml

Ant build; specifies the Ant
common targets

Ant targets: compile, format-
javadoc, print-current-time,
setproxy, test,

build.xml Ant build; specifies the Ant targets Import file build-common-
build.xml; ant targets: clean,
start, deploy.

release.
properties

Specifies release information, such
as lp.version, lp.version.
dtd, lp.version.major.

com.liferay.
portal.tools.
ReleaseInfoBuilder;

In the same folder, you will find a set of build-test XML files such as build-test-
cluster.xml, build-test-db-*.xml, build-test-glassfish.xml, build-test-
jboss.xml, build-test-ldap.xml, and so on. You may use these build-test XML
files to test different scenarios.

Plugins SDK source code
Plugins SDK is a simple environment for the development of Liferay plugins, such as
themes, layout templates, portlets, hooks, Ext plugins, and webs (web applications).
It is completely different from the Liferay portal core services as it uses external
services only if required.

How do we set up Plugins SDK? First, let's see where we would find the source code
of Plugins SDK. In general, there are three kinds of source code for Plugins SDK:
the specific version package, the branch version, and the trunk version. The specific
version package is released with the portal.

The branch version provides the source code of Plugins SDK with a fixed major
version. You can check out the latest branch at svn://svn.liferay.com/repos/
public/plugins/branches.

The trunk version provides the source code of Plugins SDK with the latest versions,
both the major and minor versions. By the way, both the branch version and the
trunk version contain a lot of sample themes, layout templates, portlets, hooks, Ext
plugins, and webs.

Chapter 2

[41]

Plugins SDK structure
The plugins SDK has the following folder structure:

Folder name Description
clients Covers build-common-client.xml, build.xml, and folders

for clients projects, for example, the sample clients project ip-
geocoder-client.

ext Covers build-common-ext.xml, build.xml, create.bat,
create.sh and, possibly, folders for Ext plugins projects.

hooks Covers build-common-hook.xml, build.xml, create.bat,
create.sh, and folders for hooks plugins projects, for example,
mongodb-hook, antisamy-hook, and so on.

layouttpl Covers build-common-layouttpl.xml, build.xml, create.
bat, create.sh, and folders for layout templates plugins projects,
for example, 3-2-3-columns-layouttpl.

lib Includes global library JAR files, such as activation.jar, jsp-
api.jar, log4j.jar, mail.jar, servlet-api.jar, and so on.

portlets Covers build-common-portlet.xml, build.xml, create.bat,
create.sh, and folders for portlets plugins projects, for example,
knowledge-base-portlet, sample-service-builder-
portlet, and so on.

theme Covers build-common-theme.xml, build.xml, create.bat,
create.sh, and folders for themes plugins projects, for example,
so-theme, igoogle-theme, and so on.

tools Contains a set of plugins templates folders, such as ext_tmpl,
hook_tmpl, layouttpl_tmpl, portlet_jsf_tmpl, portlet_
tmpl, portlet_vaadin_tmpl, and theme_tmpl.

webs Including build-common-web.xml, build.xml and folders for
webs plugins projects, for example, kaleo-web, solr-web, and
so on.

Service-Builder and Development Environment

[42]

In addition, you would find a set of XML files and property files under the folder
$PLUGINS_SDK_HOME. The following are some of these files:

File name Description Comments
build.
properties

Specifies the application server info, for
example, app.server.type could
be geronimo, glassfish, jboss,
jetty, jonas, oc4j, resin, tomcat,
and so on. By default, it is specified as
tomcat. It also specifies a version, such
as lp.version, and compilers, such
as javac.compiler, ant.build.
javac.source, ant.build.javac.
target, and so on.

Do not update the
properties of this file.
Instead, create a separate
properties file named
build.${user.name}.
properties with the
properties to overwrite.

build-common-
plugin.xml

Ant build; specifies Ant common plugin
targets

Ant targets: clean,
deploy, build-client,
build-db, build-lang-
cmd, build-service,
build-wsdd, and so on.

build-common-
plugins.xml

Ant build; specifies Ant common
plugins targets

Ant targets: build-
service, clean, clean-
module, compile,
compile-module,
deploy, deploy-
module, jar, and so on.

build-common.
xml

Ant build; specifies Ant common
targets

Ant targets: compile-
java, format-javadoc,
format-source, print-
current-time, and so
on.

build.xml Ant build; specifies Ant targets Import file build-
common.xml; Ant targets:
clean, deploy, build-
service, build-
summary, compile, and
so on.

Portal runtime structure
Portal has its own runtime structure. You could simply download a bundle, unzip it,
and take a deeper look at the portal runtime structure. However, here we will show
you how to build the portal runtime. Generally, using the following steps, you can
build a runtime bundle.

Chapter 2

[43]

1. Create a file named app.server.${env.name}.properties in
$PORTAL_SRC_HOME and add the following lines to it:
app.server.parent.dir=$LIFERAY_PORTAL
app.server.tomcat.dir=${app.server.parent.dir}/$CATALINA_HOME

2. Run ant clean start deploy

As shown in the preceding steps, you clean and start building the portal, and finally
deploy the portal to your local Tomcat server. In general, ${env.name} could be one
of the pre-defined variables such as ${user.name}, ${env.COMPUTERNAME}, ${env.
HOST}, ${env.HOSTNAME}. Here we use ${user.name}. Of course, you can build the
portal runtime against other application servers such as Geronimo, Glassfish, JBoss,
jetty, Jonas, OC4J, resin, and so on.

Ant target clean
The Ant target clean command processes the following tasks:

•	 Cleaning Java classes under the classes folder
•	 Cleaning Java classes under the portal-client and portal-service folders
•	 Cleaning Java classes under the util-bridges, util-java, and

util-taglib folders
•	 Cleaning Java classes under the portal-impl folder
•	 Cleaning Java classes under the portal-web and tunnel-web folders

There are more tasks which exist, such as cleaning the folder /data/sql, Tomcat
work folder, Tomcat temp folder, Tomcat logs folder, and so on. You can find more
details in $PORTAL_SRC_HOME/build.xml.

Ant target start
The Ant target start command processes the following tasks:

•	 Compiling the Java code under the portal-service folder
•	 Compiling the Java code under the util-bridges, util-java, and

util-taglib folders
•	 Building the database sql and rebuilding the default embedded database

hypersonic

•	 Compiling the Java code under the portal-impl folder

Service-Builder and Development Environment

[44]

Ant target deploy
The Ant target start command processes the following tasks, mapping the portal
source code to the portal runtime:

Source $PORTAL_SRC_HOME Runtime $CATALINA_HOME Description
/portal-service/portal-
service.jar

/lib/ext/portal-
service.jar

Portal service interfaces
and models

/lib/global/portlet.jar /lib/ext/portlet.jar JSR-286 portlets
/lib/development/hsql.jar,
jtds.jar, mysql.jar, postgresql.
jar

/lib/ext/ hsql.
jar,jtds.jar, mysql.
jar,postgresql.jar

You may add other
JDBC drivers, such as
ojdbc6.jar for Oracle
11g

/lib/developmen/ccpp.jar,
activation.jar, jms.jar, jta.jar,
mail.jar, persistence.jar

/lib/ext/ccpp.
jar,activation.jar,jms.
jar,jta.jar,mail.
jar,persistence.jar

Global dependencies

/support-tomcat/support-
tomcat.jar

/lib/ext/support-
tomcat.jar

Tomcat support only

/portal-impl/portal-impl.jar /webapps/ROOT/WEB-INF/
lib/portal-impl.jar

Portal service and model
implementation

/definitions/* /webapps/ROOT/dtd/* DTD, XSD, XML
/sql/* /portal-impl.jar /com/

liferay/portal/tools/
sql/dependencies/*

Packaged as a part of
portal-impl.jar

/util-bridges/util-bridges.jar /webapps/ROOT/WEB-INF/
lib/util-bridges.jar

Bridge utilities

/util-java/util-java.jar /webapps/ROOT/WEB-INF/
lib/util-java.jar

Java utilities

/util-taglib/util-taglib.jar /webapps/ROOT/WEB-INF/
lib/util-taglib.jar

Taglib utilities

/lib/development/*.jar /webapps/ROOT/WEB-INF/
lib/*.jar

Dependencies

/portal-web/docroot/* /webapps/ROOT/* ROOT
/sql/lportal.properties,
lportal.script

$LIFEARY_PORTAL/
data/hsql/ lportal.
properties, lportal.
script

Sample Hypersonic data
and properties

/portal-impl/classes /com/
liferay/portal/jcr/jackrabit.
dependencies/repository.xml

$LIFEARY_HOME/data/
jackrabbit/repository.
xml

JCR Jackrabbit repository
settings

Chapter 2

[45]

Source $PORTAL_SRC_HOME Runtime $CATALINA_HOME Description
/tunnel-web/tunnel-web.
war

/webapps/tunnel-web/* Tunnel web

/tools/servers/tomcat/bin/
setenv.sh,setenv.bat

/bin/setenv.sh,setenv.
bat

JVM settings

/tools/servers/tomcat/
conf/Catalina/localhost/
ROOT.xml

/conf/Catalina/
localhost/ROOT.xml

Context path and cross
context settings

In addition, as you have seen in the preceding table, the portal runtime covers the
following main folders under $LIFERAY_HOME:

•	 deploy: A folder for hot deploy
•	 data: A folder for runtime data, such as, document_library, hsql,

jackrabbit, and lucene
•	 data/ee: A folder for license information, Enterprise Edition (EE)
•	 license: A folder for license information, Community Edition (CE)
•	 $APPLICATION_SERVER_DIR: A folder for the application server directory, for

example, Tomcat $CATALINA_HOME

What is happening?
As mentioned earlier, ${env.name} could be one of the pre-defined variables such as
${user.name}, ${env.COMPUTERNAME}, ${env.HOST}, and ${env.HOSTNAME}. Why?
The file build-common.xml has the following definitions:

<property file="${project.dir}/app.server.${user.name}.properties" />
// see details in build-common.xml
<property file="${project.dir}/app.server.properties" />

Similar specifications would be found at com.liferay.portal.util.PortalImpl as
the following lines.

_computerName = System.getProperty("env.COMPUTERNAME");
if (Validator.isNull(_computerName)) {
 _computerName = System.getProperty("env.HOST");
}
if (Validator.isNull(_computerName)) {
 _computerName = System.getProperty("env.HOSTNAME");
}

Service-Builder and Development Environment

[46]

Plugins runtime structure
Each plugin has its own runtime structure. You could simply download a plugin
WAR, deploy it to $LIFERAY_HOME/deploy and take a deeper look at the plugin
runtime structure. However, here we are going to show you how to build a plugin's
runtime, using knowledge-base-portlet as an example. Generally, using the
following steps, you can build a plugin runtime:

1. Create a file named build.${env.name}.properties in $PLUGINS_SDK _
HOME and the add following lines to it:
app.server.parent.dir=$LIFERAY_PORTAL
app.server.dir=${app.server.parent.dir}/$CATALINA_HOME

2. Run ant clean deploy under the folder $PLUGINS_SDKP_HOME/portlets/
knowledge-base-portlet.

Ant target clean
The Ant target clean command processes the following tasks:

•	 Cleaning Java classes under the $PLUGINS_SDK_HOME/portlets/knowledge-
base-portlet/docroot/WEB-INF/classes folder

•	 Removing the existing WAR under the $PLUGINS_SDK_HOME/dist folder

Ant target deploy
The Ant target deploy command processes the following tasks:

•	 Compiling Java classes, $PLUGINS_SDK_HOME/portlets/knowledge-base-
portlet/docroot/WEB-INF/src

•	 Packaging all files as a WAR in the $PLUGINS_SDK_HOME/dist folder
•	 Copying the WAR file to the folder $LIFEARY_HOME/deploy

After deploying, all folders and files under the folder $PLUGINS_SDK_HOME/
portlets/knowledge-base-portlet/docroot have been packaged to $CATALINA_
HOME/webapps/knowledge-base-portlet. In particular, a few JAR files have been
added at $CATALINA_HOME/webapps/knowledge-base-portlet/WEB-INF/lib, such
as, commons-logging.jar, util-bridges.jar, util-java.jar, and util-taglib.
jar. In addition, web.xml at $CATALINA_HOME/webapps/knowledge-base-portlet/
WEB-INF was overridden in the deployment process. Why? We will show the details
in the next chapter.

Chapter 2

[47]

Portal service and implementation
As you can see, portal core services and models interfaces are specified in portal-
service.jar, which is accessible to all plugins. When you develop your plugins,
you can leverage all the core services and models interfaces in portal-service.jar.
Of course, you can also leverage the JSR-286 portlets services and models interfaces
specified in portlet.jar. Note that both portal-service.jar and portlet.jar
should be specified as global libraries (libraries that can be read by all web applications
deployed into an application server). Thus, you should not include these JAR files in
your plugins /WEB-INF/lib folder; instead, you can use these JAR files explicitly.

In addition, portal deployment processes will add JAR files such as commons-
logging.jar, util-bridges.jar, util-java.jar, and util-taglib.jar to
the plugin runtime folder /WEB-INF/lib. Thus, you would be able to use these
utilities in your plugins, but you won't need to include these JAR files in the folder
/WEB-INF/lib explicitly.

Most importantly, plugins that use Ant target compile will detect the inclusion of
portal-impl.jar in /WEB-INF/lib. The JAR portal-impl.jar is designed with a
large number of singleton classes which are instantiated on the basis that they will
exist alone in the application server. While compile-time issues may be resolved,
plugins, such as portlets, cannot be made to work by simply adding portal-impl.
jar, because doing so violates the assumption and the resulting problems will be
extremely difficult to debug. Thus, you need to find a solution that does not require
portal-impl.jar.

In $PLUGINS_SDK_HOME/build-common-plugin.xml, you will find the following code:

<if>
 <available file="docroot/WEB-INF/lib/portal-impl.jar" />
 <then>
 <fail>
 Detected inclusion of portal-impl.jar in WEB-INF/lib.
 </fail>
 </then>
</if>

Interface and implementation
As you can see, portal service and model interfaces are specified in portal-service.
jar, which is accessible globally, while utilities such as util-bridges.jar, util-
java.jar, and util-taglib.jar exist at /webapps/ROOT/WEB-INF/lib/, and when
deploying a plugin, get added. In particular, implementation of the portal service and
model interfaces are specified in portal-impl.jar.

Service-Builder and Development Environment

[48]

The following table shows the portal service and model interfaces and their
implementation with a few examples:

Portal Service - portal-
service.jar

Portal Implementation
portal-impl.jar

Description

Properties
keys

com.liferay.portal.
kernel.util.
PropsKeys

com.liferay.
portal.util.
PropsValues

PropsKeys should
be available in
plugins

Web keys com.liferay.portal.
kernel.util.Webkeys

com.liferay.
portal.util.
Webkeys

Use kernel
WebKeys in plugins

Browser
support

com.liferay.portal.
kernel.servlet.
BrowserSniffer

com.liferay.
portal.servlet.
BrowserSnifferImpl

Use interface
BrowserSniffer in
plugins

Counter
model

com.liferay.counter.
model.Counter

com.liferay.
counter.model.
impl.CounterImpl

Use model Counter
in plugins

Counter
service

com.liferay.counter.
service.CounterLocal
ServiceUtil

com.liferay.
counter.service.
impl.CounterLocal
ServiceImpl

Use CounterLocal
ServiceUtil in
plugins

String
Utility

com.liferay.portal.
kernel.util.
StringUtil

N/P String utilities

Minifier
filter

com.liferay.
portal.kernel.
servlet.BaseFilter,
LiferayFilter

com.liferay.
portal.servlet.
filters.minifier.
MinifierFilter

Filters

Dynamic
CSS Filter

com.liferay.
portal.kernel.
servlet.BaseFilter,
LiferayFilter

com.liferay.
portal.servlet.
filters.
dynamiccss.
DynamicCSSFilter

Filters for dynamic
CSS and Sass - an
extension of CSS3

Virtual
Host
Filter

com.liferay.
portal.kernel.
servlet.BaseFilter,
LiferayFilter

com.liferay.
portal.servlet.
filters.
virtualhost.
VirtualHostFilter

Filters

As shown in the preceding table, the portal provides a central service interface to
detect different browsers, either web or WAP. In general, the Liferay portal supports
almost any browser. In BrowserSniffer, it provides a set of interfaces to detect
browsers as follows:

public static final String BROWSER_ID_FIREFOX = "firefox";
// more interfaces

Chapter 2

[49]

In particular, BrowserSnifferImpl implements BrowserSniffer. For example, it
pre-defines the following aliases:

private static final String[] _FIREFOX_ALIASES = {
"firefox", "minefield", "granparadiso", "bonecho", "firebird",
"phoenix", "camino" };
// see details in BrowserSnifferImpl.java

Liferay introduces a minifying-filter named MinifierFilter to minify JavaScript
files, JSP files, and CSS files in runtime. Using minifying-filter MinifierUtil
consumed by MinifierFilter, the portal will remove unnecessary characters from
the code to reduce its size, thereby improving load time. More specifically, when files
are minified, all comments are removed, as well as unneeded white space characters
such as space, newline, and tab. In the case of JavaScript files, this improves the
response time performance as the size of the downloaded file is reduced.

Note that the minifying-filter MinifierFilter does not only minify JavaScript files,
CSS files, and JSP files from portal core, but also it minifies JavaScript files, CSS files,
and JSP files from any plugins.

JAR-based fix patch
When should you use source code portal-service, portal-impl, util-bridges,
and util-java, util-taglib? In the following use cases, you may need to override
the source code and generate a JAR-based fix patch:

•	 Customize service and model interfaces in portal-service
•	 Fix bugs or add new features in portal-impl
•	 Change default behaviors in util-bridges, util-java, util-taglib

How to generate a JAR-based fix patch? Let's have a look at a real example. Let's say
that there is a custom model—each brand can have many destinations, while each
destination can have many hotels; each brand, destination, or hotel will have its own
public and private pages.

Each brand will have a public virtual host—domain name and SEO friendly URL
as follows.

•	 Use case A) for brand:
http://www.${brand.name}.com[/${locale}]

Where ${brand.name} should be a brand (it could be presented as a root-
level organization) friendly URL. Destination and hotel don't need virtual
host, but they do need SEO-friendly URLs.

Service-Builder and Development Environment

[50]

•	 Use case B) for destination:
http://www.${brand.name}.com[/${locale}]/${destination.name}

•	 Use case C) for hotel:

http://www.${brand.name}.com[/${locale}]/${destination.
name}/${hotel.name}

Where ${destination.name} should be the destination (it could be presented as a
first-level organization) SEO-friendly URL. ${hotel.name} should be the hotel (it is
presented as a second-level organization) SEO-friendly URL.

The preceding use cases could be implemented as a JAR-based fix patch.
More precisely, customize the group-friendly URL and the virtual host in
VirtualHostFilter and generate a JAR-based fix patch. As VirtualHostFilter
is packaged inside portal-impl.jar, the patch should be packaged into a JAR
file, and this JAR file must be loaded before portal-impl.jar. One way to realize
that is by using a naming convention, where the app server would load JAR files
alphabetically. For example, portal-impl.jar starts with the letter p, then the
name for patch should be prefixed with a letter between a-o, which alphabetically
precedes the letter p.

Note that the JAR-based fix patch for portal-service should be copied into the
folder $CATALINA_HOME/lib/ext. The JAR-based fix patch for portal-impl,
util-bridges, util-java, and util-taglib should be copied into the folder
$CATALINA_HOME/webapps/ROOT/WEB-INF/lib.

Service-Builder
Liferay portal provides a tool named Service-Builder, which could automate
the creation of interfaces and classes for database persistence, local and remote
services. In brief, Service-Builder will generate most of the common code needed
to implement, find, create, update, and delete operations on the database, allowing
developers to focus on the higher-level aspects of the service design directly.

The term service is a class or set of classes designed to handle retrieving and
storing data classes. A service could be local or remote. A local service is used
in the local Liferay instance, while a remote service is accessible from anywhere.
By default, remote services support SOAP, JSON, and Java RMI. This section is
going to discuss Service-Builder in the portal core, and the next chapter is going
to focus on Service-Builder in plugins.

Chapter 2

[51]

Ant target build-service
Ant target build-service is specified in $PORTAL_SRC_HOME/portal-impl/build.
xml as follows. Liferay eats its own dog food—almost all services and models in portal
core were generated by the Ant target, build-service. Similarly, the Ant target
build-service was specified in $PLUGINS_SDK_HOME/build-common-plugin.xml,
where it can generate, automatically, models and services for custom plugins.

<target name="build-service">
<java classname="com.liferay.portal.tools.servicebuilder.
ServiceBuilder"
classpathref="project.classpath">
<arg value="-Dexternal-properties=com/liferay/portal/tools/
dependencies/portal-tools.properties" />
<!-- see details in build-common-plugin.xml --></java>
<delete file="ServiceBuilder.temp" />
<ant dir="../portal-service" target="compile" inheritAll="false" />
</target>

As shown in the preceding code, com.liferay.portal.tools.servicebuilder.
ServiceBuilder is the main entry to build services and models. The available
arguments include /portal-impl/src/META-INF/portal-hbm.xml, portal-orm.
xml, portal-model-hints.xml, portal-spring.xml, ${service.file} and so on.

In portal core, ${service.file} could be one of following possible values under the
folder /portal-impl/src/:

com/liferay/counter/service.xml – counter services
com/liferay/portal/service.xml – portal core services
// ignore details
com/liferay/portlet/wiki/service.xml – wiki services

As shown in the preceding code, model classes and their attributes are defined in a
service.xml file.

Database structure definition
The Liferay portal provides counter services, which are used to autogenerate the
database entity primary key. As you know, Liferay can support different databases
as it does not use the sequences of any databases. Instead, Liferay has its own default
counter for specific database. Optimizing this counter can increase performance. Here
we use com/liferay/counter/service.xml to show how to define the database
structure through Service-Builder. Counter service has the following definition, where
additional comments were added for demo purposes:

<service-builder package-path="com.liferay.counter">
<namespace>Counter</namespace>

Service-Builder and Development Environment

[52]

<entity name="Counter" local-service="true" remote-service="false"
cache-enabled="false">
<!-- PK fields -->
<column name="name" type="String" primary="true" />
<!-- Other fields -->
<column name="currentId" type="long" />
<!-- Relationships -->
<!-- Order -->
<!-- Finder methods -->
<!-- References -->
</entity>
</service-builder>

The element service-builder is the root of the deployment descriptor for a
Service-Builder descriptor that is used to generate services available to portlets.
Service-Builder saves the developer time by generating Spring utilities, SOAP
utilities, and Hibernate persistence classes to ease the development of services.
Service-Builder has the following attribute list declarations:

<!ATTLIST service-builder
 package-path CDATA #REQUIRED
 auto-namespace-tables CDATA #IMPLIED
>

The package-path value specifies the package of the generated code. The auto-
namespace-tables value specifies whether or not to automatically use namespace
tables. The default value is false for portal core services or true for plugin services.

As shown in the following element type declarations, the element service-builder
can have no more than one author (this item is optional), one namespace, one or
more entity, and no more than one exceptions (this item is optional)

<!ELEMENT service-builder (author?, namespace, entity+, exceptions?)>

Author, namespace, and exceptions
The author element is the name of a user that is associated with the generated
code. The namespace element must be a unique namespace, as table names will be
prefixed with this namespace, and generated JSON JavaScript will be scoped
to this namespace as well. For example, it will be Liferay.Service.Counter.*
if the namespace is Counter.

The exceptions element contains a list of generated exceptions. This does not
save a lot of typing, but can still be helpful. In addition, you can refer to Service-
Builder DTD details at svn://svn.liferay.com/repos/public/portal/trunk/
definitions/liferay-service-builder_6_1_0.dtd.

Chapter 2

[53]

Entity
An entity usually represents a business facade and a table in the database. If an
entity does not have any columns, then it only represents a business facade. As
shown in the following element type declarations, the element entity can have one
or more column, no more than one order (this item is optional), one or more finder,
one or more reference, and one or more tx-required:

<!ELEMENT entity (column*, order?, finder*, reference*, tx-required*)>

Service-Builder will always generate an empty business facade POJO (Plain Old
Java Object) if it does not exist. Moreover, Service-Builder will check to see if the
business facade already exists. If it exists and has additional methods, then Service-
Builder will also update the SOAP (Simple Object Access Protocol) wrappers. If an
entity does have columns, then the value object, the POJO class that is mapped to the
database, and other persistence utilities are also generated based on the order and
finder elements.

Attribute list declarations
The following DTD shows the element entity attribute list declarations:

<!ATTLIST entity
 name CDATA #REQUIRED
 human-name CDATA #IMPLIED
 table CDATA #IMPLIED
 // see details in liferay-service-builder_6_1_0.dtd
 tx-manager CDATA #IMPLIED
 cache-enabled CDATA #IMPLIED
>

The name value specifies the name of the entity, for example, Counter. This is the
required attribute and the rest of the attributes are optional. The human-name value
specifies the readable name to use when generating documentation for this entity.
If none is specified, then one will be generated from the name.

The table value specifies the name of the table that this entity maps to in the
database. If this value is not set, then the name of the table is the same as that of the
entity. If the uuid value is true, then the service will generate a UUID column for
the service. This column will automatically be populated with a UUID. The default
value is false.

If the local-service value is true, then the service will generate local interfaces for
the service. The default value is false. If the remote-service value is true, then
the service will generate remote interfaces for the service. The default value is true.

Service-Builder and Development Environment

[54]

The persistence-class value specifies the name of your custom persistence
class. This class must implement the generated persistence interface or extend the
generated persistence class. This allows developers to override the default behavior
without modifying the generated persistence class.

The data-source value specifies the data source target that is set to the persistence
class. The default value is the Liferay data source. The session-factory value
specifies the session factory that is set to the persistence class. The default value
is the Liferay session factory.

The tx-manager value specifies the transaction manager that Spring uses. The
default value is the Spring Hibernate transaction manager that wraps the Liferay
data source and session factory.

The cache-enabled value specifies whether or not to cache queries for this entity.
You can set this to false if the data in the table will be updated by other programs.
The default value is true.

In particular, portal-impl com.liferay.portal.tools.servicebuilder.Entity
specifies the element entity and its attribute list declarations. The default data
source, session factory, and TX-manager are defined as follows in the Entity:

public static final String DEFAULT_DATA_SOURCE = "liferayDataSource";
// see details in Entity.java
public static final String DEFAULT_TX_MANAGER =
"liferayTransactionManager";

Column
The column element represents a column in the database. The following DTD shows
the element entity attribute list declarations. As you can see, only the attributes
name and type are required; the rest of the attributes are optional.

<!ATTLIST column
 name CDATA #REQUIRED

 // see details in liferay-service-builder_6_1_0.dtd
 convert-null CDATA #IMPLIED
 localized CDATA #IMPLIED
>

The name value specifies the getter and setter name in the entity. The type value
specifies whether the column is a primitive type such as boolean, int, short, long,
float, double, or a data type Integer, String, or Date. For example, the column
name of the entity Counter has the type value String; and the column currentId
has the type value long.

Chapter 2

[55]

The db-name value maps the field to a physical database column that is different to
the column name. If the primary value is set to true, then this column is part of the
Primary Key of the entity. If multiple columns have the primary value set to true,
then a compound key will be created. For instance, the column name is the Primary
Key of the entity Counter.

If the entity and mapping-key attributes are specified and mapping-table is not,
then Service-Builder will assume that you are specifying a one-to-many relationship.
If the entity and mapping-table attributes are specified and mapping-key is
not, then Service-Builder will assume that you are specifying a many-to-many
relationship. For example, the following column specifies that there will be a getter
named getUsers that will return a collection. It will use a mapping table named
Users_Groups to give a many-to-many relationship between groups and users:

<column name="users" type="Collection" entity="User" mapping-
table="Users_Groups" />

If you are creating a mapping table for an entity defined in another service.xml,
then you need to specify the full package path, such as com.liferay.portal.User.

The id-type and id-param values are used in order to create an auto-generated,
auto-incrementing Primary Key when inserting records into a table. This can be
implemented in four different ways, depending on the type of database being used.
In all cases, the Primary Key of the model object should be assigned a value of null,
and Hibernate will know to replace the null value with an auto-generated and
auto-incremented value.

Most importantly, if no id-type value is used, it is assumed that a
non-auto-generated Primary Key will be assigned.

The attribute id-type can have the following values to create an auto-generated,
auto-incrementing Primary Key:

•	 Class: The class specified in the id-param value, for example, com.liferay.
counter.service.persistence.IDGenerator, will be called to retrieve a
unique identifier that will be used as the Primary Key for the new record.
Note that this implementation works for all supported databases.

•	 Increment: Generate identifiers that are unique only when no other process
is inserting data into the same table. This implementation should not be used
in a clustered environment, but it does work for all supported databases.

•	 Identity: Using an identity column to generate a Primary Key; the create
table SQL generated for this entity will create an identity column that
natively auto-generates a Primary Key whenever an insert occurs. Note that
this implementation is only supported by DB2, MySQL, and MS SQL Server.

Service-Builder and Development Environment

[56]

•	 Sequence: Using a sequence to generate a Primary Key, a create sequence
SQL statement is generated based on the id-param value stored in /sql/
sequences.sql. This sequence is then accessed to generate a unique
identifier whenever an insert occurs. Note that this implementation is only
supported by DB2, Oracle, PostgreSQL, and SAP DB.

•	 The filter-primary value specifies the column to use as the Primary Key
column when using filter finders. Only one column should ever have this
value set to true. If no column has this set to true, then the default primary
column is to be used.

The convert-null value specifies whether or not the column value is automatically
converted to a non-null value if it is null. This only applies if the type value is
String. This is particularly useful if your entity is referencing a read only table or
a database view, so that Hibernate does not try to issue unnecessary updates. The
default value is true.

The localized value specifies whether or not the value of the column can have
different values for different locales. The default value is false. In particular,
portal-impl com.liferay.portal.tools.servicebuilder.EntityColumn
specifies the element column and its attribute list declarations.

Finder
The finder element represents a generated finder method. Each finder element can
have one or more elements, such as finder-column, and the following attributes list
declarations where the attributes' name and return-type are required and the
rest of the attributes are optional:

<!ATTLIST finder
 name CDATA #REQUIRED
 // see details in liferay-service-builder_6_1_0.dtd
 db-index CDATA #IMPLIED
>

The name value specifies the name of the finder method. The return-type value
specifies the return type of the finder. Valid values are Collection or the name of
the entity. If the value is Collection, then this finder returns a list of entities. If
the value is the name of the entity, then this finder returns, at most, one entity.

If the unique value is true, then the finder must return a unique entity. If the
db-index value is true, then the service will automatically generate a SQL index
for this finder. The default value is true.

Chapter 2

[57]

The finder-column element specifies the columns to 'find' by. It has the following
attribute list declarations, where the attribute name is required and the other
attributes are optional:

<!ATTLIST finder-column
 name CDATA #REQUIRED
 // see details in liferay-service-builder_6_1_0.dtd
 arrayable-operator CDATA #IMPLIED
>

The name value specifies the name of the finder method. For example:

<finder name="UserId" return-type="Collection">
 <finder-column name="userId" />
</finder>

The preceding settings will create a finder with the name findByUserId that will
return Collection and require a given userId. It will also generate several more
findByUserId methods that take in pagination fields and more sorting options.
Service-Builder will also generate removeByUserId and countByUserId.

The attribute case-sensitive is a boolean value and it is only used if the column
is a String value. The attribute comparator takes in the values =, !=, <, <=, >, >=, or
LIKE and it is used to compare columns.

The attribute arrayable-operator takes in the values AND or OR and it will generate
an additional finder where this column's parameter takes an array instead of a
single value. Every value in this array will be compared with the column using
the comparator, and the conditions will be combined with either an AND or OR
operator. In addition, portal-impl com.liferay.portal.tools.servicebuilder.
EntityFinder specifies the element Finder and its attribute list declarations.

Reference
The reference element allows you to inject services from another service.xml
within the same class loader. For example, if you inject the Group entity, then you
would be able to reference the Group services from your service implementation
through the getGroupLocalService and getGroupService methods. You would
also be able to reference the Group services through the GroupLocalService and
GroupService variables.

Service-Builder and Development Environment

[58]

The reference element can take two optional attributes, namely, package-path and
entity as follows:

<!ATTLIST reference
 package-path CDATA #IMPLIED
 entity CDATA #IMPLIED
>

For example, if you inject the Group entity, then you could have the following settings:

<reference package-path="com.liferay.portal" entity="Group" />

The package-path attribute has the value com.liferay.portal, while the entity
attribute has the value com.liferay.portal. In addition, the entity-mapping
model is specified through the class portal-impl com.liferay.portal.tools.
servicebuilder.EntityMapping.

Order and tx-required
The order element specifies a default ordering and sorting of the entities when they
are retrieved from the database. As shown in the following example, each order
element can have one or more elements order-column and one attribute by:

<order by="asc">
 <order-column name="name" />
</order>

The attribute by is set to asc or desc to order by ascending or descending. The
order-column element allows you to order the entities by specific columns. The
element has the following attribute list declarations, where the attribute name is
required and the rest of the attributes are optional. The attributes of the order-
column element allow you to fine-tune the ordering of the entity, such as Counter.

<!ATTLIST order-column
 name CDATA #REQUIRED
 case-sensitive CDATA #IMPLIED
 order-by CDATA #IMPLIED
>

The attribute order-by is set to asc or desc to order by ascending or descending,
respectively. Moreover, the attribute case-sensitive is set to true or false to
order in a case-sensitive manner or non-case-sensitive manner, respectively. The
default value is true.

<order>
 <order-column name="articleId" order-by="asc" />
 <order-column name="version" order-by="desc" />
</order>

Chapter 2

[59]

The preceding settings will order by articleId in an ascending manner and
then by version in a descending manner. The element order and its attribute
declarations are defined in the class, portal-impl com.liferay.portal.tools.
servicebuilder.EntityOrder.

The tx-required element has a text value that will be used to match method names
that require transactions. By default, the methods: add*, check*, clear*, delete*,
set*, and update* require propagation of transactions. All other methods support
transactions, but are assumed to be read only. If you want additional methods to fall
under transactions, then you can add the method name to this element.

Reserved names
The name value of an entity specifies the name of the entity; the table value of an
entity specifies the name of the table that this entity maps to in the database. Some
names or aliases for the name and table values should be reserved. Similarly, the
name value of a column specifies the getter and setter name in the entity. Some names
or aliases for the name value of a column should be reserved too.

Reserved alias names
Reserved entity alias names are specified in com.liferay.portal.tools.
servicebuilder.dependencies.bad_alias_names.txt.

all
and
and more

If the name value of an entity is one of the above list, then the table name will be
overridden with a postfix _. Why? In ServiceBuilder, it has the following code:

if (_badAliasNames.contains(alias.toLowerCase())) {
 alias += StringPool.UNDERLINE;
}

If you need to add a new reserved alias name, such as Entity, you can by adding
the reserved alias name Entity at the last newline of com.liferay.portal.tools.
servicebuilder.dependencies.bad_alias_names.txt. Therefore, if the name
value is Entity, the table name will be overridden as Entity_.

Service-Builder and Development Environment

[60]

Reserved table names
The following table names are reserved after being specified in com.liferay.
portal.tools.servicebuilder.dependencies.bad_table_names.txt.

Account
Action
and more

If the table value is one of the above list, the table name will be overridden with a
postfix UNDERLINE (that is, _). Why? In ServiceBuilder, it has the following code:

if (_badTableNames.contains(mappingTable)) {
 mappingTable += StringPool.UNDERLINE;
}

In case you need to add a new reserved table name, such as Table, you can by
adding the reserved table name, Table, after the last newline of com.liferay.
portal.tools.servicebuilder.dependencies.bad_table_name.txt. Therefore,
if the table value is Table, the table name will be overridden as Table_.

Reserved column names
Reserved column names are specified in com.liferay.portal.tools.
servicebuilder.dependencies.bad_column_names.txt as follows:

abstract
access
active
and more

If the name value of a column is one of the reserved column names, the name value
will be overridden with a postfix UNDERLINE (that is, _), because, in ServiceBuilder,
it has the following modification:

if (_badColumnNames.contains(columnName)) {
 columnDBName += StringPool.UNDERLINE;
}

You can add your own reserved column names to com.liferay.portal.tools.
servicebuilder.dependencies.bad_column_names.txt. For example, Trigger
is a reserved word in MySQL, and this word should not be used as a column when
MySQL is in use. Therefore, you can add the word Trigger as one of the reserved
column names. When the name value of a column is trigger, then the table name
will be overridden as trigger_.

Chapter 2

[61]

Reserved JSON types
The following are a few JSON types marked as reserved. They are called bad
JSON types:

byte[]
com.liferay.portal.kernel.io.FileCacheOutputStream
and more

As shown in the preceding list, reserved JSON types are specified in com.liferay.
portal.tools.servicebuilder.dependencies.bad_json_types.txt.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Mappings
Mappings of Service-Builder covert Java data types to SQL data types, service XML
to models and services, SQL scripts generation, properties creation, JSON JavaScript
generation, and Spring and Hibernate configuration.

Data types
Service-Builder provides flexibility to map Java data types into SQL data types
as follows:

Java data type SQL data type Description
boolean, Boolean BOOLEAN Boolean type
Double, Double DOUBLE Double type
float, Float FLOAT Float type
int, Integer INTEGER Integer type
long, Long BIGINT Long type
short, Short INTEGER Short type
Date TIMESTAMP Date type
String CLOB Max-Length = 2000000

TEXT Max-Length > 4000
STRING Max-Length = 4000
VARCHAR Max-Length < 4000

Service-Builder and Development Environment

[62]

Models and services
Service-Builder will generate most of the services and models for each entity,
presented as ${entity.name}. Here we will use the example entity Asset (that
is, ${entity.name} = Asset) to show how Service-Builder generates services
and models.

The following table shows models, extended models, and their implementation:

Models and services FTL com.liferay.
portal.tools.
servicebuilder.
dependencies

Service-Builder
Method

Sample

${entity.name}Model model.ftl _createModel(entity) AssetModel
${entity.name} extended_model.ftl _createExtended

ModelImpl(entity)
Asset

${entity.name}
Wrapper

model_wrapper.ftl _createModel
Wrapper(entity)

AssetWrapper

${entity.name}Clp model_clp.ftl _createModelClp
(entity)

AssetClp

${entity.name}Soap model_soap.ftl _createModelSoap
(entity)

AssetSoap

${entity.name}
ModelImpl

model_impl.ftl _createModelImpl
(entity)

AssetModelImpl

${entity.name}Impl extended_model.ftl _createExtended
ModelImpl (entity)

AssetImpl

The following table shows exception, finder, and its implementation, using the entity
Group as an example. Note that you could write your ${entity.name}FinderImpl
class in /service/persistence/, service-builder methods _createFinder(entity)
and _createFinderUtil(entity) will get ${entity.name}FinderImpl and
generate interfaces. That is, you can have your own Finder implementation;
Service-Builder will generate the interfaces.

Models and services FTL com.liferay.
portal.tools.
servicebuilder.
dependencies

Service-Builder
Method

Sample

${exception}Exception exception.ftl _createExceptions
(exceptionList)

GroupName
Exception

${entity.name}Finder finder.ftl _createFinder(entity) GroupFinder,
GroupFinderImpl

${entity.name}
FinderUtil

finder_util.ftl _createFinderUtil
(entity)

GroupFinderUtil

Chapter 2

[63]

The following table shows persistence services, using the entity Group as an example.
Similarly, you could write your own ${entity.name}PersistenceImpl class at /
service/persistence/, service-builder methods _createPersistence(entity)
and _createPersistenceUtil(entity) will get ${entity.name}
PersistenceImpl and generate interfaces. In brief, you can have your own
Persistence implementation; the Service-Builder will generate the interfaces.

Models and
services

FTL com.liferay.
portal.tools.
servicebuilder.
dependencies

Service-Builder
Method

Sample

${entity.name}
Persistence

persistence.ftl _createPersistence
(entity)

GroupPersistence

${entity.name}
PersistenceImpl

persistence_impl.ftl _createPersistenceImpl
(entity)

GroupPersistence
Impl

${entity.name}Util persistence_util.ftl _createPersistenceUtil
(entity)

GroupUtil

The following table shows local and remote services, using the entity Group as an
example:

Models and services FTL com.liferay.
portal.tools.
servicebuilder.
dependencies

Service-Builder
Method

Sample

${entity.name}
LocalService

service.ftl _createService GroupLocalService

${entity.name}Service service.ftl _createService GroupService
${entity.name}
LocalServiceImpl

Service_impl.ftl _createServiceImpl GroupLocalService
Impl

${entity.name}
ServiceImpl

Service_impl.ftl _createServiceImpl GroupServiceImpl

${entity.name}
ServiceBaseImpl

service_base_impl.ftl _createService
BaseImpl

GroupLocalService
BaseImpl

${entity.name}
LocalServiceUtil

service_util.ftl _createServiceUtil GroupLocal
ServiceUtil

${entity.name}
ServiceUtil

service_util.ftl _createServiceUtil GroupServiceUtil

${entity.name}
LocalServiceWrapper

service_wrapper.ftl _createService
Wrapper

GroupLocalService
Wrapper

Service-Builder and Development Environment

[64]

Models and services FTL com.liferay.
portal.tools.
servicebuilder.
dependencies

Service-Builder
Method

Sample

${entity.name}
ServiceWrapper

service_wrapper.ftl _createService
Wrapper

GroupService
Wrapper

${entity.name}
LocalServiceClp

service_clp.ftl _createServiceClp

${entity.name}
ServiceClp

service_clp.ftl _createServiceClp

ClpSerializer service_clp_
serializer.ftl

_createServiceClp
Serializer()

ClpSerializer

ClpMessageListener service_clp_
message_listener.ftl

_createServiceClp
MessageListener()

ClpMessageListene

${entity.name}
ServiceSoap

service_soap.ftl _createServiceSoap GroupServiceSoap

${entity.name}
JSONSerializer

service_json_
serializer.ftl

_createServiceJson
Serializer(entity)

As shown in the preceding overview, you will see that GroupLocalService
is the interface for the local service. It contains the signatures of every
method in GroupLocalServiceBaseImpl and GroupLocalServiceImpl.
GroupLocalServiceBaseImpl contains a few automatically-generated methods
providing common functionality. The GroupLocalServiceImpl class is auto-
generated, but you still have a chance to add your own custom code. Running
Service-Builder again will generate services based on your custom code.

Why have the Service tier and the Persistence tier separate? The Persistence
tier is meant to go directly to the database and may expose many more methods
than should ever be used by anyone except the Service tier that encapsulates the
business logic. Therefore, the Service tier is the business tier that packages up many
low-level calls.

SQL scripts, properties, and JSON JavaScript
Service-Builder will generate a set of SQL scripts, properties, and JSON JavaScript.
The following table shows the generated SQL scripts, properties, and JSON
JavaScript, FTL templates, service-builder method, and mapping description:

Chapter 2

[65]

SQL scripts or
properties

FTL com.liferay.
portal.tools.
servicebuilder.
dependencies

Service-Builder Method Description

indexes.sql N/P _createSQLIndexes() SQL indexes
sequences.sql N/P _createSQLSequences SQL

sequences
tables.sql N/P _createSQLTables() SQL tables
indexes.properties N/P createSQLIndexes() Indexes

properties
service.properties props.ftl _createProps() Service

properties
service.js json_js.ftl, json_js_

method.ftl
_createJsonJs() JSON

JavaScript

Spring and Hibernate
Service-Builder will generate a set of Spring and Hibernate configurations.
The following table shows the generated XML configuration, FTL templates,
service-builder method, and mapping description:

XML in META-
INF

FTL com.liferay.
portal.tools.
servicebuilder.
dependencies

Service-Builder Method Description

base-spring.xml spring_base_xml.ftl _createSpring
BaseXml()

Spring base

cluster-spring.
xml

spring_cluster_xml.
ftl

_createSpring
ClusterXml()

Spring cluster

dynamic-data-
source-spring.
xml

spring_dynamic_
data_source_xml.ftl

_createSpringDynamic
DataSourceXml()

Dynamic data
source

hibernate-
spring.xml

spring_hibernate_
xml.ftl

_createSpring
HibernateXml()

Spring
Hibernate

Infrastructure-
spring.xml

spring_
infrastructure_xml.
ftl

_createSpring
InfrastructureXml()

Spring
infrastructure

portlet-hbm.
xml

hbm_xml.ftl _createHbmXml() HBM

Service-Builder and Development Environment

[66]

XML in META-
INF

FTL com.liferay.
portal.tools.
servicebuilder.
dependencies

Service-Builder Method Description

portlet-model-
hints.xml

model_hints_xml.ftl _createModel
HintsXml()

Model hints

portlet-orm.xml orm_xml.ftl _createOrmXml() ORM
portlet-spring.
xml

spring_xml.ftl _createSpringXml() Spring

shard-data-
source-spring.
xml

spring_dynamic_
data_source_xml.ftl

_createSpringShard
DataSourceXml()

Database
sharding data
source

remoting-
servlet.xml

Remoting_xml.ftl _createRemotingXml() Remote servlet

Element convert-null
Service-Builder supports primitive types, including boolean, int, short, long,
float, and double, and the data types, String and Date. As the default value of the
above data types could be NULL or a specific value, Service-Builder introduced the
convert-null element. The convert-null value specifies whether or not the column
value is automatically converted into a non-null value if it is null. Currently, this
feature only applies if the type value is String. This is particularly useful if your
entity is referencing a read only table or a database view, so that Hibernate does
not try to issue unnecessary updates. The default setting of this convert-null
attribute is true.

Here we will address how to apply the convert-null element to other data types,
for example primitive types such as boolean, int, short, long, float, and double.
For example, you may expect long values and Integer values to have a null value
to a table, rather than the value 0. Most importantly, you may need the option to
save the long value and the Integer value as either null or 0.

In general, this feature can be implemented as a fix patch. The following steps show
a possible solution:

1. Map the covert-null value into the database SQL. For example, in
service.xml, a column is listed as follows:
<column name="salary" type="Integer" convert-null="false" />

2. It will be mapped into the following database SQL:
field0 INTEGER null

Chapter 2

[67]

3. How to implement this? You can simply add the following code in the
method _getCreateTableSQL of ServiceBuilder.java:
else if ((
 colType.equalsIgnoreCase("boolean") ||
 // see details in ServiceBuilder.java
 colType.equalsIgnoreCase("float")) &&
 !col.isConvertNull()) {
 sb.append(" null");
}

4. The preceding code shows that it will append NULL for primitive types
such as boolean, int, short, long, float, and double.

5. Map column types with convert-null="false" into different ORM object
types with the default value NULL.

By default, Liferay provides the following object types for ORM mappings with the
default value:

•	 com.liferay.portal.dao.orm.hibernate.ShortType: Mapped into the
data type short with the default value 0

•	 IntegerType: Mapped into the data type int with the default value 0
•	 LongType: Mapped into the data type long with the default value 0
•	 BooleanType: Mapped into the data type boolean with the default

value false
•	 FloatType: Mapped into the data type float with the default value 0.0f
•	 DoubleType: Mapped into the data type double with the default value 0.0d

So how do you map column types with convert-null="false" into different
ORM object types with the default value NULL? You can do so by modifying ORM
mappings in com.liferay.portal.tools.servicebuilder.dependencies.hbm_
xml.ftl as follows:

<#if column.isConvertNull()>
type="com.liferay.portal.dao.orm.hibernate.${serviceBuilder.
getPrimitiveObj("${column.type}")}Type"
<#else>
type="org.hibernate.type.${serviceBuilder.getPrimitiveObj("${column.
type}")}Type"
</#if>

Service-Builder and Development Environment

[68]

As shown in the preceding code, it adds a condition along with different object-type
mappings for ORM mappings. If the value of the element convert-null is false,
map type into Hibernate object type, where the default value is set to NULL; otherwise,
map type into Liferay default object type, where the default value is set to 0 (0.0f for
float and 0.0d for double).

Service-Builder improvement
Besides the feature—applying convert-null element to the service generator—it
would be nice if the Service-Builder would be able to support the following features:

•	 NOT NULL constraint support
•	 foreign key support
•	 field length constraint support explicitly
•	 default value constraint support explicitly
•	 data type BigDecimal support

Any application or portlet dealing with currencies and monetary values should
really use the Java BigDecimal class. Thus it would be nice for Service-Builder
to support the data type BigDecimal.

The following are the proposed steps to support the data type BigDecimal in
Service-Builder:

1. Add two constraint elements for the data type BigDecimal in Service-Builder
DTD. constraint-precision M is the maximum number of digits (the
precision) while constraint-scale D is the number of digits to the right
of the decimal point (the scale).

2. The SQL standard requires that the precision of NUMERIC(M,D) be exactly
M digits. For DECIMAL(M,D), the standard requires a precision of at least M
digits but permits more. In MySQL, DECIMAL(M,D) and NUMERIC(M,D) are
the same, and both have a precision of exactly M digits. For example, the
column salary could be presented in the database SQL as follows:
salary NUMERIC(5,2)

3. As shown in the preceding code, constraint-precision has the value 5
(M=5) and constraint-scale has the value 2 (D=2).

4. Add a data type named BigDecimal in the service-builder DTD. For
example, the column salary could be specified in service.xml as follows:
<column name="salary" type="BigDecimal" constraint-precision="5"
constraint-scale="2" convert-null="false" />

Chapter 2

[69]

5. Add an object type in the Liferay portal core named com.liferay.portal.
dao.orm.hibernate.BigDecimalType, which specifies the default value.

6. Map BigDecimal into NUMERIC(M,D) as part of the SQL scripts
7. Map BigDecimal into the object type com.liferay.portal.dao.orm.

hibernate.BigDecimalType if convert-null is set to true; or map
BigDecimal into the object type org.hibernate.type.BigDecimalType if
convert-null is set to false.

8. Map BigDecimal into the Java class java.math.BigDecimal when
generating models and services.

In the preceding steps, we could make the data type BigDecimal available in
Service-Builder.

In order to support NOT NULL constraints in Service Builder, we should add a new
element named constraint-not-null for the entity column. For example, the
column salary as the type Integer and NOT NULL could be presented as follows:

<column name="salary" type="Integer" constraint-not-null="true" />

For foreign key support in Service-Builder, we could add elements named
foreign-key, on-delete, and on-update. Afterwards, the foreign key of column
userId could be represented as follows:

<column name="userId" type="long" foreign-key="true" entity="User" on-
delete="action-Value" on-update="action-Value" />

As shown in the preceding code, action-Value could be one of these values:
restrict, cascade, set-null, or no-action. Note that if you are creating a foreign
key for an entity defined in another service.xml, you need to specify the full
package path, for example, com.liferay.portal.User.

For field length support in Service-Builder explicitly, we could add a new element
named constraint-max-length for the entity column. For example, the column
title is defined as the type String and the constraint max length is 150. It can be
presented in service.xml as follows:

<column name="title" type="String" constraint-max-length="150" />

For default value support in Service-Builder explicitly, we could add an element
named constraint-default-value for the entity column. For example, the column
number is defined as the type Integer and the constraint's default value is 1. It can
be presented in service.xml as follows:

<column name="number" type="Integer" constraint-default-value="1" />

Service-Builder and Development Environment

[70]

More services
Besides the Ant target build-service, the portal provides capabilities to build web
services wsdd, web service clients, database SQL scripts, different language properties,
javadoc, and so on. The Ant target javadoc is very useful for generating Java API
docs. Besides javadoc, both the portal core and plugins SDK support the rest of the
services. This section is going to introduce these services in detail. In the coming
chapters, we will address these services in plugins SDK in detail.

Ant target build-db
As mentioned earlier, the Liferay portal supports almost any database system such
as Apache Derby, IBM DB2, Firebird, Hypersonic, Informix, InterBase, JDataStore,
Oracle, PostgreSQL, SAP, SQL Server, Sybase, MySQL, and so on. The Ant target
build-db provides the capability to build database SQL scripts for these databases
in $PORTAL_SRC_HOME/sql/build-parent.xml as follows:

<target name="build-db">
 <java classname="com.liferay.portal.tools.DBBuilder"
 classpathref="project.classpath" >
 <!-- see details in build-parent.xml -->
 </java>
</target>

As shown in the preceding code, database-SQL-scripts-building is specified in
com.liferay.portal.tools.DBBuilder, which builds SQL files based on generic
SQL scripts such as portal.sql, portal-minimal.sql, indexes.sql, sequences.
sql, portal-tables.sql, and update-*.sql. The database SQL scripts are
generated for different databases such as db2, derby, firebird, informaix, mysql,
oracle, postgresql, sql server, and sybase.

Ant target build-lang
As mentioned earlier, the Liferay portal supports up to 42 languages.

Of course, new languages can be added easily in the current portal framework.
In addition, you can leverage the online auto-translation feature to build the
new language properties file. In general, language properties could be translated
manually. However, the Liferay portal provides a way to build and translate text
using online auto-translators. More precisely, Ant targets build-lang and build-
lang-cmd provide the capability to build language property files using the online
auto-translation feature in $PORTAL_SRC_HOME/portal-impl/build.xml as follows:

<target name="build-lang">
 <antcall target="build-lang-cmd">

Chapter 2

[71]

 <!-- see details in build.xml --></antcall>
</target>
<target name="build-lang-cmd">
 <java classname="com.liferay.portal.tools.LangBuilder"
 classpathref="project.classpath"
 fork="true" newenvironment="true">
 <!-- see details in build.xml -->
 </java>
 <copy file="${lang.dir}/${lang.file}.properties"
 tofile="${lang.dir}/${lang.file}_en.properties" />
</target>

As shown in the preceding code, both language-building and online auto-translation
are specified in portal-impl com.liferay.portal.tools.LangBuilder.

Note that the automatic translator doesn't support Arabic, Basque, Bulgarian,
Catalan, Czech, Finnish, Galician, Hebrew, Hindi, Hungarian, Indonesian,
Norwegian Bokmål, Persian, Polish, Romanian, Russian, Slovak, Swedish, Turkish,
Ukrainian, or Vietnamese. You can find detailed info at portal-impl com.liferay.
portal.tools.TranslationWebCacheItem, which implements portal-service
com.liferay.portal.kernel.webcache.WebCacheItem.

As you can see, Yahoo! Babel Fish is used as the default online translator. In
TranslationWebCacheItem, you will find the following code snippet.

StringBundler sb = new StringBundler(6);
sb.append("http://babelfish.yahoo.com/translate_txt?");
// see details in TranslationWebCacheItem.java
String text = HttpUtil.URLtoString(new URL(sb.toString()));

In addition, Liferay integrates with Pootle (an online translation management
tool with a translation interface – http://translate.sourceforge.net/wiki/
pootle/index).

Ant target build-wsdd
In general, web services are resources called over the HTTP protocol to return
data. Web services are platform-independent, allowing communication between
applications on different operating systems and application servers. When database
entries are generated by Service-Builder, web services can be generated as well
based on Apache Axis, deployed into an Axis message processing node using an
XML-based deployment descriptor file known as a Web Service Deployment
Descriptor (wsdd).

Service-Builder and Development Environment

[72]

In particular, the Ant target build-wsdd provides the capability to build wsdd in
$PORTAL_SRC_HOME/portal-impl/build.xml as follows:

<target name="build-wsdd" depends="compile">
<java classname="com.liferay.portal.tools.WSDDBuilder"
classpathref="project.classpath" fork="true"
maxmemory="512m" newenvironment="true" >
<!—see details in build.xml -->
</java>
</target>

As shown in the preceding code, the Ant target build-wsdd is specified in
portal-impl com.liferay.portal.tools.WSDDBuilder. In addition, WSDDMerger
provides the method merge(String source, String destination) for
WSDDBuilder. Moreover, service-config.wsdd will be generated and stored
in the folder /$PORTAL_SRC_HOME/tunnel-web/docroot/WEB-INF/.

In the preceding code, the Ant target build-wsdd is a basis, using an argument
${service.file}. For example, in order to build WSDD against the portal core
service.xml, the Ant target build-wsdd-portal can be defined as follows:

<target name="build-wsdd-portal">
 <antcall target="build-wsdd">
 <param name="service.file"
 value="${basedir}/src/com/liferay/portal/service.xml" />
 </antcall>
</target>

Note that the service name may have the prefix Portal_ if web services are
portal core services. Alternatively, the service name may have the prefix Plugin_ /
Portlet_ if web services are plugins/portlets services. You can find the code details
in WSDDBuilder as follows:

String serviceName = StringUtil.replace(_portletShortName, " ", "_");
if (!_portalWsdd) {
 serviceName = "Plugin_" + serviceName;
}
else {
 if (!_portletShortName.equals("Portal")) {
 serviceName = "Portlet_" + serviceName;
 }
}

Chapter 2

[73]

Ant target build-client
The Liferay portal provides the capability to generate an Axis web service client—
Java Stubs for SOAP services and Spring Remote services. This will give you the JAR
files you need to access these services. Of course, you can also use these JAR files to
create a very simple web application.

As you can see, the Ant target build-client provides the capability to build SOAP
client in $PORTAL_SRC_HOME/portal-client/build.xml as follows:

<target name="build-client" depends="clean">
<java
classname="com.liferay.portal.tools.PortalClientBuilder"
classpathref="project.classpath" failonerror="true"
fork="true" newenvironment="true" >

<!-- see details in build.xml -->
</java>
</target>

As shown in the preceding code, the Ant target build-client is specified in
portal-impl com.liferay.portal.tools.PortalClientBuilder. Namespace
mappings are specified in $PORTAL_SRC_HOME/portal-client/namespace-
mapping.properties. In particular, PortalClientBuilder calls util-java com.
liferay.util.ant.Wsdl2JavaTask to generate the Java code from the wsdd file.

Default data population
Now you can start the portal. As you have noticed, the default database, Hypersonic,
and the default data are in use. As shown in the following settings, Liferay is
configured to use Hypersonic as its database. Do not use Hypersonic in production.
Hypersonic is an embedded database useful only for development and demo
purposes. The default database settings are defined in portal.properties, which
can be overridden by creating portal-ext.properties.

Hypersonic
jdbc.default.driverClassName=org.hsqldb.jdbcDriver
jdbc.default.url=jdbc:hsqldb:${liferay.home}/data/hsql/lportal
jdbc.default.username=sa
jdbc.default.password=password

Service-Builder and Development Environment

[74]

As shown in the preceding code, the default data is stored at $LIFERAY_PORTAL/
data/hsql/lportal.script. Moreover, the portal provides a dialect detector in
com.liferay.portal.spring.hibernate.DialectDetector. This dialect detector
will check dialects such as HSQL (Hypersonic), ASE (SybaseASE15Dialect), DB2
(DB2Dialect), Microsoft (SQLServer2008Dialect), Oracle (Oracle10gDialect),
and others such as MySQL. If no dialect was specified, DB2400Dialect is dynamically
chosen as the Hibernate dialect for DB2.

Of course, you should have your own database information such as the driver class
name, URL, username, and password. The question then is: why portal-ext.
properties? When the portal started, it took roughly the following sequence:

1. Deploying the configuration descriptor ROOT.xml from the folder
/conf/Catalina/localhost.

2. Loading JAR for system.properties.
3. Loading jar for portal.properties.
4. Loading the file /webapps/ROOT/WEB-INF/classes/portal-ext.

properties.
5. // ignore details.
6. AutoDeployDir: The auto deploy scanner started for /deploy.

As you can see, portal-ext.properties gets loaded after portal.properties;
and if you have it, system-ext.properties gets loaded after system.properties.

Release information
As you can see, the Liferay portal adopts the Spring-Hibernate
framework (for example, com.liferay.portal.spring.hibernate.
PortletHibernateConfiguration), and supports almost any database. As shown
in the preceding sequence, the portal will detect the dialect and JDBC driver by
calling com.liferay.portal.spring.hibernate.DialectDetector, after loading
properties. In the preceding case, it determined the dialect for MySQL and the found
dialect org.hibernate.dialect.MySQLDialect.

Then the portal loaded the global libraries /lib/ext/and the portal libraries /
webapps/ROOT/WEB-INF/lib/ through PortalImpl. Portal-reserved parameter
names including p_auth, p_auth_secret, p_l_id, p_l_reset, p_p_auth, p_p_id,
p_p_lifecycle, and so on.

Chapter 2

[75]

After PortalImpl, you would see release information , such as "Starting Liferay
Portal ... ", specified in com.liferay.portal.kernel.util.ReleaseInfo.
ReleaseInfo covers name, version, versionDisplayName, codeName, build,
buildNumber, and date.

Finally, the portal detects the database setting and populates it with data. In general,
there are three use cases as follows:

1. The database schema and default data are not ready, that is, the database
instance is empty and there is no database schema—you run the portal for
the first time with the newly created database, and no database schema
is involved.

2. The database schema and default data are ready, but portal version in the
database is different from that of ReleaseInfo—you run the old portal
version, and now it is ready to upgrade to the current version, specified
in ReleaseInfo.

3. The database schema and default data are ready and the portal version in
the database is exactly the same as that of ReleaseInfo—you run the same
portal version for a while.

Let's have a closer look at the first use case—the portal is running for the first time
with the newly created database and no database schema is involved.

Data population
When the portal is run for the first time with a newly created database and
no database schema is involved, it will check if the database table lock_ exists,
which is reported by JDBCExceptionReporter.

Then, it will test the first database table, release_, reported by com.liferay.
portal.service.impl.ReleaseLocalServiceImpl. If the database table release_
does not exist, then it will create tables and populate them with default data.

The method createTablesAndPopulate() is defined in ReleaseLocalServiceImpl
as follows.

public void createTablesAndPopulate() throws SystemException
{
 DB db = DBFactoryUtil.getDB();
 db.runSQLTemplate("portal-tables.sql", false);
 // see details in ReleaseLocalServiceImpl.java
}

Service-Builder and Development Environment

[76]

As shown in the preceding code, SQL scripts such as portal-tables.sql,
portal-data-common.sql, portal-data-counter.sql, portal-data-
release.sql, indexes.sql and sequences.sql are included in the method
createTablesAndPopulate() in the full package com.liferay.portal.tools.sql.
Similarly, you could find other methods such as addRelease(), updateRelease().
Once the tables are ready, the portal will populate them with default data.

Default data population is specified in the method checkCompany of com.liferay.
portal.service.impl.CompanyLocalServiceImpl. Default data population covers
the following steps:

Add default company info (table company), account info
 (table account_) and sharding (table shard);
Add virtual host (table virtualhost);
// see details in CompanyLocalServiceImpl.java
Add portlets

Of course, you can find more methods from CompanyLocalServiceImpl such as
add*, check*, delete*, update*, search*. The entry point is specified at the init()
method from com.liferay.portal.servlet.MainServlet. As you can see, the
following processes are defined in the init method:

Process startup events
Initialize servlet context pool
// see details in MainServlet.java
Initialize companies
Initialize message resources
Initialize plugins

Database case-sensitive queries
After creating tables and populating with default data, the portal will check the
database case-sensitive queries. What is happening here? The first test-string "You
take …" is stored in the table release_. Then ReleaseLocalServiceImpl runs the
following query:

private static final String _TEST_DATABASE_STRING_CASE_SENSITIVITY =
"select count(*) from Release_ where releaseId = ? and testString =
?";

As shown in the preceding code, if the count is 0, it means that the database supports
case-sensitive queries; otherwise, it says that the database does not support case-
sensitive queries.

Chapter 2

[77]

Verifying processes
Then, it runs VerifyProcess to verify processes, such as com.liferay.portal.
verify.VerifyProcessSuite, extending VerifyProcess. For example, in the
method doVerify(),VerifyProcessSuite, specify the following processes:

verify(new VerifyProperties());
// and more
verify(new VerifyUser());
verify(new VerifyWiki());

As shown in the preceding code, it will verify the properties, user, Wiki, and so on.
Of course, you can add more verifying processes, such as VerifyBlogsTrackbacks
and VerifyImage.

Default project creation and templates
Plugins SDK provides default plugins project creation and templates, which are
used in Liferay IDE. This section is going to show you the default creation scripts
and default templates.

Plugins default project creation—Ant targets
Plugins SDK provides default plugins project creation Ant targets, where you can
build your own plugins simply. For example, Ext plugins could be created with the
following Ant command line at $PLUGINS_SDK_HOME/ext/:

create.sh: ant -Dext.name=$1 -Dext.display.name=\"$2\" create

create.bat: call ant -Dext.name=%1 -Dext.display.name=%2 create

The first parameter is your extension plugin name. A new directory will be created
based on the extension plugin name. The second parameter is the extension plugin's
display name.

The hook plugins could be created in the following Ant command line at
$PLUGINS_SDK_HOME/hooks/:

create.sh: ant -Dhook.name=$1 -Dhook.display.name=\"$2\" create

create.bat: call ant -Dhook.name=%1 -Dhook.display.name=%2 create

The first parameter is your hook plugin name. A new directory will be created based
on the hook plugin name. The second parameter is the hook plugin's display name.

Service-Builder and Development Environment

[78]

Similarly, the layout templates plugins could be created in the following Ant
command line at $PLUGINS_SDK_HOME/layouttpl/:

create.sh: ant -Dlayouttpl.name=$1 -Dlayouttpl.display.name=\"$2\" create

create.bat: call ant -Dlayouttpl.name=%1 -Dlayouttpl.display.name=%2
create

As shown in the preceding code, the first parameter is your layout template plugin
name. A new directory will be created based on the layout templates plugin name.
The second parameter is the layout templates plugin's display name.

In the same way, you could create new portlet plugins and theme plugins from
scratch as well. The following lines show how to create a new portlet plugin at
$PLUGINS_SDK_HOME/portlets/:

create.sh: ant -Dportlet.name=$1 -Dportlet.display.name=\"$2\" -Dportlet.
framework=$3 create

create.bat: call ant -Dportlet.name=%1 -Dportlet.display.name=%2
-Dportlet.framework=%PORTLET_FRAMEWORK% create

As shown in the preceding code, the first parameter is your portlet plugin name.
A new directory will be created based on the portlet plugin name. The second
parameter is the portlet plugin's display name. A third value can be passed to
specify the portlet framework to use. Valid values are MVC, JSF, or Vaadin.

The theme plugins could be created in the following Ant command line at
$PLUGINS_SDK_HOME/themes/:

create.sh: ant -Dtheme.name=$1 -Dtheme.display.name=\"$2\" create

create.bat: call ant -Dtheme.name=%1 -Dtheme.display.name=%2 create

As shown in the preceding code, the first parameter is your theme plugin name.
A new directory will be created based on the theme plugin name. The second
parameter is the theme plugin's display name.

As you can see, Plugins SDK provides the default creation and templates for plugins
such as ext, hook, layout template, portlet, and theme. Unfortunately, the plugin
webs are not involved. That is, if you want to build your own webs, then you need
to create them manually.

Chapter 2

[79]

Plugins default project templates
Plugins SDK provides a set of default templates for the creation of new plugins.
These templates cover the EAR template, Ext template, hook, layout templates,
JSF portlet, Vaadin portlet, and theme. You can find details on this at $PLUGINS_
SDK_HOME/tools/.

For example, in /portlet_vaadin_tmpl, it adds support for making portlet plugin
projects that use the Vaadin framework. The following is the code snippet for /
docroot/WEB-INF/src/Application.java:

package @portlet.java.package.name@;
public class @portlet.java.class.name@Application extends Application
{
public void init() {
// initial
}
}

Plugins SDK also added a new hook plugin project template and modified build
scripts to create shortcut support in /hook_tmpl. The hook plugin project template
includes build.xml, /docroot/WEB-INF/liferay-hook.xml, and liferay-
plugin-package.properties. The following is the code snippet for /build.xml.

<?xml version="1.0"?>
<project name="@hook.name@-hook" basedir="." default="deploy">
 <import file="../build-common-hook.xml" />
</project>

Similarly, you will find the JSF portlet template in /portlet_jsf_tmpl, the
portlet template in /portlet_tmpl, theme template in /theme_tmpl, layout
templates at /layouttpl_tmpl, Ext plugin template in /portlet_jsf_tmpl,
and the EAR template in /ear_tmpl.

Fast development
What is fast development of plugins? Fast development allows developers to work
with exploded plugin WARs instead of having to package them for deployment. For
example, if you change JSP files in a plugin, these JSP files will be modified when
you refresh the page in your browser. Furthermore, if you update other files (for
example, JSF pages, Java beans, servlets, and so on) besides JSP files, these files will
automatically be reloaded by the class loader of Tomcat. Obviously, this will save a
lot of development time.

Service-Builder and Development Environment

[80]

How do we make it happen? Firstly, you need to add a new Ant target
deploy-exploded inside the file $PLUGINS_SDK_HOME/build-common-plugin.xml
as follows:

// after <target name="deploy" depends="war">
// <copy file="${plugin.file}" todir="${auto.deploy.dir}" />
// </target>, add following lines:
<antelope:stringutil string="${basedir}/${plugin.name}.xml"
property="plugin.context.file">
 <antelope:replace regex="\\" replacement="/" />
</antelope:stringutil>
<target name="deploy-exploded" depends="compile">
 <copy file="${plugin.context.file}" todir="${auto.deploy.dir}" />
</target>

Then, you need to create a plugin context file for that specific plugin, pointing to
the exploded plugin WAR. The plugin context file is an XML file, which is called
in a manner similar to how a plugin is called. For example, if the plugin is a portlet
named knowledge-based-portlet, then the plugin context file must be called
knowledge-based-portlet.xml, and the content will look like this:

<Context
path="${plugin.name}"
docBase="$PLUGINS_SDK_HOME/portlets/${plugin.name}-portlet/docroot"
/>

The preceding code shows the content of the plugin context file. ${plugin.name}
represents the plugin name, for example, knowledge-base. $PLUGINS_SDK_HOME
represents the home of Plugins SDK.

By default, the property auto.deploy.tomcat.conf.dir is used to set the path to
Tomcat's configuration directory, $CATALINA_HOME/conf/Catalina/localhost.
This property is used to auto deploy exploded WARs. The Tomcat context XML
file, found in the auto deploy directory, will be copied to Tomcat's configuration
directory. The context XML file must have a docBase attribute that points to a valid
WAR directory.

When you are ready, you can run the Ant target ant deploy-exploded from
build.xml. From now on, if you change JSP files, they are modified when you
refresh the page in your browser. For Java classes and XML files, you need to run
the Ant target compile from the plugin build.xml first, and then run the Ant target
ant deploy-exploded.

Generally, you can now update JSP files, JSF pages, Java beans, servlets, and so on,
and they will automatically be reloaded by the class loader of Tomcat.

Chapter 2

[81]

What is happening?
Once you run the Ant target deploy-exploded, the plugin context file will be
copied into the auto-deploy directory first. Then, the Liferay portal will copy the
plugin context file to the folder, $CATALINA_HOME/conf/Catalina/localhost.
Later, the plugin will be registered. If the WAR was previously deployed, a new
copy of the context file to the auto-deploy directory will cause a re-deploy of the
exploded plugin.

Note that if you had deployed your plugin before, it will be better to remove
the old deployed application and restart Tomcat. The solution just mentioned is
used for Tomcat only. Of course, you would get similar solutions for other
application servers.

The Ant target deploy-exploded is useful for plugins: hook, layout template,
portlet, and theme. Why? The portal provides following settings by default
in portal.properties.

auto.deploy.listeners=\
 com.liferay.portal.deploy.auto.ExtAutoDeployListener,\
 // see details in the portal.properties
com.liferay.portal.deploy.auto.exploded.tomcat.
ThemeExplodedTomcatListener

As shown in the preceding code, you would be able to find all exploded Tomcat
Deployers and Listeners within a package named com.liferay.portal.deploy.
auto.exploded.tomcat. For example, you can find the following listeners:
HookExplodedTomcatListener, LayoutTemplateExplodedTomcatListener,
PortletExplodedTomcatListener, and ThemeExplodedTomcatListener. In
addition, Deployers and Listeners-related dependencies are specified at com.
liferay.portal.deploy.dependencies.

Summary
This chapter discussed how to set up, build, and deploy the portal core and plugins
in the Eclipse IDE. Then it discussed how to use Service-Builder to generate services
and models, and how to add new features to the Service-Builder. It also addressed
how to populate the default data, how to use the default project creation and
templates, and how to set up fast development of plugins with Tomcat.

In the next chapter, we are going to use Plugins SDK for building generic
MVC portlets.

Generic MVC Portlets
We discussed the Service-Builder and the development environment in the previous
chapter. It is time to develop JSR-286 portlets for the intranet or Internet website,
or WAP site. First of all, let's have a closer look at generic portlets with the Model-
View-Controller (MVC) architecture. The Model represents the business or database
code, the View represents the page design code, and the Controller represents the
navigational code. Normally, JSP files are used to build the view for portlets.

This chapter first introduces how to develop a portlet project with the default
templates, focusing on the view part and the portlet structure. It then addresses how
to construct basic MVC portlets by viewing the title and adding an action, as well as
how to build advanced MVC portlets. Finally, it discusses how to build and re-build
services, to bring portlets into the Control Panel, to set security and permissions, use
dynamic queries, to use custom queries, and to deploy portlets.

By the end of this chapter, you will have learned how to:

•	 Set up a portlet project with the default templates
•	 Build a basic MVC portlet
•	 Build an advanced MVC portlet
•	 Use the Service-Builder
•	 Bring portlets into the Control Panel
•	 Set up security and permissions
•	 Use a dynamic query
•	 Leverage custom SQL

Generic MVC Portlets

[84]

Plugin portlet project
Liferay plugins SDK provides a set of default templates such as EAR, Ext, hook,
layout template, portlet, theme, and so on. Using these templates, you can
build your own plugin projects easily. This section is going to introduce the portlet
project's default template.

Naming conventions and filter mappings
Liferay has standardized file naming conventions and filter mappings for plugins. The
following are the standardized rules for naming conventions and filter mappings:

•	 All stylesheet assets are placed in a css subfolder, including stylesheets
written in JSP. The main stylesheet asset is named main.css. When any
stylesheet is written with the jsp functionality, a css_init.jsp is included
in the docroot directory. If no stylesheets require the jsp functionality, then
css_init.jsp is not included.

•	 Portlets are wrapped with a CSS class that will be injected into the DIV that
wraps the viewable content. This class name will be based on the name of
the plugin package. For example, the knowledge base portlet would use a
knowledge-base-portlet class name.

•	 Stylesheets will use the CSS class to style the portlet-specific content. For
example, a knowledge base portlet would style paragraphs used in the portlet
with .knowledge-base-portlet p, and the knowledge base portlet would
style images used in the portlet with .knowledge-base-portlet img.

•	 Stylesheets will use a .portlet-configuration CSS class to style any
elements within the portlet's configuration page. For example, the knowledge
base portlet would style paragraphs within the portlet's configuration
page with .portlet-configuration p and images within the portlet's
configuration page with .portlet-configuration img.

•	 All JavaScript assets are placed in a js subfolder. The main JavaScript asset is
named service.js.

Portlet project default template
Liferay plugins SDK provides the portlet project with a default template. This default
template has the following structure. The portlet project folder name is represented
as @portlet.name@-portlet (folder name pattern: ${plugin.name}-${plugin.
type}). For example, @portlet.name@ has the value, knowledge-base, for the
knowledge base portlet. Under the folder @portlet.name@-portlet, there is a
folder named docroot and an XML file named build.xml. As you can see,
build.xml has the following code:

Chapter 3

[85]

<?xml version="1.0"?>
<project name="@portlet.name@-portlet" basedir="." default="deploy">
 <import file="../build-common-portlet.xml" />
</project>

As shown in the preceding code, @portlet.name@ represents the real portlet name.
When using Ant target create, it will create a new portlet project. Under the
folder docroot, it includes a css folder with a CSS file main.css, a js folder
with a JavaScript file main.js, and a folder WEB-INF.

The subfolder WEB-INF covers XML files, such as portlet.xml, liferay-portlet.
xml, liferay-plugin-package.properties, and liferay-display.xml. Inside
these XML files, you will find that the template variables, @portlet.name@ and
@portlet.display.name@, are in use.

As mentioned earlier, Ant target create will create a new portlet project based
on three parameters: portlet.name, portlet.display.name, and portlet.
framework. Note that the parameters portlet.name and portlet.display.name
are required and portlet.framework is optional—the valid values are mvc, jsf, or
vaadin, while the default value is mvc.

What's happening when you use Ant target create? Ant target create was
specified in $PLUGINS_SDK_HOME/portlets/build.xml. This Ant target does
roughly the following tasks:

•	 Checks portlet.dir and copies ${project.dir}/tools/portlet_tmpl
•	 Builds portlet.xml, liferay-portlet.xml, liferay-plugin-package.

properties, and liferay-display.xml with the real names portlet.name
and portlet.display.name

•	 Copies TLD files to ${portlet.dir}/docroot/WEB-INF/tld, such as
liferay-portlet.tld, liferay-portlet-ext.tld, liferay-security.
tld, liferay-theme.tld, liferay-ui.tld, and liferay-util.tld

Knowledge base portlet project
Following the portlet project default template, the knowledge base portlet
project named knowledge-base-portlet can be generated against the portlet.
name=knowledge-base and portlet.display.name="Knowledge Base"
parameters as well.

In detail, the generated portlet project includes a folder docroot and the build.xml
file. Under the folder docroot, it includes a css folder with the CSS file main.css, a
js folder with the JavaScript file main.js, and a WEB-INF folder.

Generic MVC Portlets

[86]

In particular, the subfolder WEB-INF covers the XML files portlet.xml, liferay-
portlet.xml, liferay-plugin-package.properties, and liferay-display.xml.
Inside these XML files, you would see that the parameter values knowledge-base
and Knowledge Base Admin are in use.

Under the folder ${portlet.dir}/docroot/WEB-INF/tld, you would see TLD
files liferay-portlet.tld, liferay-portlet-ext.tld, liferay-security.tld,
liferay-theme.tld, liferay-ui.tld, and liferay-util.tld.

Basic MVC portlet
First of all, let's use the knowledge base admin portlet as an example that requires
portlet development in the Plugins SDK. This section will use the knowledge base
project, as mentioned in the previous section.

Project structure
As mentioned earlier, we will first create the folder, either by executing the
Ant target or by manually using knowledge-base-portlet under the folder
$PLUGINS-SDK-HOME/portlets. Under the folder, you will see the docroot
folder and the build.xml file. For fast development, you can add the XML file
knowledge-base-portlet.xml with the following lines.

<Context path="knowledge-base" docBase="$PLUGINS_SDK_HOME/portlets/
knowledge-base-portlet/docroot"
/>

Under the folder docroot, you will see the subfolders css, js, and WEB-INF. In
addition to the default folders and files generated by the default template, we're
going to create a folder named icons and a file under the folder icons named
kb-admin.png for the knowledge base admin portlet icon. Add the JSP file,
init.jsp, and the folder admin under the folder docroot and a JSP file view.jsp
under the folder admin for the knowledge base admin portlet view.

Portlet definition
First, we need to set up the portlet in the portlet.xml file. You can simply create
an XML file portlet.xml in $PLUGINS_SDK_HOME/portlets/knowledge-base-
portlet/docroot/WEB-INF. Add the following lines of code at the beginning of
portlet.xml:

<portlet-name>kb-admin-portlet</portlet-name>
<display-name>Knowledge Base (Admin)</display-name>

Chapter 3

[87]

<portlet-class>com.liferay.util.bridges.mvc.MVCPortlet</portlet-class>
<init-param>
<name>view-jsp</name>
<value>/admin/view.jsp</value>
<!-- see details in portlet.xml -->

The preceding code shows the definition of the kb-admin-portlet portlet and the
display name, Knowledge Base Admin. Also, most importantly, the default view
name init-param must be view-jsp. Incidentally, you can find the portlet app XSD
(XML Schema Definition) in portlet-app_2_0.xsd.

Liferay portlet registration
Next, we need to register the portlets. To do so, create the XML file liferay-
portlet.xml in $PLUGINS_SDK_HOME/portlets/${portlet.name}/docroot/WEB-
INF. Add the following lines at the beginning of liferay-portlet.xml:

<liferay-portlet-app>
<portlet>
 <portlet-name>kb-admin-portlet</portlet-name>
 <icon>/icons/kb-admin.png</icon>
 <instanceable>true</instanceable>
 <!—see details in Liferay-portlet.xml
</portlet>
</liferay-portlet-app>

The preceding code shows the registration of the portlet kb-admin-portlet. It
specifies the portlet name kb-admin-portlet by the tag portlet-name. It also
specifies the icon with the value /icons/kb-admin.png, instanceable with the value
true, the header portlet CSS with the value /admin/css/main.css, and the header
portlet-JavaScript with the value /js/service.js. Also, the order of the tags is
important, referring to the portlet DTD in liferay-portlet_6_1_0.dtd.

Liferay portlet display
Additionally, we expect to put the portlets in the category Knowledge Base.
To do so, create an XML file liferay-display.xml in $PLUGINS_SDK_HOME/
portlets/${portlet.name}/docroot/WEB-INF and open it. Add the following
lines at the beginning of liferay-display.xml and save it:

<display>
 <category name="Knowledge Base">
 <portlet id="kb-admin-portlet"/>
 </category>
</display>

Generic MVC Portlets

[88]

As shown in the preceding code, the portlet kb-admin-portlet is displayed in the
category Knowledge Base. Parenthetically, you can find the details of the Liferay
display DTD in liferay-display_6_1_0.dtd.

Liferay plugin package
Most importantly, you need to add a plugin properties file called liferay-plugin-
package.properties under the folder WEB-INF. This file lists the plugin knowledge-
base-portlet with the following properties available in a plugin repository:

// see details in liferay-plugin-package.properties
portal-dependency-jars=\=\
 jstl-api.jar,\
 jstl-impl.jar
portal-dependency-tlds=\
 c.tld

As shown in the preceding code, the Liferay plugin package covers a set of
properties, for example, name, module-group-id, module-incremental-version,
tags, short-description, change-log, page-url, author, licenses,
portal-dependency-jars, portal-dependency-tlds, and so on. Note that we can't
include portal-impl.jar.

When deploying the plugin, the deploying process will generate the Liferay plugin
package XML file liferay-plugin-package.xml in the folder /webapps/${plugin.
name}/WEB-INF. You can find the details of the Liferay plugins package DTD in
liferay-plugin-package_6_1_0.dtd.

View specification
As seen in portlet.xml, a tag element init-param has been specified with the
attribute name view-jsp and the value /admin/view.jsp. Thus, we need to create
a JSP file named view.jsp at $PLUGINS_SDK_HOME/portlets/${portlet.name}/
docroot/admin/.

First of all, let's bring the tags and predefined objects into the view. To do so, create a
JSP file named init.jsp in the folder $PLUGINS_SDK_HOME/portlets/${portlet.
name}/docroot/ and add the following lines:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/portlet_2_0" prefix="portlet" %>
<%@ taglib uri="http://liferay.com/tld/aui" prefix="aui" %>
<%@ taglib uri="http://liferay.com/tld/portlet" prefix="liferay-
portlet" %>

Chapter 3

[89]

<%@ taglib uri="http://liferay.com/tld/security" prefix="liferay-
security" %>
<%@ taglib uri="http://liferay.com/tld/theme" prefix="liferay-theme"
%>
<%@ taglib uri="http://liferay.com/tld/ui" prefix="liferay-ui" %>
<%@ taglib uri="http://liferay.com/tld/util" prefix="liferay-util" %>
<portlet:defineObjects />
<liferay-theme:defineObjects />

As shown in the preceding code, it first imports the JSTL taglib with the prefix c,
where you would have sample code such as <c:if>, <c:choose>, <c:when>, and
<c:otherwise>. Then, it brings in Portlet 2.0 with the prefix portlet and a Liferay
portlet with the prefix liferay-portlet. Then, it brings the Liferay taglibs—
security (prefix liferay-security), theme (prefix liferay-theme), UI (prefix
liferay-ui), and utility (prefix liferay-util). Finally, it includes two sets of
defined objects: portlet:defineObjects and liferay-theme:defineObjects. For
more details about these taglibs, refer to the book Liferay User Interface Development.

Next, add your custom code to view.jsp. The following is the sample code. You
should have your own logic and view.

<%@ include file="/init.jsp" %>
<%
PortletPreferences preferences = renderRequest.getPreferences();
%>

Portlet XSD and DTD
As you can see, there are at least four kinds of XML files and properties involved:
portlet.xml, liferay-portlet.xml, liferay-display.xml and liferay-
plugin-package.properties. The DTD of these XML files and properties files are
defined in $PORTAL_SRC_HOME/definitions. In addition, the XML file liferay-
plugin-package.xml will be generated during the deployment process in
/webapps/${plugin.name}/WEB-INF.

Portlet app XSD
The portlet app XSD is the XML schema for the Portlet 2.0 deployment descriptor.
The portlet-app element is the root of the deployment descriptor for a portlet
application. This element has a required attribute version that specifies which
version of the schema the deployment descriptor conforms to. In order to be a
valid JSR 286 portlet application, the version must have the value 2.0.

Generic MVC Portlets

[90]

The portlet element contains the name of a portlet such as portlet-name. This name
must be unique within the portlet application. At the same time, you should have a
display name such as display-name and a portlet class such as portlet-class. If
you are interested in more details, refer to the XSD file at the following link:

svn://svn.liferay.com/repos/public/portal/trunk/definitions/portlet-
app_2_0.xsd.

Additionally, JSR-286 specifies that the portlet preferences should be unique per
user, by default. Liferay assumes that they are owned by a group (that is, a site or
an organization), by default.

Liferay portlet app DTD
The liferay-portlet-app element is the root of the deployment descriptor for
a Liferay portlet application. It can have zero or many elements, such as portlet,
role-mapper, and custom-user-attribute.

The custom-user-attribute contains a list of names that are retrieved using a
custom class that extends com.liferay.portlet.CustomUserAttributes. This
element can have one or many name, and only one custom-class.

The role-mapper contains two names specified by role-name and role-link. The
role-name value must be a role specified in portlet.xml. The role-link value
must be the name of a Liferay role that exists in the database. The role-mapper
element pairs up these two values to map roles from portlet.xml to roles in the
Liferay database.

The portlet element contains the declarative data of a portlet as follows:

<!ELEMENT portlet (portlet-name, icon?, virtual-path?, struts-path?,

// see details in liferay-portlet-app_6_1_0.dtd
footer-portlet-javascript*, css-class-wrapper?, facebook-integration?,
add-default-resource?, system?, active?, include?)>

As shown in the preceding code, the element portlet can have many child elements,
such as portlet-name, icon, instanceable, header-portlet-css, header-
portlet-javascript, css-class-wrapper, add-default-resource, and so on.

Chapter 3

[91]

The child element, such as portlet-name, must occur once, and only
once inside the portlet element.
The + sign declares that the child element must occur one or more times
inside the root element.
The * sign in the preceding example declares that the child element
header-portlet-css can occur zero or more times inside the
portlet element.
And the ? sign in the preceding example declares that the child element
icon can occur zero times or once inside the portlet element.

The portlet-name element contains the unique name of the portlet. This name must
match the portlet name specified in portlet.xml, while the icon element specifies
an image that represents the portlet.

You can set the value of the child element instanceable to true, if the portlet can
appear multiple times on a page. If set to false, the portlet can only appear once on
a page. The default value is false. Within the child element css-class-wrapper,
you can also set the name of the CSS class that will be injected in the DIV that wraps
this portlet.

If the value of add-default-resource is set to false, and the portlet does not
belong to the page but has been dynamically added, then the user will see that he/
she doesn't have the permissions to view the portlet. If the element is set to true, the
default portlet resources and permissions are added to the page. The user can then
view the portlet. The default value is false.

All other elements will be discussed in detail in the coming sections and chapters.
Refer to the following link for the full definition:

svn://svn.liferay.com/repos/public/portal/trunk/definitions/liferay-
portlet-app_6_1_0.dtd.

Liferay display DTD
The display element is the root of the deployment descriptor that describes how
portlets are categorized and displayed for users to choose when personalizing a page
in the Liferay Portal. It can have many categories and portlets of elements.

The category element organizes a set of portlets. A portlet can exist in more than
one category. The required name of a category is mapped to the portal's Language
properties. If the category name is kb, then the required key attribute in the portal's
resource bundle will be category.kb. The portlet element represents a portlet. The
id attribute must match the unique portlet-name specified in portlet.xml.

Generic MVC Portlets

[92]

Note that there is a special category name called category.
hidden, where the portlets specified in this category will be
invisible in the Application panel. This means you can't search and
find these portlets in the Application panel; these portlets, under
the category category.hidden, will only be in use by the system
or the Control Panel only.

The portal has the following CSS specification at svn://svn.liferay.com/repos/
public/portal/trunk/portal-web/docroot/html/portal/css/portal/add_
content.jspf.

.lfr-content-category.hidden {
 display: none;
}

As shown in the preceding code, when it has the category category.hidden, the
CSS attribute display had the value none—that is, it hid related content.

In particular, in the portlet category constants, com.liferay.portal.model.
PortletCategoryConstants, it specifies the following constant:

public static final String NAME_HIDDEN = "category.hidden";

And in the portlet category, com.liferay.portal.model.PortletCategory, it
specifies the following method:

public boolean isHidden() {
if (_name.equals(PortletCategoryConstants.NAME_HIDDEN)) {
 return true;
} else { return false; }
}

As shown in the preceding code, it uses the category name category.hidden
and specifies the method isHidden. Moreover, this method has been used in
svn://svn.liferay.com/repos/public/portal/trunk/portal-web/docroot/
html/portlet/layout_configuration/view.jsp as follows:

if (curPortletCategory.isHidden()) {
 continue;
}

Chapter 3

[93]

The Liferay plugin package DTD
The plugin-package element contains the declarative data of a plugin. It has
the required attributes, such as name, module-id, types, short-description,
change-log, author, licenses, liferay-versions, and optional attributes, such
as recommended-deployment-context, tags, long-description, page-url,
screenshots, and deployment-settings.

The name element contains the name of the plugin package that will be shown
to the users. The module-id element contains the full identifier of the plugin
using the Maven-based syntax: groupId/artifactId/version/file-type. The
recommended-deployment-context element determines the context to which this
plugin should be deployed and the types element contains a list of plugin types
included in the package. The type element contains the type of the plugin. Note that
valid values for the type are portlets, layout-templates, and themes.

The tags element contains a list of tags to categorize the plugin, while the tag
element contains a tag that categorizes the plugin. These tags would be useful for
search. The short-description element contains a short description of the plugin
and the long-description element contains a detailed description of the plugin. The
change-log element contains an explanation of the changes made in the latest release,
while the page-url element contains the URL of the home page of the plugin.

The screenshots element contains a list of screenshots for the plugin, while the
screenshot element contains two URLs for the thumbnail and large images
versions of the screenshot. The thumbnail-url element contains the URL of a
thumbnail screenshot of the plugin, while the large-image-url element contains
the URL of a large image screenshot of the plugin.

The author element contains the name of the author of the plugin. The licenses
element contains a list of licenses under which the plugin is provided, while the
license element contains the name of a license under which the plugin is provided.
The osi-approved attribute specifies if the license is open source and approved by
the Open Source Initiative (OSI), and the url attribute specifies the URL of a page
that describes the license.

The liferay-versions element contains a list of Liferay Portal versions that are
supported by the plugin. The liferay-version element contains a version of the
Liferay Portal that is supported by the plugin. The deployment-settings element
contains a list of parameters that specifies how the package should be deployed.
The setting element specify a name-value pair that provides information on how
the package should be deployed, while the name attribute specifies the name of the
setting and the value attribute specifies the value of the setting.

Generic MVC Portlets

[94]

The properties (portal dependency JARs: portal-dependency-jars and portal
dependency TLDs: portal-dependency-tlds) are specified in the plugins
deploying process, com.liferay.portal.tools.deploy.BaseDeployer, and
the plugins environment building process, PluginsEnvironmentBuilder. More
specifically, portal dependency JARs are copied from the portal lib to the plugin
lib, and portal dependency TLDs are copied from portal TLDs such as $PORTAL_
ROOT_HOME/WEB-INF/tld to plugin TLDs such as ${plugin.name}/WEB-INF/tld.

Note that JARs, such as commons-logging.jar, log4j.jar, util-bridges.jar,
util-java.jar, and util-taglib.jar, are copied by default. These JARs are not
required to be explicitly specified in the property portal-dependency-jars.

In addition, TLDs such as Liferay-aui.tld, Liferay-portlet.tld, Liferay-
portlet-ext.tld, Liferay-security.tld, liferay-theme.tld, liferay-ui.tld,
and liferay-util.tld are copied by default. These TLDs are not required to be
explicitly specified in the property portal-dependency-tld.

As mentioned earlier, when deploying the plugin, the deploying process will
generate the Liferay plugin package XML file liferay-plugin-package.xml
in the folder /webapps/${plugin.name}/WEB-INF.

What's happening?
In BaseDeployer, it defines a method called copyDependencyXml as follows:

public void copyDependencyXml(String fileName, String targetDir,
Map<String, String> filterMap,boolean overwrite) throws Exception {
 // see details in BaseDeployer.java
}

As shown in the preceding code, BaseDeployer uses the default template file, com/
liferay/portal/deploy/dependencies/liferay-plugin-package.xml, in the
Liferay plugin package and the properties settings, liferay-plugin-package.
properties, first and then generates the Liferay plugin package, liferay-plugin-
package.xml.

MVC portlet bridge
As you know, JSP files are HTML files with special tags containing Java source code
that provide dynamic content. It is easy to learn and allows developers to quickly
produce websites and applications in an open and standard way.

Chapter 3

[95]

Moreover, an MVC portlet is made up of the following typical MVC components:

•	 Model—Java objects put in as request attributes
•	 View—Template, for example, init.jsp and view.jsp
•	 Controller—Portlet process action

The controller specifies the JSP portlet actions. The view provides a JSP template,
which will generate the content of the portlet by pulling out dynamic model
information from the request attributes. The standard JSP variables involve
request, response, session, and so on. The model is made up of Java objects, put in
as request attributes. For example, the variable UID (the unique identity of assets) is
available in the model. It can be retrieved from the request attribute, as shown in the
following example:

String uid = (String) request.getAttribute("uid");

An MVC portlet is a good starting point, if you are new to Liferay Portal. On one
hand, JSP portlets help you to learn the basic file and directory structure that you
will need to know in order to develop the MVC portlets using portlet.xml and
liferay-portlet.xml. They further allow you to develop generic portlets within
the Liferay Portal. On the other hand, the MVC portlets show how to add a title and
category using Language.properties and liferay-display.xml.

In short, the following are the main steps to build MVC portlets on top of the
Liferay Portal:

1. Define portlets (JSR-286 attributes) in portlet.xml.
2. Register portlets (Liferay portlet attributes) in liferay-portlet.xml.
3. Create JSP pages: view.jsp and init.jsp.
4. Map the title and a category in Language_en.properties.
5. Add the portlets to a category in liferay-display.xml.

MVC portlet extension
In portlet.xml, the portlet-class is specified as an MVC portlet bridge com.
liferay.util.bridges.mvc.MVCPortlet. In particular, MVCPortlet is specified
in util-bridges.jar.

As you can see, MVCPortlet extends LiferayPortlet, and LiferayPortlet extends
GenericPortlet. In MVCPortlet, the following init-param names get defined:

aboutJSP = getInitParameter("about-jsp");
// see details in MVCPortlet.java

viewJSP = getInitParameter("view-jsp");

Generic MVC Portlets

[96]

As shown in the preceding code, a set of init parameters gets defined, such as
about-jsp, config-jsp, edit-jsp, view-jsp, and so on. In the previous example,
view-jsp was in use. That is, if you used the default MVCPortlet, you had to reuse
the same name such as view-jsp—all characters are case-sensitive. Of course, you
can leverage other init parameters as well.

In addition, the methods init, processAction, and serveResource get specified
in LiferayPortlet. In MVCPortlet, these methods and others such as doAbout,
doConfig, doEdit, doView, and so on, get re-defined. Of course, you can also extend
and override MVCPortlet yourself, which will be discussed in the coming sections.

Portlet JSP/JavaScript/CSS loading
We discussed the JSP view-jsp in the portlet.xml file and JavaScript and CSS in
the liferay-portlet.xml file. This section will introduce the portlet JSP, JavaScript,
and CSS loading.

AJAX and render weight
The element ajaxable declares whether a portlet is AJAX-enabled or not. The
default value of ajaxable is true. If set to false, then this portlet can never be
displayed via AJAX. When a portlet is ajaxable, the portal will load the page
first and then load the portlet using AJAX. This ajaxable property has an added
advantages when an ajaxable portlet takes a long time to load.

The element render-weight declares whether the portlet is rendered in parallel or
in sequence. The default value of render-weight is 1. If set to a value less than 1,
the portlet is rendered in parallel. If set to a value of 1 or greater, then the portlet is
rendered serially. In particular, portlets with a greater render weight have greater
priority and will be rendered before portlets with a lower render weight.

If the ajaxable value is set to false, then render-weight is always set to 1, if it
is set to a value less than 1. This means ajaxable can override render-weight if
ajaxable is set to false.

Header JavaScript/CSS and footer JavaScript/CSS
It would be a normal use case that you would like to include your own JavaScript
and CSS in the custom portlet. In liferay-portlet.xml, you will be able to set the
path to the header and footer JS/CSS as follows:

Chapter 3

[97]

Tag name Description Comments
header-portal-
css

Sets the CSS path that will be referenced in
the page's header, relative to the portal's
context path

Header CSS

header-portlet-
css

Sets the CSS path that will be referenced in
the page's header, relative to the portlet's
context path

Header CSS

header-portal-
javascript

Sets the JavaScript path that will be
referenced in the page's header, relative to
the portal's context path

Header JavaScript

header-portlet-
javascript

Sets the JavaScript path that will be
referenced in the page's header, relative to
the portlet's context path.

Header JavaScript

footer-portal-
css

Sets the CSS path that will be referenced
in the page's footer, relative to the portal's
context path

Footer CSS

footer-portlet-
css

Sets the CSS path that will be referenced
in the page's footer, relative to the portlet's
context path

Footer CSS

footer-portal-
javascript

Sets the JavaScript path that will be
referenced in the page's footer, relative to
the portal's context path

Footer JavaScript

footer-portlet-
javascript

Sets the JavaScript path that will be
referenced in the page's footer, relative to
the portlet's context path

Footer JavaScript

Predefined objects
As shown in the JSP file init.jsp, a set of taglibs are in use such as jstl (prefix
c), portlet 2.0 (prefix portlet), alloy ui (prefix aui), liferay-portlet, liferay-
security. liferay-theme, liferay-ui, liferay-util, and so on. Taglib
is defined in the folder $PORTAL_SRC_HOME/util-taglib. In particular, two
sets of defined objects are specified—portlet:defineObjects and liferay-
theme:defineObjects.

Generic MVC Portlets

[98]

The following table shows the attribute name, class name, and portlet phase for
portlet:defineObjects. You can refer to the code detailed in com.liferay.
taglib.portlet.DefineObjectsTag. Ideally, you can use these attribute names
directly in the JSP file, view.jsp, or in your own JSP file.

Attribute name Class name Phase Comments
portletConfig PortletConfig LIFECYCLE_

PHASE
Portlet request

portletName String LIFECYCLE_
PHASE

Portlet request

actionRequest PortletRequest ACTION_PHASE Action request
eventRequest PortletRequest EVENT_PHASE Event request
renderRequest PortletRequest RENDER_PHASE Render request
resourceRequest PortletRequest RESOURCE_

PHASE
Resource request

portletPreferences PortletPre
ferences

LIFECYCLE_
PHASE

Portlet preference

portletPreferences
Values

Map LIFECYCLE_
PHASE

Portlet preference

portletSession PortletSession LIFECYCLE_
PHASE

Portlet session

portletSession
Scope

Map LIFECYCLE_
PHASE

Portlet session

actionResponse PortletResponse ACTION_PHASE Action response
eventResponse PortletResponse EVENT_PHASE Event response
renderResponse PortletResponse RENDER_PHASE Render response
resourceResponse PortletResponse RESOURCE_

PHASE
Resource response

The following table shows the attribute name and class name for liferay-
theme:defineObjects. You can refer to the code detailed in com.liferay.taglib.
theme.DefineObjectsTag. Similarly, you can leverage these attribute names in the
JSP file, view.jsp, or in your own JSP file, such as themeDisplay, company, user,
scopeGroupId, and so on.

Attribute name Class name Description
themeDisplay ThemeDisplay Theme display object
Company Company Company—table Company
Account Account Company account info—table

Account_

Chapter 3

[99]

Attribute name Class name Description
User User User info—table User_
realUser User User info
Contact Contact User contact info—table

Contact_

Layout Layout Page layout—table Layout_
Layouts List<layout> A list of page layouts
Plid Long Page layout ID
layoutTypePortlet LayoutTypePortlet Layout type portlet
scopeGroupId Long Scoped group ID
permissionChecker PermissionChecker Permission checker
Locale Locale Current locale
timeZone TimeZone Current time zone
Theme Theme Current theme
colorScheme ColorScheme Theme color scheme
portletDisplay PortletDisplay Portlet display object

Direct JSP servlet
As mentioned earlier, a lot of taglibs use JSP files to present their content.
com.liferay.taglib.util.IncludeTag and all of its sub tag classes require JSP
dispatching and depends heavily on the app-server's resource lookup and dispatch.
The dispatching involves a complex checking and FilterChain, which is not needed
for taglib.

Direct JSP servlets provide a direct way of invoking the taglib without asking for
help from the application server. The portal provides the following properties to
configure Direct-Servlet-Context.

direct.servlet.context.enabled=true
direct.servlet.context.reload=true

The preceding code shows that you can set the property direct.servlet.context.
enabled to true to enable dispatching to a servlet directly to speed up request
dispatching. You can also set the property direct.servlet.context.reload to
true to refresh the servlet associated with a JSP when the JSP has been modified.
This property is not used unless the property direct.servlet.context.enabled is
set to true.

Generic MVC Portlets

[100]

What's happening?
First, direct-servlet-context was defined as com.liferay.portal.kernel.servlet.
DirectServletContext, when implementing the interface javax.servlet.
ServletContext. Then, the direct servlet registry was specified as a single object
called DirectServletRegistry, the direct request dispatcher was specified as
DirectRequestDispatcher, and IncludeTag uses DirectServletContext.

Finally, JspFactoryWrapper extending JspFactory uses DirectServletRegistry.

Advanced MVC portlet
We have discussed the basic MVC portlet in the previous section. In this section, we
will discuss the advanced MVC portlet features, such as portlet bridge extension,
bringing portlets into the Control Panel, portlet configuration and preferences,
redirecting, more actions, and interacting with the database.

Portlet bridge extension
As mentioned earlier, MVCPortlet extends LiferayPortlet and LiferayPortlet
extends GenericPortlet. MVCPortlet is useful, since it specifies a set of JSP views
such as about-jsp, config-jsp, view-jsp, and so on. In the real world, MVCPortlet
may not be sufficient. Thus you should extend it.

For example, for the knowledge base admin, MVCPortlet got extended as com.
liferay.knowledgebase.admin.portlet.AdminPortlet. In the portlet.xml file,
the portlet-class element contains the fully-qualified class name of the portlet.
Thus, to extend the MVC portlet bridge, the portlet-class element could be
specified as follows:

<portlet-class>com.liferay.knowledgebase.admin.portlet.AdminPortlet</
portlet-class>

To do so, first we need to create a portlet AdminPortlet.java at the package path
com.liferay.knowledgebase.admin.portlet. Of course, you can have a different
name and package path. Let AdminPortlet extend MVCPortlet as follows:

public class AdminPortlet extends MVCPortlet {
// actions details
}

Chapter 3

[101]

Then, add methods as shown in the following table, where method names, examples,
and descriptions are specified:

Method name Example Description
addAttachment addAttachment(ActionRequest req,

ActionResponse res);
Adds attachments

deleteArticle deleteArticle(ActionRequest req,
ActionResponse res);

Deletes articles

deleteAttachment deleteArticle(ActionRequest req,
ActionResponse res);

Deletes
attachments

deleteComment deleteComment(ActionRequest req,
ActionResponse res);

Deletes comments

deleteTemplate deleteTemplate(ActionRequest
req, ActionResponse res);

Deletes templates

render render(RenderRequest req,
RenderResponse res)

Renders function

serveArticleRSS serveArticleRSS(ResourceRequest
req, ResourceResponse res)

Serves article RSS

serve Attachment serveAttachment(ResourceRequest
req, ResourceResponse res)

Serves
attachments

serveGroup
ArticleRSS

serveGroupArticleRSS(ResourceReq
uest req, ResourceResponse res)

Serves group
article RSS

serveResource serveResource(ResourceRequest
req, ResourceResponse res)

Serves resource:
attachment, article
RSS, or group
article RSS

subscribeArticle subscribeArticle(ActionRequest
req, ActionResponse res);

Subscribes articles

unsubscribe
Article

unsubscribeArticle(ActionRequest
req, ActionResponse res);

Unsubscribes
articles

unsubscribeGroup
Article

unsubscribeGroupArticle(ActionRe
quest req, ActionResponse res);

Unsubscribes
group articles

updateArticle updateArticle(ActionRequest req,
ActionResponse res);

Adds / Updates
an article

updateAttachments updateAttachments(ActionRequest
req, ActionResponse res);

Updates
attachments

updateComment updateComment(ActionRequest req,
ActionResponse res);

Adds / Updates a
comment

updateTemplate updateTemplate(ActionRequest
req, ActionResponse res);

Adds / Updates a
template

Generic MVC Portlets

[102]

Bringing portlets into the Control Panel
In some use cases, you may want to hide the portlet knowledge-base-admin in
the Application Panel and bring it into the Control Panel. How to implement these
requirements? To hide a portlet in the Application Panel, you leverage a special
category name called category.hidden in liferay-display.xml, as shown in the
following code. Portlets under the category category.hidden will be usable by the
system or the Control Panel only.

<category name="category.hidden">
 <portlet id="knowledge-base-admin"></portlet>
</category>

If you want a portlet available to the system, you can set the following line in
liferay-portlet.xml for that portlet.

<system>true</system>

As shown in the preceding code, you should set the system value to true, if the
portlet is a system portlet that a user can't manually add to their page. The default
value is false.

To bring a portlet into the Control Panel, you can add the following lines for that
portlet in liferay-portlet.xml:

<control-panel-entry-category>content</control-panel-entry-category>

<control-panel-entry-weight>7.5</control-panel-entry-weight>

As shown in the preceding code, you can set the control-panel-entry-category
value to my, content, portal, or server to make this portlet available in the Control
Panel under that category. You can also set the control-panel-entry-weight
value to a double number to control the position of the entry within its Control Panel
category. Higher values mean that the entry will appear further down the Control
Panel menu. In addition, the control-panel-entry-class value must be a class
that implements com.liferay.portlet.ControlPanelEntry, called by the Control
Panel to decide whether the portlet should be shown to a specific user in a specific
context or not. The default value is set as DefaultControlPanelEntry.

Actually, in DefaultControlPanelEntryFactory.java, it loads the Control Panel
default entry class, CONTROL_PANEL_DEFAULT_ENTRY_CLASS. In PortalImpl.java, it
provides a method called filterControlPanelPortlets to filter the Control Panel
portlets by checking the Control Panel entry instance and portlets' visibility.

Chapter 3

[103]

Portlet configuration and preferences
Portlets can have a set of preferences, which could be defined in portlet.xml
for each portlet. The Liferay portlets are 100 percent compliant with the portlet
preferences. In addition, Liferay adds the ability to configure the portlets at runtime.

Portlet configuration
The portlet knowledge-base-admin requires a few items should be configurable at
runtime, such as, Email From, Article Added Email, Article Updated Email,
Display Settings, RSS, and so on. How do we make it?

In three steps, you can make your portlet configurable at runtime:

1. Create a class named ConfigurationActionImpl under the package
com.liferay.knowledgebase.admin.action as follows:
public class ConfigurationActionImpl extends
DefaultConfigurationAction {
 public void processAction(PortletConfig portletConfig,
 ActionRequest actionRequest, ActionResponse actionResponse)
 throws Exception {
 // add custom logic
}

As shown in the preceding code, ConfigurationActionImpl extends the
portal service DefaultConfigurationAction, and DefaultConfigura-
tionAction implements the interfaces ConfigurationAction and Re-
sourceServingConfigurationAction. The following table shows imple-
mentation details:

Class name Methods Reference Description
Configuration
ActionImpl

processAction PortletConfig,
ActionRequest,
ActionResponse

Configuration
action
implementation

DefaultConfiguration
Action

getLocalized
Parameter,
getParameter,
processAction,
render,
serveResource,
setPreference

PortletRequest,
PortletConfig,
ActionRequest,
ActionResponse,
RenderRequest,
RenderResponse,
ResourceRequest,
ResourceResponse

Default
configuration
action class

Generic MVC Portlets

[104]

Class name Methods Reference Description
ConfigurationAction processAction,

render

PortletConfig,
ActionRequest,
ActionResponse,
RenderRequest,
RenderResponse

Configuration
action interface

ResourceServing
ConfigurationAction

serveResource PortletConfig,
ResourceRequest,
ResourceResponse

Resource
serving
configuration
action interface

Note that all configurations are saved as portlet preferences. In DefaultCon-
figurationAction.java, you will see the following code snippet:
PortletPreferences portletPreferences =
 PortletPreferencesFactoryUtil.getPortletSetup(
 actionRequest, portletResource);

// see details in DefaultConfigurationAction.java
portletPreferences.store();

As shown in the preceding code, it first gets all portlet preferences and then
sets name-value pairs. Finally, it stores the portlet preferences in the database.

2. Prepare the configuration JSP as configuration.jsp—create a JSP
configuration.jsp in the folder /admin and configure it in portlet.xml.
You can add an init-param with the name config-jsp and the value /ad-
min/configuration.jsp as follows in portlet.xml:
<init-param>
 <name>config-jsp</name>
 <value>/admin/configuration.jsp</value>
</init-param>

Note that the name of init-param must be config-jsp. In DefaultConfig-
urationAction.java, the render method has defined the following logic.
String configJSP = selPortletConfig.getInitParameter("config-
jsp");
if (Validator.isNotNull(configJSP)) {
 return configJSP;
}
return "/configuration.jsp";

Chapter 3

[105]

The preceding code says, if config-jsp is not null, then it returns the
configuration JSP page; otherwise, it returns the default configuration JSP
page, that is, /configuration.jsp.

3. Add the configuration class in liferay-portlet.xml as follows:

<configuration-action-class>com.liferay.knowledgebase.admin.
action.ConfigurationActionImpl</configuration-action-class>

As shown in the preceding code, the configuration-action-class value
must be a class that implements com.liferay.portal.kernel.portlet.
ConfigurationAction and is called to allow users to configure the portlet
at runtime.

Portlet preferences
Liferay Portal stores the portlet preferences in the database as a table called
PortletPreferences, which has a set of columns such as portletPreferencesId,
ownerId, ownerType, plid, portletId, and preferences. In particular, the column
preferences is defined as a long text, where the specific portlet preferences are
stored in an XML format.

<portlet-preferences>
 <preference>
 <name>enable-article-description</name>
 <value>true</value>
 </preference>
</portlet-preferences>

As shown in the preceding code, the preferences element contains many preference
elements. For a given portlet specification, there is one and only one preferences
element. The preference element contains the name of the preference. This name
must be unique within the portlet. Obviously, you can add your own portlet
preferences to custom portlets.

In brief, there are two options that you can add in the portlet preferences, namely,
static-value preferences in portlet.xml and dynamic-value preferences through
portlet configuration in liferay-portlet.xml.

Generic MVC Portlets

[106]

Portlet keys, title, and description
By default, the portlet title and description have been specified in portlet.xml. As
you can see, the portlet title and description could be specified in one language only.
In real cases, the portlet title and description should support multiple languages,
for example, up to 37 languages as the portal did. How to implement the same
in plugins? You can add the portlet title and description message as follows to
Language_en.properties in the folder $PLUGINS_SDK_HOME/portlets/${plugin.
name}/docroot/WEB-INF/src/content:

// see details in Language_en.properties
javax.portlet.title.knowledge-base-search_WAR_
knowledgebaseportlet=Knowledge Base Search
javax.portlet.title.knowledge-base-section_WAR_
knowledgebaseportlet=Knowledge Base Section

As shown in the preceding code, the description of a portlet is specified with the
prefix javax.portlet.description, while the title of a portlet is defined with the
prefix javax.portlet.title. Let's say that the language is presented as ${locale},
while different language properties could be presented as Language_${locale}.
properties. In order to support different languages, you can add the properties file
Language_${locale}.properties and provide the portlet title and description in
that language.

The portal's core portlets keys are specified in com.liferay.portal.util.
PortletKeys. For example, ACTIVITIES has a value of 116, ALERTS has a value of
83, and so on. You can refer to the portal core portlet via PortletKeys in plugins.
Of course, PortletKeys could get extended as well. For instance, com.liferay.
knowledgebase.util.PortletKeys extends PortletKeys and defines the static
strings as follows:

public static final String KNOWLEDGE_BASE_ADMIN =
 "knowledge-base-admin_WAR_knowledgebaseportlet";
// see details in PortletKeys.java ;

The web key com.liferay.portal.kernel.util.WebKeys provides a set of
interfaces for keys, such as ASSET_RENDERER, ASSET_RENDERER_FACTORY, and so
on. You can leverage these in your plugins. In such cases, you may need to add
more custom web keys in plugins. Thus you can add a new class that implements
WebKeys. For the plugin knowledge-base-portlet, the following static strings have
been defined in com.liferay.knowledgebase.util.WebKeys, which implement the
preceding WebKeys.

// see details in WebKeys.java
public static final String KNOWLEDGE_BASE_TEMPLATE =
 "KNOWLEDGE_BASE_TEMPLATE";

Chapter 3

[107]

Message
The tag liferay-ui:message displays a localized message for a key. The
key can be one of the predefined keys from the language properties such as
Language_${locale}.properties, where a set of keys and values has been
specified in different languages. Note that the translation doesn't support formatting.
Thus you can't add HTML into the language properties file.

Render URL is defined in the com.liferay.taglib.ui.MessageTag tag class. It can
have optional attributes such as translateArguments and arguments, and required
attributes such as key. The following is an example of a message:

<liferay-ui:message key="was-this-information-helpful" />
<liferay-ui:message key="yes" /
<liferay-ui:message key="no" />

The preceding code shows three message keys: yes, no, and was-this-information-
helpful. These keys are predefined in the language properties such as Language_
xx.properties. For details, refer to the book Liferay User Interface Development.

The following are the sample key-value pairs in Language_en.properties. It
specifically provides key-value pairs for models and action keys in English.

model.resource.com.liferay.knowledgebase.admin=Knowledge Base Admin

// see details in Language_en.properties
action.VIEW_TEMPLATES=View Templates

Of course, you can add your own key-value pairs in Language_${locale}.
properties in order to support multiple languages, where ${locale} presents
the locale code.

Redirect
The view of MVCPortlet was specified using JSP files. There are sets of JSP files
for different views. The following table shows a set of JSP files for the portlet
knowledge-base-admin:

JSP filename Sample code Description
view.jsp <liferay-ui:search-

container>
Default view, including top_
tabs.jsp, article_action.
jsp, article_search.jsp,
article_search_results.
jspf, and edit_article.jsp

Generic MVC Portlets

[108]

JSP filename Sample code Description
view_article.
jsp

<liferay-util:include
page="/admin/
top_tabs.jsp"
servletContext="<%=
application %>" />

View articles, including
top_tabs.jsp, article_
breadcrumbs.jsp, article_
tools.jsp, article_icons.
jsp, article_attachments.
jsp, article_assets.jsp,
article_ratings.jsp,
article_siblings.jsp, and
article_comments.jsp

view_
template.jsp

<%@ include file="/
admin/init.jsp" %>

View template, including
top_tabs.jsp,
template_tools.jsp,
template_icons.jsp, and
template_comments.jsp

View_
templates.jsp

<portlet:renderURL
var="searchURL">

In most cases, views of the portlet need to be redirected from one view to another
view, such as search view, search results view, updating article view, and so on. In
general, redirect would be implemented via the render URL, the action URL, or the
resource URL.

Render URL
A render URL can be generated via the tags <liferay-portlet> or <portlet>.
A render URL is defined in the tag class com.liferay.taglib.portlet.
RenderURLTag and the Tei class RenderURLTei. It can have optional attributes such
as copyCurrentRenderParamaters, escapeXml, portletMode, secure, var, and
windowState. The following is an example of a render URL:

<portlet:renderURL var="historyURL">
 <portlet:param name="jspPage" value='<%= jspPath + "history.jsp"
%>' />
 <portlet:param name="resourcePrimKey" value="<%= String.
valueOf(article.getResourcePrimKey()) %>" />
</portlet:renderURL>
<liferay-ui:icon image="recent_changes" url="<%= historyURL %>"/>

As shown in the preceding code, the render URL gets specified, while the attribute
var has the value historyURL. The render URL includes two portlet parameters,
namely, jspPage and resourcePrimKey. Note that the parameter jspPage points
to a JSP file, while the parameter resourcePrimKey points to the article ID.

Chapter 3

[109]

Similarly, the render URL searchURL can be presented as follows. It includes the
parameter jspPage.

<portlet:renderURL var="searchURL">
 <portlet:param name="jspPage" value="/admin/search.jsp" />
</liferay-portlet:renderURL>

As shown in the preceding code, the portlet parameter can have different names
such as topLink, redirect, and so on. The name value of the portlet parameter is
available to be used in the JSP file.

The tag portlet:param is defined in com.liferay.taglib.util.ParamTag. It can
have required attributes such as name and value. You can refer to the UI taglib
details in $PORTAL_ROOT_HOME/WEB-INF/tld/liferay-portlet.tld.

Action URL
The tag portlet:actionURL is defined in the tag class ActionURLTag
and the Tei class ActionURLTei. It can have optional attributes such as
copyCurrentRenderParamaters, name, escapeXml, portletMode, secure,
var, and windowState. The following is an example of an action URL:

<portlet:actionURL name="deleteArticle" var="deleteURL">
 <portlet:param name="redirect" value="<%= currentURL %>" />
 <portlet:param name="resourcePrimKey" value="<%= String.
valueOf(article.getResourcePrimKey()) %>" />
</portlet:actionURL>
<liferay-ui:icon-delete url="<%= deleteURL %>" />

As shown in the preceding code, an action URL gets specified, while the attribute
name has the value deleteArticle and the attribute var has the value deleteURL.
The render URL includes two portlet parameters: redirect and resourcePrimKey.
The value of the attribute var is used in the tag liferay-ui:icon-delete.

Note that the preceding attribute named deleteArticle will be mapped into
the method deleteArticle in AdminPortlet.java. In the same way, you
can define other action URL names, such as deleteComment, updateComment,
subscribeArticle, unsubscribeArticle, updateAttachments, updateArticle,
and so on.

In addition, you can leverage the resource URL called ResourceURL:

<portlet:resourceURL id="attachment" var="clipURL">
 <portlet:param name="companyId" value="<%= String.valueOf(company.
getCompanyId()) %>" />
 <portlet:param name="fileName" value="<%= fileName %>" />
</portlet:resourceURL>

Generic MVC Portlets

[110]

The preceding tag, portlet:resourceURL, is defined in the tag class
ResourceURLTag and the Tei class ResourceURLTei. It can have optional
attributes such as cacheability, escapeXml, id, and secure.

Interacting with the database
The following diagram shows the main models for the knowledge base. They are
Template, Article, and Comment. An article can have many child articles. Each
article can have many comments. A template can be applied to articles. Each article
can have many discussions, tags, categories, attachments, subscriptions, addresses,
asset links, documents, dynamic data lists (DDL), and so on.

The entries Article, Comment, and Template are specified in service.xml.

The entry Article includes the following columns:

•	 article Id as primary key
•	 resource Prim Key, group Id
•	 company Id

•	 user Id

•	 user Name

•	 create Date

•	 modified Date

•	 parent resource Prim Key, version
•	 title

•	 content

•	 description

•	 priority

•	 latest

•	 status

•	 status by user Id

•	 status by user name

•	 status date

The entry Template includes the following columns:

•	 template Id as primary key
•	 group Id

Chapter 3

[111]

•	 company Id

•	 user Id

•	 user Name

•	 create Date

•	 modified Date

•	 title

•	 content

•	 description

The entry Comment includes the following columns:

•	 comment Id as primary key
•	 group Id

•	 company Id

•	 user Id

•	 user Name

•	 create Date

•	 modified Date

•	 class name Id

•	 class PK

•	 content

•	 helpful

*
*

* * * * ***
*

**

Templatec Articlec

Attachmentc SubscriptioncRatingcCategorycTagcDiscussionc Addressc AssetLinkc Documentc

Commentc

Generic MVC Portlets

[112]

The following table shows the details of the entity Article.

Category Values Description
Package path com.liferay.knowledgebase Package name
Namespace KB Database table prefix
PK fields articleId Primary key fields
Resource resourcePrimKey Filter primary key
Group instance groupId Group instance as scopes
Audit fields company Id, user Id, user Name,

create Date, modified Date
Auditing columns

Relationship parentResourcePrimKey Hierarchy
Versioning Version Different versions
Other fields title, content, description Main content
Additional fields priority, latest Additional columns
Status status, status by user Id,

status by user name, status
date

Workflow status

When ready, you can run the Ant target build-service to generate models,
services, XML configuration files, query files, and so on. The following set of bullets
shows the folder structure of generated services, models, XML configuration files,
and query files under $PLUGIN_SDK_HOME/${plugin.name}/docroot/WEB-INF:

•	 /src/${package.path}: Implementation code
•	 /src/content: Language properties files
•	 /src/META-INF: XML configuration files
•	 /src/custom-sql: Custom query
•	 /src/resource-actions: XML-based permission actions
•	 /src/portal.properties, portlet.properties, services.properties:

Property files
•	 /js/service.js: JSON JavaScript under the folder docroot
•	 /client: Web service SOAP client
•	 /lib: Service JAR files
•	 /service: Interface code
•	 /sql: Query files

Chapter 3

[113]

Rebuilding services
Service-Builder provides the ability to build services and models automatically.
However, there are a few scenarios where you need to rebuild services against
service.xml. The following is a list of possible use cases:

•	 Use case 1: Change package-path to a different value such as com.bookpub.
knowledgebase and / or change name-space to another value such as KBM

•	 Use case 2: Change the entity name to a different value such as KBArticle
•	 Use case 3: Update the columns, finders, orders, relationship, references, and

exceptions
•	 Use case 4: Update signatures (and add new methods) in local-service-

impl and / or finder-impl and / or update constraint hint in portlet-
model-hints.xml

•	 Use case 5: Use other databases in plugins

In use cases 1 and 2, you should clean up the database and plugin source code
and rebuild the services. In use cases 3 and 4, you could simply run the Ant target
build-service. In use case 5, you have to use a database other than the default
portal database.

What's happening?
First, when deploying the plugin with services and models, the portal will do the
following tasks:

•	 Register a class name such as com.liferay.knowledgebase.model.Article
in the table ClassName_

•	 Register the SQL script with a namespace such as KB in the table
ServiceComponent

•	 Create database tables with table name ${namespace}_${entity.name}, for
example, KB_Article

Therefore, in use cases 1 and 2, cleaning up of source code and database tables
is required. Before doing so, it is better to back up your custom code such as
*LocalServiceImpl, *FinderImpl, and so on. The clean-up process should cover:

1. Removing the subfolders /src, /service, and /sql from the folder
$PLUGIN_SDK_HOME/${plugin.name}/docroot/WEB-INF.

2. Optionally, drop the plugin data and tables from the database.

Generic MVC Portlets

[114]

PortalImpl.java provides the method getClassNameId(String value), where
it calls ClassNameLocalServiceUtil.getClassNameId(value). The method
getClassNameId is implemented in ClassNameLocalServiceImpl as follows:

public ClassName getClassName(String value) throws SystemException {
 if (Validator.isNull(value)) {
 return _nullClassName;
 }
 // Always cache the class name. This table exists to improve
 // performance. Create the class name if one does not exist.
 ClassName className = _classNames.get(value);
 if (className == null) {
 className = classNameLocalService.addClassName(value);

 _classNames.put(value, className);
 }
 return className;
}

As you can see, ClassNameLocalServiceImpl always caches the class name. This
table ClassName_ exists to improve performance. It will create the class name, if one
does not exist. Therefore, when first calling getClassNameId with a class name such
as com.liferay.knowledgebase.model.Article, it will create the class name in the
table, ClassName_.

Actually, BaseHotDeployListener implements HotDeployListener as follows:

public void invokeDeploy(HotDeployEvent event) throws
HotDeployException;
public void invokeUndeploy(HotDeployEvent event) throws
HotDeployException;

PluginPackageHotDeployListener extends BaseHotDeployListener and provides
detailed implementation such as invoking deploy and invoking undeploy.

Model hints
The XML file portlet-model-hints.xml was generated by the Service-Builder
through the template model_hints_xml.ftl. Once portlet-model-hints.xml
is created, you can update model hints and rebuild services.

The model hint interface was specified in ModelHints.java as follows, and
implemented as ModelHintsImpl.java:

public Map<String, String> getDefaultHints(String model);
// see details in ModelHintsImpl.java
public String trimString(String model, String field, String value);

Chapter 3

[115]

Model hints configurations are defined in portal.properties as follows:

model.hints.configs=\
 META-INF/portal-model-hints.xml,\
 META-INF/ext-model-hints.xml,\
 META-INF/portlet-model-hints.xml

ModelHintsImpl.java will load the preceding property PropsKeys.MODEL_HINTS_
CONFIGS in the method afterPropertiesSet. The portlet-model-hints.xml
primarily controls how the fields appear when a Bean object is being displayed
using the tag liferay-ui:*. The following is a sample:

// see details in portlet-model-hints.xml
<field name="description" type="String">
 <hint-collection name="TEXTAREA" />
</field>

The model hint-collection is used to apply the same series of hints to multiple
fields. The attribute name can be TEXTAREA, CLOB, max-length, and so on. The
attribute's name, max-length, is used to set the maximum size of the column for SQL
file generation. The following is a sample abstracted from portal-model-hints.xml:

// see details in portlet-model-hints.xml
<hint-collection name="SEARCHABLE-DATE">
 <hint name="month-nullable">true</hint>
 <hint name="day-nullable">true</hint>
 <hint name="year-nullable">true</hint>
 <hint name="show-time">false</hint>
</hint-collection>
<field name="birthday" type="Date">
 <hint name="year-range-delta">70</hint>
 <hint name="year-range-future">false</hint>
 <hint name="show-time">false</hint>
</field>

As shown in the preceding example, model hints are a few default names and types.
The following table shows the details:

Model hint
name

Data Type Sample Description

auto-escape boolean <hint name="auto-
escape">false</hint>

Whether the text values
should be escaped or not

check-tab boolean <hint name="check-
tab">true</hint>

Checks for the tab

Generic MVC Portlets

[116]

Model hint
name

Data Type Sample Description

display-height Integer <hint name="display-
width">150</hint>

Displays height

display-width Integer <hint name="display-
height">40</hint>

Displays width

show-time boolean <hint name="show-
time">false</hint>

Shows the date and time
or only the date

upper-case boolean <hint name="upper-
case">true</hint>

Whether all characters
should be uppercase or
not

day-nullable boolean <hint name="day-
nullable">true</
hint>

Allows the day to be null

month-nullable boolean <hint name="month-
nullable">true</
hint>

Allows the month to be
null

year-nullable boolean <hint name="year-
nullable">true</
hint>

Allows the year to be
null

year-range-
delta

Integer <hint name="year-
range-delta">70</
hint>

The number of years
to display from today's
date

year-range-
future

boolean <hint name="year-
range-
future">false</hint>

Shows the year range
whether it is future or
not

validator boolean <validator
name="required" />

validation or not

Model hint constants are specified in ModelHintsConstants as follows:

public static final String TEXT_DISPLAY_HEIGHT = "15";
// see details in ModelHintsConstants.java
public static final String TEXTAREA_MAX_LENGTH = "4000";

Other databases in plugins
As you can see, the Service-Builder generated the services and models plus
the Spring-Hibernate configuration. The plugins (portlets) will share the same
database with the portal. However, in some cases, you may need other databases
for plugins (portlets).

Chapter 3

[117]

How does this work? The portlet should define services and models in service.xml
as follows:

<service-builder package-path="com.liferay.knowledgebase">
 <namespace>KB</namespace>
 <entity name="Article" uuid="true" local-service="true"
remote-service="true" data-source="kbDataSource" session-
factory="kbSessionFactory" tx-manager="kbTransactionManager">
<!-- see details in service.xml -->
 </entity>
<!-- see details in service.xml -->
</service-builder>

As shown in the preceding code, the data-source value specifies the data source
target that is set to the persistence class. The default value is Liferay data source.
This is used in conjunction with session-factory. The session-factory value
specifies the session factory that is set to the persistence class. The default value is
Liferay session factory. This is used in conjunction with data-source. The
tx-manager value specifies the transaction manager that Spring uses. The default
value is Spring Hibernate transaction manager that wraps the Liferay data
source and session factory.

In the following four steps, you can use other databases in your own plugins:

1. First create the other database—suppose that you are going to create a
database in MySQL bookpubstreet using the account lportal/lportal,
you can run the SQL query.

2. Next, create a file named ext-spring.xml in the folder $PLUGINS_
SDK_HOME/portlets/${plugin.name}/docroot/WEB-INF/src/
META-INF and add jndiName, kbDataSource, kbSessionFactory, and
kbTransactionManager as follows. Of course, you can use a name other
than kb:
<bean id="kbDataSourceTarget" class="com.liferay.portal.spring.
jndi.JndiObjectFactoryBean" lazy-init="true">
 <property name="jndiName">
 <value>jdbc/kbPool</value>
 </property>
</bean>
<!-- see more details in ext-spring.xml -->

3. Then set the JNDI name in $CATALINA/conf/content.xml as follows. Note
that the setting of the JNDI name is different from application server to
application server:
<!-- MySQL -->
<Resource

Generic MVC Portlets

[118]

name="jdbc/kbPool"
auth="Container" type="javax.sql.DataSource"
driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://localhost/ bookpubstreet?useUnicode=true&cha
racterEncoding=UTF-8&useFastDateParsing=false"
username="lportal"
password="lportal"
maxActive="20"
/>

4. Finally, copy the WAR file into the folder $LIFERAY_HOME/deploy.

What's happening?
After running the Ant target build service, you should see the following changes
in portlet-spring.xml for both ${entity.name}PersistenceImpl and
${entity.name}FinderImpl:

<bean id="com.liferay.knowledgebase.service.persistence.
ArticlePersistence" class="com.liferay.knowledgebase.service.
persistence.ArticlePersistenceImpl" parent="basePersistence">
 <property name="dataSource" ref="kbDataSource" />
 <property name="sessionFactory" ref="kbSessionFactory" />
</bean>

First, the template spring_xml.ftl is in use to generate the data source and session
factory for ${entity.name}FinderImpl and ${entity.name}Persistence.
Secondly, ServiceBuilder.java provides the following method to create the
XML file portlet-spring.xml:

_createSpringXml();

Note that the other database tables didn't get created automatically. You need to create
these tables manually. The other database tables should get created automatically. By
the way, ext-spring.xml didn't get generated by the Service-Builder. However, in a
real case, the Service-Builder should be able to generate the file ext-spring.xml.

Dynamic query API
The dynamic query API provides an elegant way to define complex queries without
a complex setup, or a stiff and abstract learning curve. This API allows us to leverage
the existing mapping definitions through access to the Hibernate session. This
section is going to show the dynamic query against one table in a plugin, to join
tables inside a plugin, to join tables among the plugins, and to join tables among the
plugins and the portal core.

Chapter 3

[119]

The interface of the API is specified in the com.liferay.portal.kernel.dao.orm.
DynamicQuery class under the folder /portal-service/src. The following is
the interface:

public DynamicQuery add(Criterion criterion);
// see details in DynamicQuery.java
public DynamicQuery setProjection(Projection projection);

As shown in the preceding code, you can add a criterion in your custom dynamic
queries. You can also add order, set limits, and set projection in your custom queries.
In addition, the method setProjection implements the SELECT statement. The
SELECT statement is used to select data from a database and the result is stored
in a result table, called the result set.

In brief, subqueries, associations, projections, and aliases are the features available in
the dynamic query API.

Queries in plugins
First of all, you can set up a dynamic query against one table in a plugin. For
example, to query knowledge base articles with companyId and groupId, and
ordered by created date—a descending order, of course. This query can be
presented as one table in the plugin knowledge-base-portlet as follows:

DynamicQuery query =
 DynamicQueryFactoryUtil.forClass(Article.class,"article")
 .add(PropertyFactoryUtil.forName("article.companyId")
 .eq(new Long(companyId)))
 .add(PropertyFactoryUtil.forName("article.groupId")
 .eq(new Long(groupId)))
 .addOrder(OrderFactoryUtil.desc("article.createDate"));
List results = ArticleLocalServiceUtil.dynamicQuery(query);

As shown in the preceding code, it first uses the DynamicQueryFactoryUti.
forClass method with the following parameters:

•	 The class Article.class
•	 The alias name article

It then adds the companyId and the groupId properties and sets the results ordered
by the property createDate in a descending order.

Generic MVC Portlets

[120]

The Service-Builder generates the following dynamic query-related methods
in service_base_impl.ftl and service_util.ftl as follows. For example,
for knowledge-base-portlet, the dynamic query-related methods are
ArticleServiceBaseImpl and ArticleLocalServiceUtil, respectively.

public List dynamicQuery(DynamicQuery dynamicQuery);
// see details in DynamicQuery.java
public long dynamicQueryCount(DynamicQuery dynamicQuery);

Dynamic query factory
The interface for the method forClass is defined in DynamicQueryFactory
as follows:

public DynamicQuery forClass(Class<?> clazz);
// see details in DynamicQueryFactory.java
public DynamicQuery forClass(Class<?> clazz, String alias, ClassLoader
classLoader);

The interfaces for the methods asc and desc are defined in OrderFactory as follows:

public Order asc(String propertyName);
public Order desc(String propertyName);

The interface for the method forName is defined as follows in PropertyFactory:

public Property forName(String propertyName);

Dynamic query operations
More specifically, the interface Property extends the interface Projection. The
interface Property defines all the methods, such as eq, as follows:

public Order asc();
// see details in Property.java
public Criterion eq(Object value);

Chapter 3

[121]

As shown in the preceding code, methods such as asc, avg, between, count, desc,
and eq are defined. Other methods, which are not listed in the preceding code, are
shown in the following table:

Names Methods Description
eq* eq(DynamicQuery subselect);

eq(Object value);

eqAll(DynamicQuery subselect);

eqProperty(Property other);

eqProperty(String other);

eqSome(DynamicQuery subselect);

Equal to another property.

ge* ge(DynamicQuery subselect);

ge(Object value);

geAll(DynamicQuery subselect);

geProperty(Property other);

geProperty(String other);

geSome(DynamicQuery subselect);

Greater than or equal to a
value or another property.

group group(); GROUP BY clause
gt* gt(DynamicQuery subselect);

gt(Object value);

gtAll(DynamicQuery subselect);

gtProperty(Property other);

gtProperty(String other);

tSome(DynamicQuery subselect);

Greater than or equal to a
value or another property.

in

not in

in(Collection<Object> values);

in(DynamicQuery subselect);

in(Object[] values);

notIn(DynamicQuery subselect);

Multiple values in or not in
a WHERE clause.

is* isEmpty();

isNotEmpty();

isNotNull();

isNull();

Empty, not empty, not null,
or null.

Generic MVC Portlets

[122]

Names Methods Description
le* le(DynamicQuery subselect);

le(Object value);

leAll(DynamicQuery subselect);

leProperty(Property other);

leProperty(String other);

leSome(DynamicQuery subselect);

Less than or equal to a value
or another property.

like like(Object value); Searches for a specified
pattern; % for one character,
* for many characters.

lt* lt(DynamicQuery subselect);

lt(Object value);

ltAll(DynamicQuery subselect);

ltProperty(Property other);

ltProperty(String other);

ltSome(DynamicQuery subselect);

Less than a value or another
property.

max

min

max();

min();

The largest / smallest value.

ne* ne(DynamicQuery subselect);

ne(Object value);

neAll(DynamicQuery subselect);

neProperty(Property other);

neProperty(String other);

neSome(DynamicQuery subselect);

Not equal to another
property

SQL joins
In the previous section, we discussed using dynamic query for one table in a plugin.
This section deals with SQL joins. SQL joins are used to query data from two or
more tables, based on a relationship between certain columns in these tables.

Joining tables inside a plugin
With dynamic query API, you can join tables in a plugin. For example, the plugin
knowledge-base-portlet has the tables Article and Comment. A query says
"find me all articles with specific companyId and groupId, and helpful comments,
ordered by createDate". Using dynamic query, this query can be presented
as follows:

Chapter 3

[123]

DynamicQuery qd0 =
 // ignore details
DynamicQuery query =
 DynamicQueryFactoryUtil.forClass(Article.class,"article")
 .add(PropertyFactoryUtil.forName("article.companyId")
 .eq(new Long(companyId)))
 .add(PropertyFactoryUtil.forName("article.groupId")
 .eq(new Long(groupId)))
 .add(PropertyFactoryUtil.forName("article.resourcePrimKey")
 .in(qd0))
 .addOrder(OrderFactoryUtil.desc("article.createDate"));
List results = ArticleLocalServiceUtil.dynamicQuery(query);

The preceding code shows a way to get articles by company ID, group ID, and
helpful comments. The dynamic query API allows us to leverage the existing
mapping definitions through access to the Hibernate session. For example,
DynamicQuery dq0 selects the comments by companyId, groupId, and helpful
comments; DynamicQuery query selects articles by companyId, groupId, and
resourcePrimKey, which exists in DynamicQuery dq0. Note that resourcePrimKey
is used to present a relationship between Article and Comment, and not articleId,
since articleId should be used for versioning.

Joining tables from different plugins
Using the dynamic query API, you can join tables from different plugins. For
example, the plugin knowledge-base-portlet has the tables Article and Comment,
while the plugin chat-portlet has the tables Entry and Status. A query says
"find all articles with specific companyId and groupId, and online users ordered
by createDate".

How to join tables between the plugin knowledge-base-portlet and the plugin
chat-portlet? First, you need to make the third-party service JAR global, that is,
you should move the service JAR chat-service-portlet.jar from the folder
/webapps/${plugin.name}/WEB-INF/lib to the folder /lib/ext. Then, using
dynamic query, you can present this query as follows:

DynamicQuery qd0 =
 // ignore details
DynamicQuery query =
 DynamicQueryFactoryUtil.forClass(Article.class,"article")
 .add(PropertyFactoryUtil.forName("article.companyId")
 .eq(new Long(companyId)))
 .add(PropertyFactoryUtil.forName("article.groupId")
 .eq(new Long(groupId)))

Generic MVC Portlets

[124]

 .add(PropertyFactoryUtil.forName("article.userId")
 .in(qd0))
 .addOrder(OrderFactoryUtil.desc("article.createDate"));
List results = ArticleLocalServiceUtil.dynamicQuery(query);

The preceding code shows a way to get articles by company ID, group ID, and
online users. For example, DynamicQuery dq0 selects the comments by companyId,
groupId, and online users. DynamicQuery query selects articles by companyId,
groupId, and userId, which exist in DynamicQuery dq0.

Similarly, you can join multiple tables. If you expect that the service JAR knowledge-
base-service-portlet.jar is available to other plugins, you can move the service
JAR from the folder /webapps/${plugin.name}/WEB-INF/lib to the folder /lib/
ext. Then, both chat service and knowledge base service are global, available, and
accessible to others plugins.

Joining tables from plugins and portal core
Using the dynamic query API, you can join tables from plugins and portal core. The
portal core provides a set of tables, such as Address, AssetEntry, Subscription,
and so on. With the dynamic query API, you are able to join portal core tables in
your own plugins. For example, if a query says "find me the 10 most popular articles
for the knowledge base with their specific companyId and groupId", you can present
the following query:

DynamicQuery dq0 =
 // ignore details
DynamicQuery query =
 DynamicQueryFactoryUtil.forClass(AssetEntry.class, "asset")
 .add(PropertyFactoryUtil.forName("asset.companyId")
 .eq(new Long(companyId)))
 .add(PropertyFactoryUtil.forName("asset.groupId")
 .eq(new Long(groupId)))
 .add(PropertyFactoryUtil.forName("asset.classPK").in(dq0))
 .addOrder(OrderFactoryUtil.desc("asset.viewCount"));
List assets = AssetEntryLocalServiceUtil.dynamicQuery(query);

The preceding code shows a way to get the most popular articles by company ID,
group ID, and limited most popular articles. For example, DynamicQuery dq0 selects
the journal articles by companyID and groupId. DynamicQuery query selects the
asset entries by companyID, groupId, and classPK, which exists in DynamicQuery
dq0 and ordering asset entries by viewCount as well.

Chapter 3

[125]

Liferay provides several ways to define complex queries used in retrieving database
data. For example, each service Entity, such as portal core Address, AssetEntry,
Subscription, and custom Article and Comment, typically defines several finder
methods. Why do you need dynamic query API? There are several use cases that
require a dynamic query API:

•	 Query complexity, such as joining tables from plugins and joining tables
from plugins and portal core

•	 Queries which implement aggregate SQL operations, such as, maximum
(max), minimum (min), average (avg), between, and so on

•	 Query optimization
•	 Complex data access, like reporting

To summarize, the dynamic query API provides a flexible way to define complex
queries without any complex setup. This abstracts away the SQL grammar and
making it database agnostic. In particular, there are no configuration files and no
embedded SQL strings. Moreover, the queries could be assembled through business
logic, for the queries are created without the immediate need of a database session.

Custom query
A custom query allows creating dynamic criteria, like dynamic query API. In many
situations, this avoids the need to create a custom query completely. However, in
some cases, a custom query, called custom-sql, could be useful. For instance, there
is a complex JOIN query and it is hard to do in the dynamic query API. In this case,
custom query would be very helpful.

Let's consider a real example. A query says "find me all the articles with a specific
companyId and groupId, subscribed to by a specific user, ordered by createDate".
Of course, you could use the dynamic query API. Here, we are using this request as
an example to show how to build a custom query in the Plugins SDK.

In general, you should be able to build a custom query in the Plugins SDK in
five steps:

1. Create a folder named custom-sql under $PLUGINS_SDK_HOME/
portlets/${portlet.name}/docroot/WEB-INF/src and create a file
named default.xml under custom-sql with the following lines:
<?xml version="1.0"?>
<custom-sql>
 <sql id="com.liferay.knowledgebase.service.persistence.
ArticleFinder.findBySubscription">
 <![CDATA[

Generic MVC Portlets

[126]

 // see details in default.xml
]]>
 </sql>
</custom-sql>

Note that the preceding code is just sample code. In the real world, you
would write your own custom query and logic. In addition, you would see
that the table name of the portal core, such as Subscription, doesn't have
any prefix, while the table name of the plugins is made up of ${namespace}
plus an underscore _ and ${entity.name} such as KB_Article. All the table
names are case-sensitive.

2. In portlet.properties, add the following line:
custom.sql.configs=custom-sql/default.xml

As shown in the preceding code, the property custom.sql.configs specifies
custom SQL configurations. You would be able to input a list of comma-
delimited custom SQL configurations.

3. Create a file named com.liferay.knowledgebase.service.persistence.
ArticleFinderImpl.java under the folder $PLUGINS_SDK_HOME/
portlets/${portlet.name}/docroot/WEB-INF/src as follows:
public class ArticleFinderImpl
 extends BasePersistenceImpl<Article> implements ArticleFinder {
}

As shown in the preceding code, ArticleFinderImpl extends
BasePersistenceImpl generated by the Service-Builder and implements
ArticleFinder, which doesn't exist at the moment.

4. Run the Ant target build-service.
As you can see, the Service-Builder will generate a service interface such as
ArticleFinder and a service utility such as ArticleFinderUtil.

5. Write the logic to access the custom query in ArticleFinderImpl.java. The
following is the code snippet. Run the Ant target build-service again:

public List<Article> findBySubscription(
 long groupId, long userId, int start, int end)
 throws SystemException {// see details in ArticleFinderImpl.java
}

Chapter 3

[127]

As shown in the preceding code, a new session is open and three parameters,
classNameId, groupId, and userId, get added. Obviously, the search results limit
gets added by start and end. In addition, after running the Ant target build-
service, the Service-Builder adds the signature findBySubscription in both
ArticleFinder.java and ArticleFinderUtil.java.

Note that you shouldn't use custom query when dynamic query
API will do. That is, sometimes the dynamic query API still isn't
enough and thus you need a custom query.

What's happening?
As mentioned earlier, in order to generate a custom query, we run the Ant
target build-service twice. In the first instance, ArticleFinderImpl extends
BasePersistenceImpl and implements ArticleFinder, which doesn't exist
at the moment.

After running the Ant target build-service the first time, ArticleFinder
and ArticleFinderUtil were generated. However, the custom signature,
findBySubscription, is not generated yet. After running the Ant target build-
service the second time, the custom signature findBySubscription is added
in both ArticleFinder and ArticleFinderUtil.

First, the two templates finder.ftl and find_util.ftl were were used to
generate ${entity.name}Finder and ${entity.name}FinderUtil, respectively.
For example, both ArticleFinder and ArticleFinderUtil were generated when
${entity.name} was equal to the entity Article. This is the reason that ${entity.
name}Finder and ${entity.name}FinderUtil were generated separately.

Second, ServiceBuilder.java provides the following two methods to create
Finder and FinderUtil.

_createFinder(Entity entity);
_createFinderUtil(Entity entity);

As shown in the preceding code, ServiceBuilder.java first loads ${entity.name}
FinderImpl. It then prepares the content with templates such as finder.ftl or
find_util.ftl. Finally, it writes the files ${entity.name}Finder and ${entity.
name}FinderUtil.

Generic MVC Portlets

[128]

Security and permissions
Liferay implements a fine-grained permissions system, used to implement access
security in custom plugins. The portal extends the security model by the following
terminologies: resources, users, organizations, locations, user groups, communities,
roles, permissions, and so on. That is, this is a role-based, fine-grained permission
security model.

In order to add permissions in the custom portlets, generally, you would carry out
the following four steps:

1. Defining all resources and their permissions—defining resources and
permissions.

2. Registering all the resources in the permission system—registering resources.
3. Associating the permissions with resources—assigning permission.
4. Checking the permissions before returning the resources—checking

permission.

Adding resources
First of all, define your resources and permissions in the custom plugin, for example,
knowledge-base-portlet. You can create a folder named resource-actions in the
folder $PLUGINS_SDK_HOME/portlets/${portlet.name}/docroot/WEB-INF/src
and then add an XML file named default.xml inside that folder.

<?xml version="1.0"?>
<resource-action-mapping>
 <portlet-resource>
 <portlet-name>knowledge-base-admin</portlet-name>
 <permissions>
 <supports>
 <action-key>ACCESS_IN_CONTROL_PANEL</action-key>
 <action-key>CONFIGURATION</action-key>
 <action-key>VIEW</action-key>
 </supports>
 <community-defaults />
 <guest-defaults />
 //<!-- see details in default.xml -->
</resource-action-mapping>

Chapter 3

[129]

As shown in the preceding code, there are three-level permission action definitions,
namely, portlet-level, portlet-instance-level, and model-level. The tag
portlet-resource defines actions and default permissions at the portlet-level,
such as knowledge-base-admin. Changes to the portlet-level permissions are
performed on a group (like community) basis. The settings state whether the users
can add the portlet to the Control Panel, edit its configuration, or view the portlet.
All these actions are defined inside the tag supports.

The default portlet-level permissions for members of the community are defined
inside the tag community-defaults. Likewise, the default guest permissions
are defined in the tag guest-defaults. The tag guest-unsupported contains
permissions that a guest may never be granted, even by an administrator. For the
portlet, knowledge-base-admin, guests can never be given permission to configure
the portlet or access it in the Control Panel.

The portlet-instance-level permissions are defined based on the scope of an
individual instance of the portlet. These permissions are defined in the tag model-
resource. Note that the tag model-name isn't the name of an actual Java class, but
simply that of the package.

The model-level permissions are defined based on the scope of an individual
instance of the model. These permissions are defined in the tag model-resource,
too. Within this tag, it defines the model name. Note that the model name must be
the fully-qualified Java class name of the model.

Furthermore, in portlet.properties, add the following line of code:

resource.actions.configs=resource-actions/default.xml

As shown in the preceding code, it shows where the resource action configurations
can be located. Note that the resource action configurations will be read from the
class path.

What's happening?
In PortletHotDeployListener.java, the following code is specified:

String[] resourceActionConfigs = StringUtil.split(
 portletProperties.getProperty(PropsKeys.RESOURCE_ACTIONS_CONFIGS));
for (String resourceActionConfig : resourceActionConfigs)
 ResourceActionsUtil.read(
 servletContextName, portletClassLoader, resourceActionConfig);
}

Generic MVC Portlets

[130]

As shown in the preceding code, it first gets the property RESOURCE_ACTIONS_
CONFIGS. It then uses ResourceActionsUtil.java to read the action's keys and
permission settings.

In fact, ResourceActionsImpl.java provides a detailed implementation as follows:
public List<String> getPortletNames();
// see details in ResourceActionsUtil.java
public List<String> getResourceActions(String name);

Registering permission
The portal includes a pretty flexible permission system based on the concepts of
roles, permissions, and resources, providing several different implementations
for the algorithm used to check whether a given user has permissions to perform
certain actions.

Permission algorithm
RBAC stands for Role Based Access Control. It is a permissions system in which
permissions are always assigned through roles. RBAC implementation was started in
portal 5.1, as a way to improve the existing system, especially in terms of ease-of-use
and performance. There are two algorithms for RBAC: 5 and 6. Algorithm 5 was
introduced for portal 5.1 and above. It uses a regular, normalized implementation.
Algorithm 6 was introduced in portal 6. Algorithm 6 is an improved version of
Algorithm 5. It provides the exact functionality as that of Algorithm 5, but it uses
bitwise operations for even greater speed.

The legacy algorithms 1-4 were used in portal 5 and below. They all offer the
same functionality and more flexibility to assign permissions to users. By the way,
algorithms 1-4 are changeable; algorithms 5-6 are changeable, too. Data migration
of algorithms 1-4 to 5-6 (RBAC) is available, but the data migration of algorithms
5-6 (RBAC) to 1-4 is unavailable.

Permission actions registration
In fact, there are two new tables involved for permissions in algorithm 6:
ResourceAction and ResourcePermission.

ResourceAction maps the permission names (such as VIEW and UPDATE) to a long
number. This is done automatically on startup and it is cached for greater efficiency.
Hot deployed portlets are given unique numbers too—this can only be initialized
serially before the portal or portlets are available—so that the retrieval is thread-safe
and very fast. In addition, the most logical as VIEW is a common ResourceAction
among all the resources.

Chapter 3

[131]

ResourcePermission stores the permission in one long number and the portal will
do bitwise operations to check if a user has the appropriate permission actions.

By the way, the View permission on an object must be checked if the user has
view permission on the parent container. Fortunately, the portal has specified the
following property in portal.properties:

permissions.view.dynamic.inheritance=true

As shown in the preceding code, the portal sets the property permissions.view.
dynamic.inheritance to true to automatically check the view permission on the
parent categories or folders when checking the permission on a specific item. For
example, if the property was set to true to be able to have access to a document, a user
must have the view permission on the document's folder and all its parent folders.

In brief, the portal uses ResourceLocalService* for adding and removing resources
when creating and / or removing the model and portlet resources.

Assigning permissions
Permissions can be added by the liferay-security:permissionsURL tag as
follows. In addition, the liferay-ui:icon tag shows a permission icon to the user:

<liferay-security:permissionsURL
 modelResource="<%= Article.class.getName() %>"
 modelResourceDescription="<%= article.getTitle() %>"
 resourcePrimKey="<%= String.valueOf(article.getResourcePrimKey())
%>"
 var="permissionsURL"
/>
<liferay-ui:icon image="permissions" url="<%= permissionsURL %>"
/>

The preceding code shows how to expose the permission interface to the user. The
tag liferay-security:permissionsURL is specified in the tag class com.liferay.
taglib.security.PermissionsURLTag and the Tei class PermissionsURLTei. It
has the required attributes such as modelResource, modelResourceDescription,
and resourcePrimKey, and optional attributes such as redirect, var, roleTypes,
and windowState.

The modelResource attribute is the fully-qualified Java object class name, while
the modelResourceDescription attribute describes this model instance. The
resourcePrimKey attribute represents the primary key of the model instance. The
var attribute is the variable name—passed to the liferay-ui:icon tag so that the
permission icon will have the proper URL link.

Generic MVC Portlets

[132]

In fact, EditRolePermissionsAction.java defines the following code:

if (PropsValues.PERMISSIONS_USER_CHECK_ALGORITHM == 6) {
 ResourcePermissionServiceUtil.removeResourcePermission(
 themeDisplay.getScopeGroupId(), themeDisplay.getCompanyId(),
 name, scope, primKey, roleId, actionId);
}
// see details in EditRolePermissionsAction.java
if (scope == ResourceConstants.SCOPE_COMPANY) {
 ResourcePermissionServiceUtil.addResourcePermission(
 groupId, companyId, selResource, scope,
 String.valueOf(role.getCompanyId()), roleId, actionId);
}

As shown in the preceding code, it removes resource permission when
PERMISSIONS_USER_CHECK_ALGORITHM is equal to 6. It adds resource permission
when the scope is SCOPE_COMPANY. Of course, you can refer to the details in
ResourcePermissionServiceUtil.java.

Checking permission
By default, the portal provides the interface PermissionChecker as follows:

public boolean hasOwnerPermission(long companyId, String name,
 long primKey, long ownerId, String actionId);
// see details in PermissionChecker.java
public boolean hasUserPermission(long groupId, String name,
 String primKey, String actionId, boolean checkAdmin);

In plugins, it would be better to implement their own permission checker.
For example, com.liferay.knowledgebase.service.permission.
ArticlePermission uses the above interface PermissionChecker with the
following methods:

public static void check(PermissionChecker permissionChecker,
 Article article, String actionId)
// see details in ArticlePermission.java
public static boolean contains(PermissionChecker permissionChecker,
 long resourcePrimKey, String actionId)

In JSP files, you can add the permission checker using ArticlePermission
as follows:

<c:if test="<%= ArticlePermission.contains(permissionChecker, article,
ActionKeys.VIEW) %>">
<c:if test="<%= ArticlePermission.contains(permissionChecker, article,
ActionKeys.UPDATE) %>">

Chapter 3

[133]

The preceding code checks the action keys VIEW and UPDATE. Similarly, you can
check the other action keys, such as PERMISSIONS and DELETE.

What's happening?
There are two new tables involved for permissions in Algorithm 6: ResourceAction
and ResourcePermission.

ResourceAction maps the permission action names to a long number. For example,
when deploying the portlet knowledge-based-admin, you would see following data
in the table ResourceAction. Note that this table only shows the sample data; the
resourceAction ID values will vary.

resourceActionId
(Long)

name (String) actionId (String) bitwiseValue
(Long)

716 knowledge-base-
admin_WAR_
knowledgebaseportlet

ACCESS_IN_
CONTROL_PANEL

2

(0000 0000
0000 0010)

717 knowledge-base-
admin_WAR_
knowledgebaseportlet

CONFIGURATION 4

(0000 0000
0000 0100)

718 knowledge-base-
admin_WAR_
knowledgebaseportlet

VIEW 1

(0000 0000
0000 0001)

729 com.liferay.
knowledgebase.model.
Article

UPDATE 64

(0000 0000
0100 0000)

As shown in the preceding table, the column resourceActionId shows a long
resource action ID, which is generated automatically, that is, the number shown in
this column is just a sample. The column name shows the string portlet name or the
model name. If it was a portal core portlet, it would show the portlet name; if it was a
plugin WAR, it would show the portlet name plus string _WAR_, and the plugin name
such as knowledgebaseportlet. If it was a model name, it would show the model
name such as com.liferay.knowledgebase.model.Article.

The column shows string action Id, that is, action keys specified in /resource-
actions/default.xml, such as ACCESS_IN_CONTROL_PANEL, CONFIGURATION, VIEW,
and UPDATE. The column, bitwiseValue, shows long the bitwise value is for each
action key.

Generic MVC Portlets

[134]

ResourcePermission stores the permission actions in one long number, and the
portal will do bitwise operations to check if a user has proper permission actions.
The following table shows an example:

resource
PermissionId
(Long)

companyId
(Long)

name (String) Scope
(Integer)

primKey (String) roleId
(Long)

actionIds
(Long)

4872 10132 knowledge-
base-
admin_WAR_
knowledge
baseportlet

4 10152_LAYOUT_
knowledge-
base-admin_
WAR_knowledge
baseportlet

10140 7

As shown in the preceding table, the column resourcePermissionId shows long
resource permission IDs, generated automatically, that is, the number shown in this
column is just a sample. The column companyId shows the long company ID (portal
instance ID). The column name shows the string portlet name or the model name,
which is the same as that in the table ResourceAction.

The column scope shows the integer scope of the resource constants. The full scope
values are defined in ResourceConstants.java as follows:

public static final long PRIMKEY_DNE = -1;
// see details in ResourceConstants.java
public static final int SCOPE_COMPANY = 1;

As you can see, there are a set of scopes, such as SCOPE_INDIVIDUAL, SCOPE_GROUP,
SCOPE_GROUP_TEMPLATE, and SCOPE_COMPANY.

The column primKey shows the string primary key and the column roleId shows
the long associated role ID. More importantly, the column actionId shows the
long actions IDs.

Similarly, the resource permission constants are specified in
ResourcePermissionConstants.java as follows:

public static final int OPERATOR_ADD = 1;
public static final int OPERATOR_REMOVE = 2;
public static final int OPERATOR_SET = 3;

The preceding code shows operators such as OPERATOR_ADD, OPERATOR_REMOVE, and
OPERATOR_SET.

In brief, when checking permission, only two tables get involved and memory costs
are much lower. In addition, bitwise operations are of the lowest level, and the
fastest operations you can perform.

Chapter 3

[135]

For example, reconsidering the preceding tables, checking for the UPDATE permission
is as simple as follows:

if ((actionIds & 64) == 64) { has permission }

As you can see, & is bitwise AND and | is bitwise OR. Generally speaking, checking for
any permission can be presented as follows:

if ((actionIds & ACTION-KEY) == ACTION-KEY) { has permission }

As shown in the preceding code, ACTION-KEY could be VIEW, ACCESS_IN_
CONTROL_PANEL, CONFIGURATION, and so on. As shown in the preceding table
ResourcePermission, the role with the ID 10140 has the actions ID 7. It means
that the role has the permission actions VIEW, ACCESS_IN_CONTROL_PANEL, and
CONFIGURATION, since the following expressions are true:

(7 & 1 == 1)
(7 & 2 == 2)
(7 & 4 == 4)

JSR-286 defines a simple security scheme using portlet roles and their mapping
to portal roles. On top of that, Liferay implements a fine-grained role-based
permissions system with bitwise operations. Everything in the portal is secure,
such as, portlet, portlet instance, and model.

Summary
This chapter first introduced how to develop a portlet project with the default
templates. Then, it addressed how to construct basic MVC portlets by viewing the
title and adding an action only, and how to build advanced MVC portlets. Finally, we
discussed how to build and rebuild services, how to bring portlets into the Control
Panel, how to set security and permissions, dynamic query, and custom SQL.

In the next chapter, we will discuss Ext plugin and hooks plugins.

Ext Plugin and Hooks
Ext plugin is a powerful tool to extend the Liferay portal core. There are almost no
limits to what can be customized. Thus, the Ext plugin has to be used carefully. Ext
plugin is designed to be used only in special scenarios where all other plugin types
such as portlets, hooks, themes, layout templates, and webs cannot meet the needs.

Hooks can fill a wide variety of common needs for overriding the portal core
functionality. Whenever possible, hooks should be used in place of the Ext plugin,
as hooks are hot deployable and more forward compatible. There are common
scenarios which require the use of a hook, for example, performing custom actions
on portal startup or user login, overwriting or extending portal JSPs, modifying
portal properties, replacing a portal service with custom implementation, modifying
indexer post processors, and updating struts actions, servlet filters, and servlet
filters mappings.

This chapter will first introduce the Ext plugin. Then, it will address the deployment
process, especially for Ext plugins. Multiple languages will be addressed and class
loader processes will be introduced afterwards. Finally, hooks will be addressed
in detail.

By the end of this chapter, you will have learned how to:

•	 Use the Ext plugin
•	 Upgrade a legacy Ext environment
•	 Deploy processes
•	 Leverage class loader proxy
•	 Hook portal properties
•	 Hook language properties and multiple languages
•	 Hook custom JSP
•	 Hook indexer post processors

Ext Plugin and Hooks

[138]

•	 Hook service wrappers
•	 Hook servlet filters and servlet mappings
•	 Hook struts actions

Ext plugin
The Extension environment (called Ext environment) provides the capability to
customize the Liferay portal completely. As it is an environment which extends the
Liferay portal development environment, it has the name Extension; its short form is
Ext. By Ext, you would modify internal portlets (also called out-of-the-box portlets).
Moreover, we would override the JSP files of the portal and out-of-the-box portlets.

Starting from Version 6, the Ext environment is available as a plugin called Ext
plugin. Custom code will override the Liferay portal source code in the Ext plugin.
In the deployment process, custom code is merged with the Liferay portal source
code (that is, it will override files of the portal core). Ext plugins provide the most
powerful methods of extending the Liferay portal core, designed to be used only in
special scenarios in which all other plugin types cannot meet the needs.

Ext plugin project default template
In the previous chapter, we have discussed a set of default templates such as EAR,
layout template, portlet, theme, and so on. Obviously, by using these templates
you could build your own plugins projects easily. This section is going to introduce
the Ext (Ext stands for Extension) plugin project default template.

Liferay plugins SDK provides the Ext plugin project default template, ext_tmpl.
This default template has the following structure. The Ext plugin project folder
name is represented as @ext.name@-ext. For example, @ext.name@ has a value
hello-world for the plugin Hello World Ext. Under the folder @ext.name@-ext,
there is a folder named docroot and the XML file build.xml. As you can see,
build.xml has the following code:

<?xml version="1.0"?>
<!DOCTYPE project>
<project name="@ext.name@-ext" basedir="." default="deploy">
 <import file="../build-common-ext.xml" />
</project>

Chapter 4

[139]

As shown in the preceding code, @ext.name@ represents the real plugin name. When
using the Ant target create, it will create a new Ext plugin project. Under the folder
docroot, it includes a folder named WEB-IBF. The folder WEB-INF contains a set of
subfolders and files, which are shown in the following table:

Folder name Subfolders Files Description
ext-impl src portlal-ext.

properties
Portal implementation
extension

ext-lib global

portal

None Portal and global
dependencies
extension

ext-service src None Portal service extension
ext-util-bridge src None Utility bridge extension
ext-util-java src None Utility Java extension
ext-util-taglib Src None Utility taglib extension
ext-web docroot/

WEB-INF
liferay-portlet-
ext.xml

portlet-ext.xml

strus-config-ext.
xml

tiles-defs-ext.xml

web.xml

Portal web extension –
including folder html/
common, /portal, /
portlet, /icons,
/js, /taglibs, /
themes, and so on

sql none None SQL scripts extension

Creating an Ext plugin project
Ant target create will create a new Ext plugin project based on two parameters
(ext.name and ext.display.name) as follows:

ant -Dext.name=$1 -Dext.display.name=\"$2\" create

The first, $1, for ext.name is the Ext plugin name such as hello-world. A
new directory will be created based on the Ext plugin name. The second, $2, for
ext.display.name is the Ext plugin's display name such as Hello World. The
quotation marks are only needed as there is a space in the display name.

In fact, you can refer to the Ant target create in build.xml as follows:

<target name="create">
<if>
<!-- see details in build.xml -->
<else>

Ext Plugin and Hooks

[140]

<!-- see details in build.xml -->
<replace dir="${ext.parent.dir}/${ext.name}-ext">
<replacefilter token="@ext.name@" value="${ext.name}" />
<replacefilter token="@ext.display.name@" value="${ext.display.name}"
/>
</replace>
</else>
</if>
</target>

Advanced customization
As you can see, you would be able to change almost everything within Liferay
when using the Ext plugin, therefore, be careful when using such a powerful tool,
as implementation classes of new version may have changed. Thus if you have
changed the Liferay source code directly, you may have to merge your changes into
the newer version. An alternative approach to minimize these conflicts is that you
don't change anything, but only extend the class you want to change and override
the methods needed.

An Ext plugin will make changes to the Liferay portal itself, instead of staying
as a separate component that can be removed at any time, for example, hooks
and portlets. Once an Ext plugin has been deployed, some files are copied inside
the Liferay portal installation, so that the only way to remove its changes is by
redeploying an unmodified Liferay application. What is happening? Let's first
have a look at the Ext plugin project structure by using the "Hello World" example.

The following table shows the Ext plugin folders, sample code, and portal
core mapping:

Ext plugin
folder

Sample Portal core
mapping

Description

ext-
impl/src

com.liferay.
portal.action.
LoginAction

portal-ext.
properties

portal-
impl.jar

It contains portal-ext.
properties, configuration
files, and custom
implementation classes that
override portal core classes
within portal-impl.jar.

ext-lib/
global

ojdbc14.jar lib/ext/* It contains any library that
should be copied to the global
class loader of the application
server.

Chapter 4

[141]

Ext plugin
folder

Sample Portal core
mapping

Description

ext-lib/
portal

commons-
configuration.jar

$PORTAL_
ROOT_HOME/
WEB-INF/
lib

It contains any library that
should be copied to $PORTAL_
ROOT_HOME/WEB-INF/lib.

ext-
service/
src

com.liferay.
counter.service.
CounterLocal
ServiceUtil

portal-
service.
jar

It contains classes that
overwrite the classes of
portal-service.jar.

ext-
util-
bridges/
src

com.liferay.util.
bridges.mvc.
MVCPortlet

util-
bridges.
jar

It contains classes that
overwrite the classes of util-
bridges.jar.

ext-
util-
java/src

com.liferay.util.
CookieUtil

util-java.
jar

It contains classes that
overwrite the classes of util-
java.jar.

ext-
util-
taglib/
src

com.liferay.
taglib.util.
IncludeTag

util-
taglib.jar

It contains classes that
overwrite the classes of util-
taglib.jar.

As mentioned earlier, several files are added to the Ext plugin by default. The
following table shows these files:

File name Location Portal core
Reference

Description

portal-ext.
properties

ext-impl/
src

portal.
properties in the
folder $PORTAL_
SRC_HOME/
portal-impl/
src

It overwrites any configuration
property of Liferay, even those
that cannot be overridden
by a hook plugin. If this file
is included, it will be read
instead of any other portal-
ext.properties in the
application server.

liferay-
display.xml

ext-web/
docroot/
WEB-INF

liferay-
display.xml

It overwrites the portlets that
will be shown in the "Add
application" pop-up panel and
the categories in which they
are organized. This is done
to change the categorization,
hide portlets, or make Control
Panel portlets available to be
added to a page.

Ext Plugin and Hooks

[142]

File name Location Portal core
Reference

Description

liferay-
portlet-
ext.xml

ext-web/
docroot/
WEB-INF

liferay-
portlet.xml

It overwrites the definition
of a Liferay portlet. To do so,
copy the complete definition
of the desired portlet from
liferay-portlet.xml
within the portal core source
code and then apply the
necessary changes.

portlet-
ext.xml

ext-web/
docroot/
WEB-INF

portlet-
custom.xml

It overwrites the additional
definition elements of a
Liferay portlet. To do so, copy
the complete definition of
the desired portlet from
portlet-custom.xml
within the portal core source
code and then apply the
necessary changes.

liferay-
layout-
templates-
ext.xml

ext-web/
docroot/
WEB-INF

liferay-
layout-
templates.xml

It specifies custom template
files for each of the layout
templates provided by default
with Liferay.

liferay-
look-and-
feel-ext.
xml

ext-web/
docroot/
WEB-INF

liferay-look-
and-feel.xml

It changes the properties of the
default themes provided by
default with Liferay.

strus-
config-ext.
xml

ext-web/
docroot/
WEB-INF

strus-config.
xml

It customizes the struts actions
used by Liferay's core portlets.

tiles-defs-
ext.xml

ext-web/
docroot/
WEB-INF

tiles-defs.xml It customizes the struts tiles
definition used by Liferay's
core portlets.

web.xml ext-web/
docroot/
WEB-INF

web.xml It customizes web.xml.

Similar to the preceding files, you can overwrite other files in the folder $PORTAL_
SRC_HOME/portal-web/docroot/WEB-INF such as liferay-plugin-package.xml,
liferay-web.xml, urlrewrite.xml, and so on. That is, ext-web contains /WEB-
INF/*-ext.xml files that are used to override what is in portal-web.

Note that if you modify ext-web/docroot/WEB-INF/web.xml, then these changes
are merged into portal-web/WEB-INF/web.xml.

Chapter 4

[143]

Advanced configuration
Liferay portal uses several internal configuration files for easier maintenance, and
to configure the libraries and frameworks it depends on, such as Struts and Spring.
Thus it may be useful to override the configuration specified in these files; this is a
clean way to do so from an Ext plugin without modifying the original files.

The following table shows these configuration files and the original file—the portal
core reference in $PORTAL_SRC_HOME/portal-impl/src/META-INF/:

Ext
configuration
file

Location Portal core
reference

Description

ext-model-
hints.xml

ext-impl/src/
META-INF

portal-
model-
hints.xml

It overwrites the default properties
of the fields of data models used
by Liferay's core portlets. These
properties determine how the form
to create or edit each model is
rendered.

ext-spring.
xml

ext-impl/src/
META-INF

*-spring.
xml

It overwrites the Spring
configuration used by Liferay and
its core portlets, for example, it
configures specific datasources
or swaps the implementation of a
given service with a custom one.

portal-
log4j-ext.
xml

ext-impl/src/
META-INF

portal-
log4j.xml

It overwritesthe the log4j
configuration to increase or
decrease the log level of a given
package or class to obtain more
information or hide unneeded
information from the logs,
respectively.

Language-
ext_*.
properties

ext-impl/src/
content

Language_*.
properties

It overwritesthe value of any key
to support I18N.

repository-
ext.xml

ext-impl/src/
com/liferay/
portal/jcr/
jackrabbit/
dependencies/

repository.
xml

It overwrites the configuration of
the Jackrabbit repository

Ext Plugin and Hooks

[144]

Advanced portal core API overwriting
In the Ext plugin, you can overwrite the portal core API. In some scenarios, you may
need to change the API of a method provided by Liferay's services, for example,
UserLocalService, GroupLocalService, and so on. In brief, you would be able
to overwrite portal-impl, portal-service, util-bridges, util-java, and
util-taglib, as shown in the following table:

Sample Package
path

Ext
location

Portal core
location

Description

LoginAction.java com.
liferay.
portal.
action

ext-
impl/src

portal-
impl/src

Overwrite portal-
impl;

Package path must
be exactly the same
as that of the portal
core

CounterLocal
ServiceUtil.java

com.
liferay.
counter.
service

ext-
service/
src

portal-
service/
src

Overwrite portal-
service

The class name must
be exactly the same
as that of the portal
core

MVCPortlet.java com.
liferay.
util.
bridges.
mvc

ext-
util-
bridges/
src

util-
bridges/
src

Overwrite util-
bridges

CookieUtil.java com.
liferay.
util

ext-
util-
java/src

util-
java/src

Overwrite util-
java

IncludeTag.java com.
liferay.
taglib.
util

ext-
util-
taglib/
src

util-
taglib/
src

Overwrite util-
taglib

As you can see, you would be able to overwrite anything in the portal
core API. To do so, keep in mind that package path in the Ext plugin
must be exactly the same as that of the portal core; and class case-
sensitive name must be exactly the same as that of the portal core. Note
that you should not add a new field to a model class or not use the
Service-Builder to generate new models and services in Ext plugins.

Chapter 4

[145]

Generally speaking, the best way to extend an existing service is by creating a
complementary custom service. It will invoke this custom service instead of the default
service. For example, you desire to change the implementation of the original service,
such as UserLocalServiceImpl, to call your custom one ExtUserLocalServiceImpl,
you can leverage the Ext plugin. To achieve this, override the Spring definition for
UserLocalServiceUtil in ext-spring.xml and point it to your implementation
ExtUserLocalServiceImpl, instead of the default UserLocalServiceImpl. Thus,
both ExtUserLocalServiceUtil and UserLocalServiceUtil will use the same
Spring bean, that is, ExtUserLocalServiceImpl.

Advanced portal web overwriting
Similarly, you can overwrite any files of portal web in the Ext plugin. ext-web/
docroot/html contains the code that will override the code in portal-web/
docroot/html. It covers JSP files, JavaScript files, HTML files, image files, CSS files,
and so on. The following table shows these files and their mappings to that
of portal-web:

Folder Sample Ext location Portal web
location

Description

common bottom-ext.
jsp

/common/
themes

/common/
themes

Overwrites common
JSP files and common
themes JSP files

icons calendar.
png

/icons /icons Overwrites image
files

js browser.css /js/editor/
ckeditor/
editor/
filemanager/
browser/
liferay

/js/editor/
ckeditor/
editor/
filemanager/
browser/
liferay

Overwrites CSS files

js ckconfig.js /js/editor/
ckeditor

/js/editor/
ckeditor

Overwrites JavaScript
files

js frmfolders.
html

/js/editor/
ckeditor/
editor/
filemanager/
browser/
liferay

/js/editor/
ckeditor/
editor/
filemanager/
browser/
liferay

Overwrites HTML
files

portal j_login.jsp /portal /portal Overwrite the UI in
the portal level like
aui, CSS, layout

Ext Plugin and Hooks

[146]

Folder Sample Ext location Portal web
location

Description

portlet login.jsp /portlet/
login

/portlet/
login

Overwrite out-of-the-
box portlets UI: JSP
and CSS

taglib init-ext.
jsp

/taglib /taglib Overwrite taglib UI:
aui, portlet, theme,
ui tag

themes portal_
normal.ftl

/themes/
classic/
templates

/themes/
classic/
templates

Overwrite default
themes: classic and
control panel

VAADIN styles.css /VAADIN/
themes/
liferay

/VAADIN/
themes/
liferay

Overwrite Vaadin
themes and widgets

Of course, you can overwrite files in other folders such as errors, layouttpl, wap,
and so on. The following table shows the folders with sample code:

Folder sample ext-web portal-web Description
errors 404.jsp /docroot /docroot 404 error page
custom 1_2_1_

columns.
tpl

/docroot/
layouttpl

/docroot/
layouttpl

Layout template
custom file

standard pop_up.tpl /docroot/
layouttpl

/docroot/
layouttpl

Layout template
standard files

common init.jsp /docroot/
wap

/docroot/wap WAP theme
common JSP

portal layout.
jsp

/docroot/
wap

/docroot/wap WAP theme portal
layout JSP

templates portal_
normal.vm

/docroot/
wap/themes

/docroot/
wap/themes

WAP default theme
VM

jsp _servlet_
context_
include.
jsp

/docroot/
WEB-INF

/docroot//
WEB-INF

Include JSP servlet
context

As you can see, the Ext plugin is the most powerful tool to extend the portal core.
You can do almost anything in the Ext plugin, including generating services, models,
and SQL scripts.

Chapter 4

[147]

Note that support for Service-Builder in Ext plugins will be
deprecated in future versions, thus it is not recommended to
use Service-Builder in Ext plugins.

Ext plugins are designed to override the portal core code that cannot be done with
hooks, layout templates, portlets, or themes. The Ext plugin is not meant to contain
new custom services. Thus try to migrate service.xml of 5.x to a portlet plugin.

By the way, if you are using ext-ejb instead of ext-impl, you must first upgrade
to Liferay 5.2 and then migrate your code to the Ext plugin.

Upgrading a legacy Ext environment
The Ext plugin is an evolution of the extension environment provided in 5.2 and
previous versions. Thus, the extension environment needs to be migrated into
the Ext plugin.

Ant target upgrade-ext within ext/build.xml provides capability to upgrade
the old extension environment into the Ext plugin. Supposed that the old extension
environment folder is /workspace/ext, and the Ext plugin name is hello-world,
you can run the following Ant target.

ant upgrade-ext -Dext.dir=/workspace/ext -Dext.name=hello-world -Dext.
display.name="Hello World"

As you can see, ext.dir is a command line argument to the location of the old
Extension environment, such as /workspace/ext, ext.name is the name of the Ext
plugin that you want to create, like hello-world, and ext.display.name is the
display name, saying "Hello World".

This task will build an Ext plugin from a legacy Ext environment. The files in the
directory, denoted by ${ext.dir}, will be copied into the Ext plugin directory
named ${ext.name}-ext. The property ${ext.dir} must point to a legacy Ext
environment and the Ext plugin directory named ${ext.name}-ext must not
already exist.

After executing the Ant target upgrade-ext, you would see the logs taking files
from the Ext environment and copying them into the equivalent directory within
the Ext plugin.

Ext Plugin and Hooks

[148]

What's happening?
The Ant target upgrade-ext has been defined in build.xml as follows:

<target name="upgrade-ext">
<!-- see details in build.xml -->
<copy todir="${ext.name}-ext/docroot/WEB-INF/ext-impl/src"
failonerror="false">
 <fileset dir="${ext.dir}/ext-impl/src" />
</copy>
<copy todir="${ext.name}-ext/docroot/WEB-INF/ext-lib/global"
failonerror="false">
 <fileset dir="${ext.dir}/ext-lib/global" />
</copy>
<!-- see details in build.xml -->
</target>

As you can see in the preceding code, it takes files from the Ext environment and
copies them into the equivalent directory within the Ext plugin.

In addition, you would find other Ant targets such as create specified in build.
xml, and more Ant targets defined in build-common-plugin.xml such as merge,
deploy, direct-deploy, compile, build-wsdd, build-service, build-db, build-
client, and so on.

Deploy processes
In general, there are at least three deploying approaches: sandbox deploy, auto
deploy, and hot deploy. The real deploy process could start from sandbox deploy
or auto deploy first, then goes to the hot deploy. It could also start from hot deploy
directly, like using the portlet Plugins Installation in the Control Panel.

In particular, there are two methods for deploying and redeploying Ext plugins in
production: redeploying plugin WAR file and generating an aggregated WAR file.

The method redeploying plugin WAR file can be used in any application server that
supports auto deploy such as Tomcat, JBoss, and so on. The only artifact that needs
to be transferred to the production system is the .war file, produced using the Ant
target deploy. To do so, you need to copy the Ext plugin .war into the auto deploy
directory. Once the Ext plugin is detected and deployed, restart the portal server.

Chapter 4

[149]

The method of generating an aggregated WAR file can be used for application
servers that don't support auto deploy such as WebSphere, Weblogic, and so on. All
Ext plugins are merged before deployment to production, so that a single .war file
will contain the portal plus the changes from Ext plugins. To do so, you can deploy
the Ext plugin first to the portal Tomcat bundle. Once it is deployed, you could create
a .war file by zipping the folder $CATALINA_HOME/webapps/ROOT. In particular,
you need to copy all the libraries from the directory $CATALINA_HOME/lib/ext,
associated with all the Ext plugins, to the application server's global class-path.

Note that we must be careful, because Weblogic randomly reads
WEB-INF/lib libraries, so we have 50 percent of changes that
our Ext plugin can deploy. If Weblogic read portal-impl.jar
first, then we would not see the changes on the site.

What's happening?
After deployment, you would see the results of the Ext plugin in the application
server. The following table shows the original files in the Ext plugin and targets
files in the application server:

Ext plugin
location

Application server location Description

ext-service/
src

$CATALINA_HOME/lib/ext/
ext-${ext.name}-ext-
service.jar

Overwrite portal service

ext-lib/
global/
ojdbc14.jar

$CATALINA_HOME/lib/ext/
ojdbc14.jar

Overwrite global lib

ext-lib/
portal/
commons-
configuration.
jar

$PORTAL_ROOT_HOME/
WEB-INF/lib/ commons-
configuration.jar

Overwrite portal lib

ext-impl/src $PORTAL_ROOT_HOME/WEB-
INF/lib/ ext-${ext.name}-
ext-impl.jar

Overwrite the portal
implementation

ext-util-
bridges/src

$PORTAL_ROOT_HOME/WEB-
INF/lib/ ext-${ext.name}-
ext-util-bridges.jar

Overwrite the portal bridges
utilities

ext-util-java/
src

$PORTAL_ROOT_HOME/WEB-
INF/lib/ ext-${ext.name}-
ext-util-java.jar

Overwrite the portal Java
utilities

Ext Plugin and Hooks

[150]

Ext plugin
location

Application server location Description

ext-util-
taglib/src

$PORTAL_ROOT_HOME/WEB-
INF/lib/ ext-${ext.name}-
ext-util-taglib.jar

Overwrite the portal taglib
utilities

ext-web/
docroot/html/
common/themes/
bottom-ext.jsp

$PORTAL_ROOT_HOME/ html/
common/themes/bottom-
ext.jsp, bottom-ext.jsp.
backup

The original file ${file.
name} is renamed to ${file.
name}.backup.

ext-web/
docroot /WEB-
INF/struts-
config-ext.xml

$PORTAL_ROOT_HOME/WEB-
INF/ struts-config-ext.
xml, struts-config-ext.
xml.backup

If the same file doesn't exist,
add this file directly as we did
with liferay-portlet-
ext.xml, portlet-ext.xml,
and tiles-defs-ext.xml.
Otherwise, the original file
${file.name} is renamed to
${file.name}.backup.

An XML file named ext-${ext.name}-ext.xml was generated in $PORTAL_ROOT_
HOME/WEB-INF. The following is a snippet of the Ext plugin "hello-world":

<ext-info>
 <servlet-context-name>hello-world-ext</servlet-context-name>
 <files>
 <file>ext-impl/classes/com/liferay/portal/action/LoginAction.class
 </file>
 <!-- see details in ext-${ext.name}-ext.xml -->
 </files>
</ext-info>

Deployer
In fact, the portal provides a service interface Deployer as follows:

public void copyDependencyXml(String fileName, String targetDir)
throws Exception;
// see details in Deployer.java
public void updateWebXml(File webXml, File srcFile, String
displayName, PluginPackage pluginPackage)throws Exception;

As shown in the preceding code, the Deployer provides interfaces to copy
dependency XML, JAR files, property files, TLD files, and XML files.

Chapter 4

[151]

The interface Deployer was implemented by the abstract class BaseDeployer, and is
furthermore extended by ExtDeployer, HookDeployer, LayoutTemplateDeployer,
PortletDeployer, ThemeDeployer, and WebDeployer.

Note that if you deploy your plugin, the deployer will unpack
it, change web.xml and other XML files, and pack it again.
If you directly copy the WAR file to the folder webapps, the
plugin won't work.

Sandbox deploy
Sandbox deploy requires a directory, which is defined in the class SandboxDeployDir.
The portal specified the following properties for sandbox deploy in portal.
properties:

sandbox.deploy.listeners=\
// see details in portal.properties
sandbox.deploy.dir=${liferay.home}/sandbox
sandbox.deploy.interval=10000

As shown in the preceding code, sandbox-style plugins are limited to portlet and
theme. In addition, you can enable/disable the sandbox-style plugin development
as well. The portal also sets the directory ${liferay.home}/sandbox to scan for
sandbox style plugins, and it sets the interval in milliseconds on how often to scan
the directory for changes.

Actually, the SandboxDeployDir class defined the methods to handle the preceding
settings, and it has the following methods:

getDeployDir()
getInterval()
getListeners()
// see details in SandboxDeployDir.java
start()
stop()

The SandboxHandler interface defines the following interfaces: deploy, undeploy,
and getdisplayName:

public static final String SANDBOX_MARKER = "-SANDBOX-";
// see details in SandboxHandler.java
public void undeploy(File dir) throws SandboxDeployException;

Ext Plugin and Hooks

[152]

The interface SandboxHandler was implemented by the class BaseSandboxHandler
and extended by PortletSandboxHandler and ThemeSandboxHandler. In
particular, BaseSandboxHandler uses Deployer as its construction parameter.

The class SandboxDeployScanner uses the class SandboxDeployerDir to auto scan
plugins in the folder ${liferay.home}/sandbox, while setting the interval
in milliseconds.

In addition, the utility class SandboxDeployUtil defined a set of functions such as
getDir, registerDir, and unregisterDir. Of course, you can leverage this utility
in your plugins for the sandbox deploy.

public static SandboxDeployDir getDir(String name) {}
public static void registerDir(SandboxDeployDir sandboxDeployDir) {}
public static void unregisterDir(String name) {}

Sandbox deploy listener
The sandbox deploy listener, SandboxDeployListener, defines the following
interfaces: deploy and undeploy.

public void deploy(File dir) throws SandboxDeployException;
public void undeploy(File dir) throws SandboxDeployException;

The SandboxDeployListener was implemented by the classes
PortletSandboxDeployListener and ThemeSandboxDeployListener only. This
is the reason that why the sandbox deploy currently only supports the plugins
theme and portlet. If you need support on other plugin types such as Ext and hook,
you can write your own custom classes such as ExtSandboxDeployListener
and HookSandboxDeployListener, implementing the interface
SandboxDeployListener.

Auto deploy
Similar to the sandbox deploy, auto deploy requires a directory, which is defined
in the class autoDeployDir. The portal specified the following properties for auto
deploy in portal.properties:

auto.deploy.listeners=\
 com.liferay.portal.deploy.auto.ExtAutoDeployListener,\
 com.liferay.portal.deploy.auto.HookAutoDeployListener,\
 // see details in portal.properties
auto.deploy.enabled=true
auto.deploy.deploy.dir=${liferay.home}/deploy
auto.deploy.dest.dir=
// see details in portal.properties

Chapter 4

[153]

As shown in the preceding code, the property auto.deploy.deploy.dir sets the
directory to scan for layout templates, hooks, Ext, portlets, webs, and themes to auto
deploy. The property auto.deploy.dest.dir sets the directory where auto deployed
WAR files are copied. The application server or servlet container must know how
to listen on that directory. Different containers have different hot deploy paths. For
example, Tomcat listens on ${catalina.base}/webapps whereas JBoss listens on
${jboss.server.home.dir}/deploy. The property auto.deploy.dest.dir sets
a blank directory to automatically use the application's server-specific directory.

The property auto.deploy.custom.portlet.xml is set to true if you want the
deployer to rename portlet.xml to portlet-custom.xml. This is only needed
when deploying the portal on WebSphere 6.1.x with a version before 6.1.0.7,
since WebSphere's portlet container will try to process a portlet at the same time
that Liferay is trying to process a portlet.

The property, auto.deploy.tomcat.conf.dir, sets the path to Tomcat's
configuration directory. This property is used to auto deploy exploded WAR files.
Tomcat context XML fields found in the auto deploy directory will be copied to
Tomcat's configuration directory. The context XML file must have the attribute
docBase pointing to a valid WAR directory.

The property auto.deploy.tomcat.lib.dir sets the path to Tomcat's global class
loader. Note that this property is only used by Tomcat in a standalone environment.

In fact, the class AutoDeployDir defined the methods to handle the preceding
settings, and it has following methods:

getDeployDir()
getDestDir()
getInterval()
start()
stop()

The class AutoDeployScanner uses the class AutoDeployerDir to auto scan plugins
in the folder ${liferay.home}/deploy, with the interval set in milliseconds.

Similar to the class SandboxDeployUtil, the utility class AutoDeployUtil defined
a set of functions such as getDir, registerDir, and unregisterDir. Obviously,
you can leverage this utility in your plugins for the auto deploy feature.

public static autoDeployDir getDir(String name) {}
public static void registerDir(AutoDeployDir autoDeployDir) {}
public static void unregisterDir(String name) {}

Ext Plugin and Hooks

[154]

Auto deploy listener
Similar to the hot deploy listener HotDeployListener, the interface
AutoDeployListener defined an interface deploy to auto deploy plugins.

public void deploy(File file) throws AutoDeployException;

The interface AutoDeployListener was implemented in the abstract class
BaseAutoDeployListener. This abstract class provides a set of functions,
as shown in the following table:

Methods Input Conditions Description
isExtPlugin File file.getName().contains("-ext") Test if it is an

Ext plugin
isHookPlugin File isMatchingFile(file, "WEB-

INF/liferay-plugin-package.
properties") && (file.getName().
contains("-hook")) && (!file.
getName().contains("-portlet"))

Test if it is a
hook plugin
and not a
portlet plugin

isThemePlugin File isMatchingFile(file, "WEB-INF/
liferay-look-and-feel.xml") ||

(isMatchingFile(file, "WEB-
INF/liferay-plugin-package.
properties") && file.getName().
contains("-theme"))

Test if it is a
theme plugin

isWebPlugin File isMatchingFile(file, "WEB-
INF/liferay-plugin-package.
properties") && file.getName().
contains("-web")

Test if it is a
web plugin

isMatchingFile File,
String

!isMatchingFileExtension(file) Test if a file is
matched with
the target file

isMatchingFile
Extension

File fileName.endsWith(".war") ||
fileName.endsWith(".zip")

Test if a
filename has
the extensions
.war or .zip

The class BaseAutoDeployListener was extended in a set of classes
such as ExtAutoDeployListener, HookAutoDeployListener,
layoutTemplateAutoDeployListener, PortletAutoDeployListener,
ThemeAutoDeployListener, and WebAutoDeployListener. This is the reason
that auto deploy supports all plugins types such as Ext, hook, layout-template,
portlet, and web.

Chapter 4

[155]

Auto deployer
The interface AutoDeployer defines the interface autoDeploy as follows:

public void autoDeploy(String file) throws AutoDeployException;

This interface (AutoDeployer) was implemented by a set of classes, such as
ExtAutoDeployer, ExtAutoListener, HookAutoDeployer, HookAutoListener,
PortletAutoDeployer, PortletAutoListener, and so on. Moreover, the class
ExtAutoDeployer extends the class ExtDeploy and implements the interface
AutoDeployer.

The class ExtDeployer extends the abstract class BaseDeployer. More
specifically, the method named getExtraContent defined the Ext context
listener ExtContextListener as follows:

StringBundler sb = new StringBundler(6);
// see details in ExtContextListener.java
sb.append("<listener>");
sb.append("<listener-class>");
sb.append("com.liferay.portal.kernel.servlet.ExtContextListener");
sb.append("</listener-class>");
sb.append("</listener>");
return sb.toString();

In particular, the abstract class BaseDeployer consumes the class ExtRegistry and
provides a set of methods, as shown in the following table. Note that the table does
not provide a full list of methods. For example, a set of methods such as deploy,
deployDirectory, deployFile, and so on, is not included.

Methods References and Conditions Description
addExtJar ExtRegister,

DeployUtil;

"ext-" +
servletContextName
+ resource.
substring(3);

Add a prefix ext-

addRequiredJar DeployUtil; Add the required JAR files

Ext Plugin and Hooks

[156]

Methods References and Conditions Description
checkArguments ServerDetector;

baseDir, destDir,
appServerType,
jbossPerfix

Application server types:

ServerDetector.GERONIMO_ID,
ServerDetector.GLASSFISH_
ID, ServerDetector.JBOSS_ID,
ServerDetector.JONAS_ID,
ServerDetector.JETTY_ID,
ServerDetector.OC4J_ID,
ServerDetector.RESIN_ID,
ServerDetector.TOMCAT_ID,
ServerDetector.WEBLOGIC_ID,
ServerDetector.WEBSPHERE_ID

copyDependency
Xml

DeployUtil; Copy dependency XML files

copyJars ServerDetector; Copy JARs
copyPortal
Dependencies

StringUtil,
PortalUtil,
DeployUtil;

Copy portal dependencies: jars,
tdls, commons-logging*.jar,
log4j*.jar

copyProperties copyDependencyXml Copy properties: log4j.
properties, logging.
properties

copyTlds FileUtil;

auiTaglibDTD,
portletTaglibDTD,
portletExtTaglibDTD,
securityTaglibDTD,
themeTaglibDTD,
uiTaglibDTD,
utilTaglibDTD

Copy TLD files:

liferay-aui.tld, liferay-
portlet.tld, liferay-
portlet-ext.tld, liferay-
security.tld, liferay-theme.
tld, liferay-ui.tld, liferay-
util.tld

copyXmls ServerDetector; Copy XML files: geronimo-web.
xml or weblogic.xml or ibm-
web-ext.xmi;

and web.xml

Hot deploy
The portal specified the following property for hot deploy in portal.properties:

hot.deploy.listeners=\
 com.liferay.portal.deploy.hot.PluginPackageHotDeployListener,\
 com.liferay.portal.deploy.hot.ExtHotDeployListener,\

Chapter 4

[157]

 com.liferay.portal.deploy.hot.HookHotDeployListener,\
 // see details in portal.properties
 com.liferay.portal.deploy.hot.MessagingHotDeployListener

As shown in the preceding code, hot-deploy supports most plugins types, including
Ext, hook, layout-template, portlet, plus plugin package, theme loader,
and messaging.

The class HotDeployEvent defined a set of methods, specifying the context class
loader, dependent servlet context names, plugin packages, and servlet content
as follows.

public HotDeployEvent(ServletContext servletContext, ClassLoader
contextClassLoader) {}
public ClassLoader getContextClassLoader() { }
// see details in HotDeployEvent.java
protected void initDependentServletContextNames(){}

Based on the class HotDeployEvent, the utility class HotDeployUtil defined a set
of functions such as fireDeployEvent, fireUnDeployEvent, registerListener,
reset, setCapturePrematureEvents, and unregisterListersener(s). Obviously,
you can leverage this utility in your plugins for hot deploy.

public static void fireDeployEvent(HotDeployEvent event) {}
public static void fireUndeployEvent(HotDeployEvent event) {}
// see details in HotDeployUtil.java
public static void unregisterListeners() {}

Hot deploy listener
Based on the class HotDeployEvent, the interface HotDeployListener defined
interfaces invokeDeploy and invokeUndeploy to invoke deploy or undeploy
events, respectively.

public void invokeDeploy(HotDeployEvent event) throws
HotDeployException;
public void invokeUndeploy(HotDeployEvent event) throws
HotDeployException;

The interface was implemented in the abstract class BaseHotDeployListener,
extended in a set of classes such as ExtHotDeployListener, HookHotDeployListener,
layoutTemplateHotDeployListener, MessagingHotDeployListener,
PluginPackageHotDeployListener, PortletHotDeployListener,
ThemeHotDeployListener, and ThemeLoaderHotDeployListener. This is the reason
that hot deploy supports most plugins types, such as Ext, hook, layout-template,
and portlet, plus the plugin packages, theme loader and messaging. As you can see,
the hot deploy does not support the plugin type web.

Ext Plugin and Hooks

[158]

Let's have a deep look at the class ExtHotDeployListener. The class
HookHotDeployListener will be addressed in detail in the coming section;
while the rest of the classes will be addressed in the coming chapters.

The class ExtHotDeployListener extends the abstract class
BaseHotDeployListener and implements the interface HotDeployListener. It
uses the class ExtRegistry to register the plugin type Ext. The class ExtRegistry
defined the following methods: getFiles, unregisterExt, getConflicts,
getServletContextNames, isRegistered, registerExt, and registerPortal.

public static Set<String> getFiles(String servletContextName){}
public static void unregisterExt(String servletContextName){}
// see details in ExtRegistry.java
public static void registerPortal(ServletContext servletContext)
throws Exception {}

The class ExtHotDeployListener implements the methods invokeDeploy and
invokeUndeploy, as shown in the following table:

Methods Method references Description
doInvokeDeploy
(event)

invokeDeploy(HotDeployEvent event) Deploy the
Ext plugin

doInvokeUndeploy
(event)

invokeUndeploy(HotDeployEvent event) Undeploy the
Ext plugin

copyJar installExt(ServletContext
servletContext, ClassLoader
portletClassLoader)

Copy JAR files

copyWebFiles installExt(ServletContext
servletContext, ClassLoader
portletClassLoader)

Copy web
files

mergeWebXml installExt(ServletContext
servletContext, ClassLoader
portletClassLoader)

Merge web
XML files

removeJar installExt(ServletContext
servletContext, ClassLoader
portletClassLoader)

Remove JAR
files

resetPortal
WebFiles

uninstallExt (String
servletContextName)

Reset portal
web files

resetWebXml uninstallExt (String
servletContextName)

Reset web
XML files

installExt doInvokeDeploy(HotDeployEvent event) Install the Ext
uninstallExt doInvokeUndeploy(Hot

DeployEvent event)
Uninstall the
Ext

Chapter 4

[159]

Class loader proxy
Class loader proxy would be useful to share plugins services among different
plugins. For example, let's say you have two plugins, chat-portlet and
knowledge-base-portlet. Each one has its own WAR file. One of them, let's say
chat-portlet, has a service named StatusLocalService and the service layer
StatusLocalServiceUtil. Moreover, the second portlet, let's say knowledge-base-
portlet, needs to use the service StatusLocalServiceUtil.getStatuses in order
to find out who is online or offline. The class loader proxy class can achieve these
requirements easily.

Note that the portal core and built-in portlets services were deployed on
an application server global lib, while the plugin services were deployed
on the plugin's lib by default. It is also possible that you can deploy the
plugin services on an application server global lib, thus these services will
be shared among other plugins, even the portal core and built-in portlets.

The class com.liferay.portal.kernel.util.ClassLoaderProxy was defined
in the portal-service. Thus this class is accessible in plugins. The class
ClassLoaderProxy provides the following methods and attributes:

public ClassLoaderProxy(Object obj, ClassLoader classLoader){}
// see details in ClassLoaderProxy.java
private String _className;

As shown in the preceding code, the method invoke uses a class named
MethodHandler, which implements the interface Serializable. These classes
serialize model entities across web applications, so that they can be shared.

The class MethodHandler defines the following methods and attributes:

public Object[] getArguments() {}// see details in MethodHandler.java
private MethodKey _methodKey;

Generating the class loader proxy
In service_clp.ftl, Service-Builder specified the following code for the class
${entity.name}${sessionTypeName}ServiceClp, where ${entity.name}
represents an entity name such as Status in chat-portlet, ${sessionTypeName}
represents the session type name such as local, and Clp is short for the class
loader proxy.

public ${entity.name}${sessionTypeName}ServiceClp(ClassLoaderProxy
 classLoaderProxy) {
 _classLoaderProxy = classLoaderProxy;

Ext Plugin and Hooks

[160]

 <#list methods as method>
 <#if !method.isConstructor() &&
 method.isPublic() && serviceBuilder.isCustomMethod(method)>
 <#assign parameters = method.parameters>
 _${method.name}MethodKey${method_index} =
 new MethodKey(_classLoaderProxy.getClassName(),
 "${method.name}"
 <#list parameters as parameter>
 , ${serviceBuilder.getLiteralClass(parameter.type)}
 </#list>
);
 </#if>
 </#list>
}

The preceding code is the pattern for the ServiceClp class. For example, the class
KBArticleLocalServiceClp has been generated as follows:

public class KBArticleLocalServiceClp implements KBArticleLocalService
{
public KBArticleLocalServiceClp(ClassLoaderProxy classLoaderProxy) {
_classLoaderProxy = classLoaderProxy;
_addKBArticleMethodKey0 = new MethodKey(_classLoaderProxy.
getClassName(), "addKBArticle", com.liferay.knowledgebase.model.
KBArticle.class);
// see details in the KBArticleLocalServiceClp.java

Once we run Ant target build-service, the class ${entity.
name}${sessionTypeName}ServiceClp will be generated for each entity such
as ArticleLocalServiceClp in knowledge-base-portlet, where the class
ClassLoaderProxy is the only parameter for the construction method.

In service_util.ftl, service builder defines the following ClassLoaderProxy for
the class ${entity.name}${sessionTypeName}ServiceUtil:

import com.liferay.portal.kernel.util.ClassLoaderProxy;

// see details in service_util.ftl
ClassLoader portletClassLoader = (ClassLoader)PortletBeanLocatorUtil.
locate(ClpSerializer.getServletContextName(), "portletClassLoader");
ClassLoaderProxy classLoaderProxy = new ClassLoaderProxy(object,
${entity.name}${sessionTypeName}Service.class.getName(),
portletClassLoader);

Therefore, in the utility class ${entity.name}${sessionTypeName}ServiceUtil
such as ArticleLocalServiceUtil from knowledge-base-portlet, the class
ClassLoaderProxy was imported and generated in the method getService.

Chapter 4

[161]

Sharing plugin services
In general, there are two approaches to share plugins services across plugins. Let's
say you have two plugins: chat-portlet and knowledge-base-portlet; the plugin
chat-portlet has a service named StatusLocalService and its service layer is
StatusLocalServiceUtil, while the plugin knowledge-base-portlet needs to
use the service StatusLocalServiceUtil.getStatuses. Thus you would have the
following approach to share these plugins services:

Put the service JAR chat-portlet-service.jar in the folder $CATALINA_HOME/
lib/ext and remove the service JAR chat-portlet-service.jar in the folder
$PLUGINS_SDK_HOME/portlets/chat-portlet/docroot/WEB-INF/lib.

Hooks
Hook is a plugin type and is the preferred way to customize the portal core features.
Hooks are hot deployable and more forward compatible, filling a wide variety of the
common needs for overriding the portal core functionality. Thus, whenever possible,
hooks should be used in place of Ext plugins. Common scenarios which require the
use of a hook are the need to perform custom actions on portal startup or user login,
overwrite or extend portal JSPs, modify portal properties, replace a portal service
with a custom implementation, modify search summaries, queries, and indexes,
override struts actions, modify servlet filters and mappings, and so on.

In summary, there are several kinds of hooks: portal properties hooks, language
properties hooks, custom JSP hooks, indexer post processor hooks, service wrapper
hooks, servlet filters and servlets mapping hooks, and struts actions hooks.

Hook plugin project default template
Liferay plugins SDK provides a hook plugin project default template hook_tmpl. The
hook plugin project folder name is represented as @hook.name@-hook. For example,
the variable @hook.name@ has a value named mongodb for the Mongodb hook. Under
the folder @hook.name@-hook, there is a folder named docroot and the XML file
build.xml. As you can see, build.xml has the following code:

<project name="@hook.name@-hook" basedir="." default="deploy">
 <import file="../build-common-hook.xml" />
</project>

Ext Plugin and Hooks

[162]

As you must have noticed, the only special part of the hook plugin project is the
XML file liferay-hook.xml under the folder docroot/WEB-INF. Moreover, the rest
of the project structure is the same or similar to that of other plugin types such as
portlet, web, and so on. Therefore, the hook plugin can be standalone or stay inside
other plugin project such as portlet or web.

Of course, you can specify hooks as a standalone plugin or as part of web plugin.
Here we are going to add the hooks capability in the portlet knowledge-base-
portlet. We do this by adding liferay-hook.xml in the folder $PLUGINS_SDK_
HOME/portlets/knowledge-base-portlet/docroot/WEB-INF with the following
lines. Note that the following is a sample code, and we will add more features in the
coming sections:

<hook>
 <portal-properties>portal.properties</portal-properties>
 <language-properties>content/Language_en.properties
 </language-properties>
 <struts-action>
 <struts-action-path>/portal/knowledge_base/find_article
 </struts-action-path>
 <struts-action-impl>
 com.liferay.knowledgebase.hook.action.FindArticleAction
 </struts-action-impl>
 </struts-action>
</hook>

As shown in the preceding code, it specified the portal properties hook portal-
properties, language properties hook language-properties, and struts actions
hook struts-action. You can find the liferay-hook DTD in svn://svn.liferay.
com/repos/public/portal/trunk/definitions/liferay-hook_6_1_0.dtd.

Liferay hook DTD
In the DTD file, liferay-hook_6_1_0.dtd, the element hook is the root of the
deployment descriptor for a liferay-hook descriptor that is used to define different
kinds of hooks. The element hook is defined as follows:

<!ELEMENT hook (portal-properties?, language-properties*,
 custom-jsp-dir?, custom-jsp-global?,
 indexer-post-processor*, service*,
 servlet-filter*, servlet-filter-mapping*,
 struts-action*)
>

Chapter 4

[163]

As shown in the preceding element type declarations, the element hook can have
no more than one portal-properties child element, one or more language-
properties child element, no more than one custom-jsp-dir and custom-jsp-
global children element, and one or more indexer-post-processor, service,
servlet-filter, servlet-filter-mapping, and struts-action children elements.

Note that the order of these children elements is critical.
When children elements are declared in a sequence
separated by commas, these children elements must
appear in the same sequence in the document.

The children elements portal-properties, language-properties, custom-jsp-
dir, and custom-jsp-global were defined as follows. As you can see, there is no
child element required:

<!ELEMENT portal-properties (#PCDATA)>
<!ELEMENT language-properties (#PCDATA)>
<!ELEMENT custom-jsp-dir (#PCDATA)>
<!ELEMENT custom-jsp-global (#PCDATA)>

The preceding elements with only parsed character data are declared with #PCDATA
inside parentheses. The element indexer-post-processor has the following
children element declarations:

<!ELEMENT indexer-post-processor (
 indexer-class-name, indexer-post-processor-impl)>
<!ELEMENT indexer-class-name (#PCDATA)>
<!ELEMENT indexer-post-processor-impl (#PCDATA)>

As shown in the preceding declarations, it declares only one occurrence of an
element. For example, the element indexer-post-processor has two children
elements, namely, indexer-class-name and indexer-post-processor-impl. The
child elements indexer-class-name and indexer-post-processor-impl must
occur once, and only once, inside the element indexer-post-processor.

Similarly, the element service has two children elements, namely, service-type
and service-name. As shown in the following declarations, the children elements
service-type and service-name must occur once, and only once, inside the
element service:

<!ELEMENT service (
 service-type, service-impl)>
<!ELEMENT service-type (#PCDATA)>
<!ELEMENT service-impl (#PCDATA)>

Ext Plugin and Hooks

[164]

The elements servlet-filter and servlet-filter-mapping were added in the
DTD file liferay-hook_6_1_0.dtd. This allows adding new filters from hooks,
as well as overriding existing filters. As shown in the following declarations, the
element servlet-filter can have one, and only one, element servlet-filter-
name and servlet-filter-impl. The child element init-param must occur never
or once inside the element servlet-filter:

<!ELEMENT servlet-filter (servlet-filter-name,
 servlet-filter-impl, init-param*)>
<!ELEMENT servlet-filter-name (#PCDATA)>
<!ELEMENT servlet-filter-impl (#PCDATA)>
<!ELEMENT init-param (param-name, param-value)>
<!ELEMENT param-name (#PCDATA)>
<!ELEMENT param-value (#PCDATA)>

The preceding example declares that the children elements, param-name and
param-value, must occur once, and only once, inside the element init-param.

In addition, new filter mappings can be added to new or existing filters as follows:

<!ELEMENT servlet-filter-mapping (servlet-filter-name,
 (after-filter | before-filter)?, url-pattern+, dispatcher*)>
<!ELEMENT after-filter (#PCDATA)>
<!ELEMENT before-filter (#PCDATA)>
<!ELEMENT url-pattern (#PCDATA)>
<!ELEMENT dispatcher (#PCDATA)>

The ? sign in the preceding example declares that the child element after-filter
or before-filter can occur never or once inside the element servlet-filter-
mapping. The * sign declares that the child element dispatcher can occur never
or once inside the element servlet-filter-mapping. While the + sign declares
that the child element url-pattern must occur once or more inside the element
servlet-filter-mapping.

Similar to the element service, the element struts-action has two children
elements, namely, struts-action-path and struts-action-impl. As shown in
the following declarations, the children elements, service-type and service-name,
must occur once, and only once, inside the element struts-action:

<!ELEMENT struts-action (
 struts-action-path, struts-action-impl)>
<!ELEMENT struts-action-path (#PCDATA)>
<!ELEMENT struts-action-impl (#PCDATA)>

Chapter 4

[165]

Portal properties hooks
Through portal properties hooks, we can change certain configuration properties
dynamically and inject behavior into the hooks defined in the portal.properties
file. All of the hooks that we have discussed here will revert, and their targeted
functionality will be disabled immediately as soon as they are undeployed from
the portal. Moreover, each type of hook can easily be disabled through the portal.
properties file. Note that a portal.properties file must exist in the plugin
WEB-INF/src folder, such as $PLUGINS_SDK_HOME/portlets/knowledge-base-
portlet/docroot/WEB-INF/src, if the portal properties hooks are enabled. As
mentioned earlier, you can leverage Ext plugins to override portal properties
through portal-ext.properties. However, the Ext plugins approach is not
recommended; instead, you should leverage the portal.properties in a hook.

For example, let's say you have enabled the portal properties hooks in the XML
liferay-hook.xml under the folder $PLUGINS_SDK_HOME/portlets/knowledge-
base-portlet/docroot/WEB-INF. You can modify the servlet.service.events.
pre portal property. In general, it is safe to modify these portal properties from
multiple hooks, and they won't interfere with one another. You can determine
which type a particular property will be by looking in portal.properties.

In addition to defining custom events, hooks can also override portal properties to
define custom actions, model listeners, validators, generators, content sanitizers,
upgrade processes, authentication public paths that don't require authentication,
and so on. As shown in the following code, it will override properties upgrade.
processes, auth.public.paths, servlet.service.events.pre, and value.
object.listener.com.liferay.portal.model.Group:

upgrade.processes=\
// see details in plugin's portal.properties
auth.public.paths=\
 /portal/knowledge_base/find_article
servlet.service.events.pre=com.liferay.knowledgebase.hook.events.
ServicePreAction
value.object.listener.com.liferay.portal.model.Group=com.liferay.
knowledgebase.hook.listeners.GroupListener

Note that not all portal properties can be overridden through a hook. The supported
properties are listed as follows. Of course, you can find these portal properties details
in the portal.properties:

admin.default.group.names
admin.default.role.names
admin.default.user.group.names
// see details in liferay-hook_6_1_0.dtd
users.screen.name.validator
value.object.listener.*

Ext Plugin and Hooks

[166]

You could find the same list through static String Array SUPPORTED_PROPERTIES
in the class HookHotDeployListener. Note that the class HookHotDeployListener
extends the class BaseHotDeployListener, implementing the interface PropsKeys.

Event handlers
Liferay portal has a few event handler connection points throughout its lifecycle.
These event handlers are designed to conveniently hook-in the custom logic. The
following table shows the available events:

Description Properties
Application startup events application.startup.events

Application shutdown events application.shutdown.events

Global startup events global.startup.events

Global shutdown events global.shutdown.events

Login events login.events.pre, login.events.post
Logout events logout.events.pre, logout.events.post
Servlet service events servlet.service.events.pre, servlet.

service.events.post

The portal properties hooks could perform custom actions on these events. These
event actions are defined in portal.properties, which could be overwritten by
the portal properties hooks.

The servlet service events include pre-service events and post-service events. The
pre-service events have an associated error page and will forward to that page if an
exception is thrown during the execution of the events. The pre-service events are
processed before Struts processes the request. The post-service events are processed
after Struts processes the request.

For instance, a guest user that signs in will cause the original portlet authentication
token to become stale. This could be fixed in the plugin by using a pre-service event
hook before Struts processes the request.

First, add the portal properties hook in the liferay-hook.xml as follows:

<hook>
 <portal-properties>portal.properties</portal-properties>
</hook>

Chapter 4

[167]

Then, add the following line in the portal.properties:

servlet.service.events.pre=com.liferay.knowledgebase.hook.events.
ServicePreAction

Finally, add the custom logic in ServicePreAction.java as follows:

public void run(HttpServletRequest request, HttpServletResponse
response) {
 try { doRun(request, response);
 } catch (Exception e) {_log.error(e, e); }
}
protected void doRun(HttpServletRequest request,
 HttpServletResponse response) throws Exception {
 ThemeDisplay themeDisplay = (ThemeDisplay)request.getAttribute(
 WebKeys.THEME_DISPLAY);
 //see details in ServicePreAction.java
 String redirect = HttpUtil.setParameter(
 themeDisplay.getURLCurrent(), "p_p_auth", actual_p_p_auth);
 response.sendRedirect(redirect);
}

As shown in the preceding code, the class ServicePreAction overwrites the
method run. Generally speaking, servlet service events should extend the abstract
class com.liferay.portal.kernel.events.Action. The Action class defined the
following methods:

public abstract void run(HttpServletRequest request,
 HttpServletResponse response) throws ActionException;
// see details in Action.java
public void run(RenderRequest renderRequest,
 RenderResponse renderResponse) throws ActionException {
 // see details in Action.java
}

Similarly, you can define custom actions such as post-service events, login pre-events
or post-events, and logout pre-events or post-events for using hooks. These custom
actions must extend the abstract class Action. In the same way, you can override
application startup or shutdown events and global startup or shutdown events while
these custom actions must extend the abstract class com.liferay.portal.kernel.
events.SimpleAction.

Ext Plugin and Hooks

[168]

Model listeners
Model listeners have similar behaviors to the portal event handlers, except that they
handle events with respect to models. As mentioned earlier, service builder will
generate model listeners for each entity.

For example, knowledge-based articles contain group IDs. When a specific group
is removed, associated knowledge-based articles should be removed accordingly.
This can be implemented through portal properties hooks in the plugin in the
following steps:

1. First, add the portal properties hook in the liferay-hook.xml as follows:
<hook>
 <portal-properties>portal.properties</portal-properties>
</hook>

2. Then, add the following line in portal.properties:
value.object.listener.com.liferay.portal.model.Group=com.liferay.
knowledgebase.hook.listeners.GroupListener

3. Finally, add the custom model listener class com.liferay.knowledgebase.
hook.listeners.GroupListener with the following code:

public void onBeforeRemove(Group group) throws
ModelListenerException {
 try {
 doOnBeforeRemove(group);
 } catch (Exception e) { throw new ModelListenerException(e); }
}
// see details in GroupListener.java
protected void doOnBeforeRemove(Group group) throws Exception {
 ArticleLocalServiceUtil.deleteGroupArticles(group.
getGroupId());
 // add custom logic
 TemplateLocalServiceUtil.deleteGroupTemplates(group.
getGroupId());
}

The preceding code shows that before the action Remove Group, the portal will
delete group-based articles and templates. Similarly, you can add custom logics
such as onAfterRemove. Furthermore, you would trigger actions on other model
listeners such as ContactListener, LayoutListener, LayoutSetListener,
PortletPreferencesListener, UserListener, UserGroupListener,
JournalArticle, JournalTemplate, and so on

Chapter 4

[169]

These listeners implement the com.liferay.portal.model.ModelListener
interface. You can add a listener for a specific class by setting the property value.
object.listener with a list of comma-delimited class names that implement
the interface ModelListener. These classes are pooled and reused and must be
thread-safe.

In general, the interface ModelListener defined the following methods in the table:

Model listener
function

Parameters Description

onAfterAdd
Association

Object classPK, String
associationClassName,Object
associationClassPK

Triggered after the action
Add Association

onAfterCreate T model Triggered after the action
Create

onAfterRemove T model Triggered after the action
Remove

onAfterRemove
Association

Object classPK, String
associationClassName,Object
associationClassPK

Triggered after the action
Remove Association

onAfterUpdate T model Triggered after the action
Update

onBeforeAdd
Association

Object classPK, String
associationClassName,Object
associationClassPK

Triggered before the action
Add Association

onBeforeCreate T model Triggered before the action
Create

onBeforeRemove T model Triggered before the action
Remove

onBeforeRemove
Association

Object classPK, String
associationClassName,Object
associationClassPK

Triggered before the action
Remove Association

onBeforeUpdate T model Triggered before the action
Update

Ext Plugin and Hooks

[170]

The following table shows event handlers hooks implementation, value object
listener implementation, authentication token implementation, CAPTCHA engine
implementation, sanitizer implementation, and so on:

Properties Sample Interface Description
application.
startup.
events

AppStartupAction

ChannelHubAppStartup
Action

com.liferay.
portal.
kernel.
events.
SimpleAction

Application
startup event
that runs once
for every
website instance
of the portal
that initializes.

application.
shutdown.
events

AppShutdownAction

ChannelHubAppShutdown
Action

com.liferay.
portal.
kernel.
events.
SimpleAction

Application
shutdown
event that
runs once for
every website
instance of
the portal that
shuts down.

global.
startup.
events

GlobalStartupAction com.liferay.
portal.
kernel.
events.
SimpleAction

Global startup
event that runs
once when
the portal
initializes.

global.
shutdown.
events

GlobalShutdownAction com.liferay.
portal.
kernel.
events.
SimpleAction

Global
shutdown event
that runs once
when the portal
shuts down.

servlet.
service.
events.pre

ServicePreAction com.liferay.
portal.
kernel.
events.Action

The pre-service
events process
before Struts
processes the
request.

servlet.
service.
events.post

ServicePostAction com.liferay.
portal.
kernel.
events.Action

The post-service
events process
after Struts
processes the
request.

Chapter 4

[171]

Properties Sample Interface Description
login.
events.pre

LoginPreAction com.liferay.
portal.
kernel.
events.Action

The login
pre-events
process before
processing a
login request.

login.
events.post

ChannelLoginPostAction,
DefaultLandingPage
Action, LoginPostAction

com.liferay.
portal.
kernel.
events.Action

The login post-
events process
after processing
a login request.

logout.
events.pre

LogoutPreAction com.liferay.
portal.
kernel.
events.Action

The logout
pre-events
process before
processing a
logout request.

logout.
events.post

LogoutPostAction,
DefaultLogoutPage
Action,
SiteMinderLogoutAction

com.liferay.
portal.
kernel.
events.Action

The logout
post-events
process after
processing a
logout request.

value.
object.
listener.*

ContactListener,
LayoutListener,

LayoutSetListener,
PortletPreferences
Listener, UserListener,
UserGroupListener,
JournalArticle,
JournalTemplate

com.liferay.
portal.model.
ModelListener

Portal model
listener, a
listener for a
specific class
by setting
the property
value.
object.
listener with
a list of comma-
delimited class
names.

auth.token.
impl

SessionAuthToken com.liferay.
portal.
security.
auth.
AuthToken

This class is
used to prevent
CSRF attacks.

Ext Plugin and Hooks

[172]

Properties Sample Interface Description
captcha.
engine.impl

ReCaptchaImpl,
SimpleCaptchaImpl

com.liferay.
portal.
kernel.
captcha.
Captcha

Generates
captchas.
reCAPTCHA
uses an external
service that
must be
configured
independently
but provides
an audible
alternative
which makes
the captcha
accessible to
the visually
impaired.

sanitizer.
impl

DummySanitizerImpl com.liferay.
portal.
kernel.
sanitizer.
Sanitizer

This class is
used to sanitize
content.

The following table shows the document library hook implementation, document
library repository implementation, mail hook implementation, upgrade processes,
convert processes, and so on.

Properties Sample Interface Description
dl.hook.impl AdvancedFileSystem

Hook, CMISHook,
FileSystemHook, JCRHook,
S3Hook, DocumentumHook

com.liferay.
documentlibrary.
util.Hook

The
document
library server
will use this
to persist
documents.

dl.repository.
impl

CMISAtomPub
Repository, CMISWebServices
Repository

com.liferay.
portal.kernel.
repository.
BaseRepositoryImpl

Chapter 4

[173]

Properties Sample Interface Description
mail.hook.impl CyrusHook, DummyHook,

FuseMailHook, GoogleHook,
SendmailHook, ShellHook

com.liferay.mail.
util.Hook

The mail
server will
use this class
to ensure
that the mail
and portal
servers are
synchronized
on user
information.

upgrade.
processes

UpgradeProcess_6_1_0 com.liferay.
portal.upgrade.
UpgradeProcess

These classes
will run on
startup to
upgrade
older data to
match with
the latest
version.

convert.
processes

ConvertDocumentLibrary,
ConvertDocumentLibrary
ExtraSettings,
ConvertPermissionAlgorithm,
ConvertPermissionTuner,
ConvertWikiCreole

com.liferay.
portal.convert.
ConvertProcess

Document
library,
database,
permission
algorithm,
and tuner
conversion

What's happening?
The method doInvokeDeploy of the class HookHotDeployListener initializes
properties, auto logins, model listeners, and events in a specific order. Note that
events have to be loaded last, as they may require model listeners to have been
registered. The following sample code demonstrates this:

// see details in HookHotDeployListener.java
if (portalPropertiesConfiguration != null) {
 Properties portalProperties
 portalPropertiesConfiguration.getProperties();
 if (portalProperties.size() > 0) {
 _portalPropertiesMap.put(servletContextName, portalProperties);
 initPortalProperties(servletContextName, portletClassLoader,
 portalProperties);
 // see details in HookHotDeployListener.java
 }
 }
}

Ext Plugin and Hooks

[174]

As shown in the preceding code, it initializes properties, auto logins, model listeners,
and events in a specific order.

Language properties hooks
Language properties hooks allow us to install new translations or override messages
in existing translations. Language properties hooks allow you to change any of the
messages displayed by the portal to satisfy your needs. To do so, you can create a
language file for the language whose messages you want to customize, and then
refer to it in the liferay-hook.xml file. For example, to override the translations to
English and German, the following two lines would be added to the file $PLUGINS_
SDK_HOME/portlets/knowledge-base-portlet/docroot/WEB-INF/liferay-
hook.xml:

<hook>
 <portal-properties>portal.properties</portal-properties>
 <language-properties>content/Language_en.properties
 </language-properties>
 <language-properties>content/Language_de.properties
 </language-properties>
 <!-- see details in liferay-hook.xml -->
</hook>

For example, you are going to rename Custom Attributes to Custom Fields in
the user editing mode or the organization editing mode of the Control Panel. You
can create the folder content under the plugin WEB-INF/src, and then you could
create the properties files Language_en.properties and Language_de.properties
under the plugin WEB-INF/src/content. Finally, add the following line at the end of
Language_en.properties:

custom-attributes=Custom Fields

The preceding code shows that the message key custom-attributes will have the
display text Custom Fields.

In the same way, add the following line at the end of Language_de.properties:

custom-attributes=Kundenspezifische Felder

The preceding code shows that the message key custom-attributes will have the
display text Kundenspezifische Felder.

Chapter 4

[175]

Multiple languages
The Liferay portal supports up to 44 languages, called locales. The portal has the
following default settings for languages in the portal.properties file:

locales=ar_SA,eu_ES,bg_BG,ca_AD,ca_ES,zh_CN,zh_TW,hr_HR,cs_CZ,nl_
NL,nl_BE,en_US,en_GB,et_EE,fi_FI,fr_FR,gl_ES,de_DE,el_GR,iw_IL,hi_
IN,hu_HU,in_ID,it_IT,ja_JP,ko_KR,nb_NO,fa_IR,pl_PL,pt_BR,pt_PT,ro_
RO,ru_RU,sr_RS,sr_RS_latin,sl_SI,sk_SK,es_ES,sv_SE,tr_TR,uk_UA,vi_VN

As shown in the preceding settings, the portal specifies the available locales. Of
course, this number is growing as supported languages are being added. How can
we add a new language, for example, be_BY Belarusian for Belarus? In brief, you
could add a new language in either the portal core or plugins. The following steps
could be used to add a language through plugins:

1. Add a locale such as be_BY in the property locales of the portal-ext.
properties.

2. Build a file named Language_be.properties through the Ant
target build-lang.

3. Add a translation from English to Belarusian in the file Language_
be.properties.

4. Hook the file Language_be.properties in the plugins.

Messages corresponding to a specific language are specified in the properties files
with filenames matching that of content/Language_${locale}.properties. Of
course, these values can also be overridden in the property files with filenames
matching that of content/Language-ext_${locale}.properties at the folder
$PORTAL_ROOT_HOME/WEB-INF/classes. Obviously, you can use a comma to
separate each entry. Note that all locales must use UTF-8 encoding.

Actually, you would find all language property files in the folder $PORTAL_SRC_
HOME/portal-impl/src/content. For each language, you would find one language
property file matched.

What's happening?
The method doInvokeDeploy of the class HookHotDeployListener initializes
language properties as follows:

LanguagesContainer languagesContainer = new LanguagesContainer();
_languagesContainerMap.put(servletContextName, languagesContainer);
List<Element> languagePropertiesElements = rootElement.elements(
 "language-properties");

Ext Plugin and Hooks

[176]

 for (Element languagePropertiesElement :
 languagePropertiesElements) {
 String languagePropertiesLocation =
 languagePropertiesElement.getText();
 try {
 URL url = portletClassLoader.getResource(
 languagePropertiesLocation);
 // see details in HookHotDeployListener.java
 }

In addition, the portal provides several language-related servlets such as
LanguageServlet and I18nServlet both extending HttpServlet.

For example, in LanguageServlet.java, it specifies the following code:

response.setHeader(HttpHeaders.CONTENT_DISPOSITION,
 _CONTENT_DISPOSITION);
 // see details in LanguageServlet.java
 private static final String _CONTENT_DISPOSITION =
 "attachment; filename=language.txt";

The preceding code fixes a cross-site scripting (XSS) vulnerability with the
LanguageServlet when using Internet Explorer (IE) because IE incorrectly
identifies the MIME type of a file. Thus an attacker cannot potentially exploit
this security vulnerability to insert malicious JavaScript into a page through the
LanguageServlet.

The I18nServlet automatically qualifies as language paths for better search engine
optimization (SEO). The following code snippet explains this:

String i18nLanguageId = request.getServletPath();
// see details in I18nServlet.java
String i18nPath = StringPool.SLASH + i18nLanguageId;
Locale locale = LocaleUtil.fromLanguageId(i18nLanguageId);

Note that each language requires an entry in the property locales and a servlet
mapping in web.xml for the servlet I18nServlet. For example, the language
German has the following servlet mapping in web.xml:

<servlet-mapping>
 <servlet-name>I18n Servlet</servlet-name>
 <url-pattern>/de/*</url-pattern>
</servlet-mapping>

Chapter 4

[177]

Custom JSP hooks
The custom JSP hooks provide a way to easily modify JSP files of the portal core
without having to alter the portal core. The folder /META-INF/custom_jsps must
exist in the folder docroot of the plugin, if the tag custom-jsp-dir is set as /META-
INF/custom_jsps.

Under the folder /META-INF/custom_jsps, the same folder structure, such as
html, as that of $PORTAL_ROOT_HOME/html will be used to override portal-core
JSP files with custom JSP files. In runtime, the original JSPs, such as ${name}.jsp
or ${name}.jspf, will be renamed as ${name}.portal.jsp or ${name}.portal.
jspf, respectively, under $PORTAL_ROOT_HOME/html. Similarly, the custom JSP files,
${name}.jsp or ${name}.jspf, will be copied to the $PORTAL_ROOT_HOME/html
folder.

For example, let's say you are going to override the view of the login portlet. You
can put the custom JSP file login.jsp of the plugin in the folder /META-INF/
custom_jsps/html/portlet/login. Moreover, add the following line in the
liferay-hook.xml file:

<root>
 <custom-jsp-dir>/META-INF/custom_jsps</custom-jsp-dir>
 <custom-jsp-global>true</custom-jsp-global>
</root>

During deployment, the portal will rename the original JSP login.jsp to login.
portal.jsp under the folder $PORTAL_ROOT_HOME/html/portlet/login first, and
then the portal will copy the custom JSP file login.jsp of the plugin in the folder /
META-INF/custom_jsps/html/portlet/login to the folder $PORTAL_ROOT_HOME/
html/portlet/login. More interestingly, you can include the renamed original JSP
as follows in the custom JSP file login.jsp of the plugin at /META-INF/custom_
jsps/html/portlet/login again.

<liferay-util:include page="/html/portlet/login/login.portal.jsp" />

Therefore, after deploying the hook plugin, you would see both login.jsp and
login.portal.jsp under the folder $PORTAL_ROOT_HOME/html/portlet/login.

The custom JSP hooks can globally set the tag custom-jsp-dir that will overwrite
portal-core JSP files. Of course, you can add the tag <custom-jsp-global>false</
custom-jsp-global> in the liferay-hook.xml file, so that it will not be applied
globally. Each group can choose to have that particular hook to be applied just for
that group.

Ext Plugin and Hooks

[178]

Custom JSP files and path mapping
The custom JSP directory /META-INF/custom_jsps must exist in the path of the JSP
file. In particular, the JSP filename must be a 100 percent match to that of the portal
web JSP filename, and the JSP file path must be a 100 percent match to that of the
portal web JSP file path. This means, only the matched JSP filename and path will be
activated. The following table shows the JSP file path mappings:

Hook JSP path Portal web JSP path Description
/META-INF/custom_
jsps

$PORTAL_SRC_HOME/
portal-web/docroot

Portal web doc root mapping

/html /html The folder HTML mapping
/html/common,

/html/common/themes

/html/common,

/html/common/themes

Common JSP files and JSP
files under the folder/themes

/html/portal,

/html/portal/
layout/edit,

/html/portal/
layout/view,

/html/portal/css/
portal,

/html/portal/css/
taglib

/html/portal,

/html/portal/layout/
edit,

/html/portal/layout/
view,

/html/portal/css/
portal,

/html/portal/css/
taglib

Portal JSP files
Portal layout edit JSP files
Portal layout view JSP files
Portal CSS JSP files
Portal CSS taglib JSP files

/html/portlet/
activities,

/html/portlet/
login,

/html/portlet/
workflow_tasks, and
so on

/html/portlet/
activites,

/html/portlet/login,

/html/portlet/
workflow_tasks, and
so on

Portal core portlets JSP files

/html/taglib/aui,

/html/taglib/
portlet,

/html/taglib/theme,

/html/taglib/ui

/html/taglib/aui,

/html/taglib/portlet,

/html/taglib/theme,

/html/taglib/ui

taglib aui JSP files
taglib portlet JSP files
taglib theme JSP files
taglib ui JSP files

Chapter 4

[179]

What's happening?
The custom JSP hooks that deploy and undeploy processes have been defined
in the class HookHotDeployListener. The method doInvokeDeploy of the class
HookHotDeployListener initializes custom JSP hooks as follows:

String customJspDir = rootElement.elementText("custom-jsp-dir");
if (Validator.isNotNull(customJspDir)) {
 boolean customJspGlobal = GetterUtil.getBoolean(
 rootElement.elementText("custom-jsp-global"), true);
 List<String> customJsps = new ArrayList<String>();
 String webDir = servletContext.getRealPath(StringPool.SLASH);
 getCustomJsps(servletContext, webDir, customJspDir, customJsps);
 if (customJsps.size() > 0) {
 // see details in HookHotDeployListener.java
 }
}

As shown in the preceding code, it first checks the tag custom-jsp-dir. If the value
of the tag is not NULL, it checks the tag custom-jsp-global, it gets custom JSP files,
adds these JSP files in the custom JSP bag, and initiates this JSP bag.

In particular, the method initCustomJspBag provides the following code. The
custom JSP files were handled in different ways, based on the value of the tag
custom-jsp-global.

String customJspDir = customJspBag.getCustomJspDir();
boolean customJspGlobal = customJspBag.isCustomJspGlobal();
List<String> customJsps = customJspBag.getCustomJsps();
String portalWebDir = PortalUtil.getPortalWebDir();
for (String customJsp : customJsps) {
 int pos = customJsp.indexOf(customJspDir);
 String portalJsp = customJsp.substring(
 pos + customJspDir.length(), customJsp.length());
 if (customJspGlobal) {
 File portalJspFile = new File(portalWebDir + portalJsp);
// see details in HookHotDeployListener.java }
 FileUtil.copyFile(customJsp, portalWebDir + portalJsp);
}
if (!customJspGlobal) {
 CustomJspRegistryUtil.registerServletContextName(servletContextNa
me);
}

Ext Plugin and Hooks

[180]

Indexer post processor hooks
The indexer post processor hooks implement a post processing system on top of the
existing indexer to allow modifying the search summaries, indexes, and queries. For
example, the class UserIndexer extends the abstract class BaseIndexer, implementing
the interface Indexer. The class UserIndexer specified the search summaries, indexes,
and queries. As you know, the class UserIndexer was defined in the portal-impl.
Moreover, new requirement says that you need to modify the search summaries,
indexes, and queries of portal users. This requirement can be satisfied through the
indexer post processor hooks of the plugin in the following steps:

1. First, add indexer post processor hooks to liferay-hook.xml as follows:
<hook>
 <indexer-post-processor>
 <indexer-model-name>com.liferay.portal.model.User
 </indexer-model-name>
 <indexer-post-processor-impl>
 com.liferay.knowledgebase.hook.indexer.
 UserIndexerPostProcessor
 </indexer-post-processor-impl>
 </indexer-post-processor>
</hook>

2. In this case, the tag indexer-model-name is the name of the model whose
indexer you wish to change and the tag indexer-post-processor-impl
is the name of your post processor class that implements com.liferay.
portal.kernel.search.IndexerPostProcessor.

3. Then, create the post processor class com.liferay.knowledgebase.hook.
indexer.UserIndexerPostProcessor with the following lines:

// see details in UserIndexerPostProcessor.java
public void postProcessDocument(Document document, Object obj)
 throws Exception {
 // add your own logic
 User user = (User)obj;
 // see details in UserIndexerPostProcessor.java
 document.addKeyword("projectTitles", user.getFullName());
}

Similarly, you would be able to overwrite other portal core indexers such as
PluginPackageIndexer, AssetIndexer, BlogsIndexer, CalIndexer (Calendar),
DLIndexer (Document Library), OrganizationIndexer, JournalIndexer,
MBIndexer (Message Boards), SCIndexer (Software Catalog), and WikiIndexer
in the plugins using the indexer post processor hooks.

Chapter 4

[181]

What's happening?
The interface IndexerPostProcessor defines the following functions:

public void postProcessContextQuery(
 BooleanQuery contextQuery, SearchContext searchContext)
 throws Exception;
public void postProcessDocument(Document document, Object obj)
 throws Exception;
// see details in IndexerPostProcessor.java
public void postProcessSummary(
 Summary summary, Document document, String snippet,
 PortletURL portletURL);

As you can see, the interface IndexerPostProcessor defined a set of function to
post process context query, document, full query, search query, and summary.

In fact, the method doInvokeDeploy of the class HookHotDeployListener initializes
indexer post processor hooks as follows:

List<Element> indexerPostProcessorElements = rootElement.elements(
"indexer-post-processor");
for (Element indexerPostProcessorElement :
 indexerPostProcessorElements) {
// see details in IndexerPostProcessor.java
Indexer indexer = IndexerRegistryUtil.getIndexer(indexerClassName);
IndexerPostProcessor indexerPostProcessor =
 // see details in IndexerPostProcessor.java
}

As shown in the preceding code, it first gets index post processors. Then, for each
indexer post processor, it finds the indexer, constructs an instance of the interface
IndexerPostProcessor, and then registers it in both the indexer and the indexer
post processor container.

Service wrappers hooks
The service wrapper hooks allow us to customize portal core services and models,
that is, service wrapper hooks can override portal core services and models. All
functionality provided by service builder is encapsulated behind a service layer,
accessed from the frontend layer. Thus, it is possible to change how a portal core
portlet behaves without changing the portlet itself by customizing the backend
services. The service wrapper hooks provide a way to customize these backend
services.

Ext Plugin and Hooks

[182]

In general, the service builder automatically generates dummy wrapper classes
for all of its services, for example, UserLocalServiceWrapper is created as a
wrapper of the UserLocalService, which is used to add, remove, and retrieve user
accounts. In order to modify the functionality of UserLocalService from the service
wrapper hook, you can create a class that extends from UserLocalServiceWrapper,
overriding its methods, and then use that class instead of the original one.

For example, to override UserLocalService, you can add the following lines in the
liferay-hook.xml file first:

<hook>
 <service>
 <service-type>com.liferay.portal.service.UserLocalService
 </service-type>
 <service-impl>
 com.liferay.knowledgebase.hook.service.impl.
 KBUserLocalServiceImpl
 </service-impl>
 </service>
</hook>

As shown in the preceding code, the service was specified by the tags service-type
and service-impl. The tag service-type provides the original service or model
in the portal core, and the tag service-impl provides customized portal service or
models, which will override the original service or model in the portal core. More
interestingly, you can specify many service tags, if needed.

Then, add custom implementations of the model KBUserImpl and the service
KBUserLocalServiceImpl as follows:

// add custom logic
public String getFirstName() {
 // see details in KBUserImpl
 return super.getFirstName();
}

Note that the custom implementation class KBUserImpl extends the model wrapper class
UserWrapper:

//add custom logic
public User getUserById(long userId)
 throws PortalException, SystemException {
 // see details in KBUserLocalServiceImpl.java
 return new KBUserImpl(user);
}

Chapter 4

[183]

Note that the custom implementation class
KBUserLocalServiceImpl extends the service
wrapper class UserLocalServiceWrapper.

Similarly, you would be able to change other portal portlet services such as
OrganizationLocalService, GroupLocalService, LayoutLocalService,
IGImageLocalService, DLLocalServic, CalEventLocalService, and so on.

What's happening?
The service wrapper hooks' deploy and undeploy processes have been defined in
the class HookHotDeployListener, too. The method doInvokeDeploy of the class
HookHotDeployListener initializes service wrapper hooks as follows:

List<Element> serviceElements = rootElement.elements("service");
// see details in HookHotDeployListener.java
for (Element serviceElement : serviceElements) {
 String serviceType = serviceElement.elementText("service-type");
 String serviceImpl = serviceElement.elementText("service-impl");
 Class<?> serviceTypeClass =
 portletClassLoader.loadClass(serviceType);
 Class<?> serviceImplClass =
 portletClassLoader.loadClass(serviceImpl);
 // see details in HookHotDeployListener.java
 }
}

As shown in the preceding code, it first gets elements for the tag service. Then, for
each tag service, it finds the values of the tags service-type and service-impl.
Finally, it registers custom service wrappers with service type, service impl, service
impl constructor, service proxy, and it adds custom service wrappers in the
service container.

In the undeploy process, it will remove the custom service wrapper from the service
container and it will remove the related servlet context from service constructors, too.

Servlet filter and servlet filter mappings hooks
The portal created a delegation filter to handle all servlet-filtering needs. This allows
dynamically adding new servlet filters and servlet filters mapping, or overriding
existing servlet filters and servlet filters mapping. Current filters and mappings
are moved to the XML file liferay-filter-web.xml, read by this filter. Basically,
this filter takes over the job of the servlet container and allows optimizing filters in
addition to adding new filters dynamically.

Ext Plugin and Hooks

[184]

For instance, to add the new servlet filter Knowledge Base Filter, you can leverage
servlet filters and servlet filters mapping hooks. Firstly, you can add servlet filters
and servlet filters mappings in the liferay-hook.xml as follows:

<hook>
 <servlet-filter>
 <servlet-filter-name>Knowledge Base Filter</servlet-filter-name>
 <servlet-filter-impl>
 com.liferay.knowledgebase.hook.filter.KBFilter
 </servlet-filter-impl>
 <init-param>
 <param-name>knowledge</param-name>
 <param-value>base</param-value>
 </init-param>
 </servlet-filter>
 <servlet-filter-mapping>
 <servlet-filter-name>Knowledge Base Filter</servlet-filter-name>
 <before-filter>SSO Open SSO Filter</before-filter>
 // see details in liferay-hook.xml
 </servlet-filter-mapping>
</hook>

After that, you should provide the servlet filter implementation class com.liferay.
knowledgebase.hook.filter.KBFilter. Note that the servlet filter class does
implement the Filter interface as follows:

public void destroy() {
 // add custom logic
}
public void doFilter(
 ServletRequest servletRequest, ServletResponse servletResponse,
 FilterChain filterChain)
 throws IOException, ServletException {
 String uri = (String)servletRequest.getAttribute(
 WebKeys.INVOKER_FILTER_URI);
 // see details in KBFilter.java
 filterChain.doFilter(servletRequest, servletResponse);
}
public void init(FilterConfig filterConfig) {
 // add custom logic
}

Chapter 4

[185]

As you can see, the class KBFilter must implement the methods of the Filter
interface: destroy, init, and doFilter. Filters perform filtering in the doFilter
method. Every filter, such as KBFilter, has access to a FilterConfig object from
which it can obtain its initialization parameters such as knowledge—a reference to
the ServletContext which it can use.

What's happening?
In fact, the method doInvokeDeploy of the class HookHotDeployListener initializes
servlet filter hooks and servlet filter mapping hooks as follows:

ServletFiltersContainer servletFiltersContainer =
 _servletFiltersContainerMap.get(servletContextName);
// see details in HookHotDeployListener.java
List<Element> servletFilterElements = rootElement.elements(
 "servlet-filter");
for (Element servletFilterElement : servletFilterElements) {
 String servletFilterName = servletFilterElement.elementText(
 "servlet-filter-name");
 String servletFilterImpl = servletFilterElement.elementText(
 "servlet-filter-impl");
 List<Element> initParamElements = servletFilterElement.elements(
 "init-param");
 // see details in HookHotDeployListener.java
}
List<Element> servletFilterMappingElements = rootElement.elements(
"servlet-filter-mapping");
for (Element servletFilterMappingElement :
 servletFilterMappingElements) {
 String servletFilterName =
 servletFilterMappingElement.elementText(
 "servlet-filter-name");
 String afterFilter = servletFilterMappingElement.elementText(
 "after-filter");
 String beforeFilter = servletFilterMappingElement.elementText(
 "before-filter");
 // see details in HookHotDeployListener.java
}

As shown in the preceding code, it first handles the tag servlet-filter and its
children elements servlet-filter-name, servlet-filter-impl, and init-param.
Then, it handles the tag servlet-filter-mapping, and its child elements such as
servlet-filter-name, after-filter, before-filter, and so on.

Ext Plugin and Hooks

[186]

Struts actions hooks
The struts action hook provides capabilities to override existing struts actions and/
or add new struts actions from plugins. With the struts action hook, you can either
add new struts actions to the portal core from plugins or override any existing action
within the portal core from plugins.

We will create a new simple hook in the plugin knowledge-base-portlet. This
hook will create a new struts action path, such as /portal/knowledge_base/find_
article, and wrap an existing struts action related to the struts action path such as
/message_boards/view.

1. First, edit liferay-hook.xml and add the following fragment:
<hook>
 <portal-properties>portal.properties</portal-properties>
 <struts-action>
 <struts-action-path>/portal/knowledge_base/find_article
 </struts-action-path>
 <struts-action-impl>
 com.liferay.knowledgebase.hook.action.FindArticleAction
 </struts-action-impl>
 </struts-action>
 <struts-action>
 <struts-action-path>/message_boards/view
 </struts-action-path>
 <struts-action-impl>
 com.liferay.knowledgebase.hook.action.KBStrutsPortletAction
 </struts-action-impl>
 </struts-action>
</hook>

2. As shown in the preceding code, it specified at least three kinds of hooks:
portal properties hooks, custom JSP hooks, and struts action hooks.

3. Secondly, add the following line in $PLUGINS_SDK_HOME/portlets/
knowledge-base-portlet/docroot/WEB-INF/src/portal.properties:
auth.public.paths=/portal/knowledge_base/find_article

4. The property auth.public.paths specifies public paths that don't
require authentication.

5. Thirdly, create the JSP in $PLUGINS_SDK_HOME/portlets/knowledge-base-
portlet/docroot/admin/view_article.jsp.

Chapter 4

[187]

6. Last but not least, create struts actions: com.liferay.knowledgebase.
hook.action.KBStrutsPortletAction and FindArticleAction, as
described in the liferay-hook.xml file. The FindArticleAction extending
BaseStrutsAction, which implements StrutsAction, is used as an
implementation of the struts action path /portal/knowledge_base/find_
article.

public String execute(StrutsAction originalStrutsAction,
 HttpServletRequest request, HttpServletResponse response)
 throws Exception {
 // see details in KBStrutsPortletAction.java
 long resourcePrimKey = ParamUtil.getLong(request,
 "resourcePrimKey");
 boolean maximized = ParamUtil.getBoolean(request, "maximized");
 // add your own logic
 return null;
}

The preceding code overwrites the execute method. You should add your own logic
for the execute method based on your own requirements. In FindArticleAction,
you would find other functions such as getAdminPortletURL, getArticle,
getArticleURL, getDisplayPortletURL, and so on.

The KBStrutsPortletAction extending BaseStrutsPortletAction, which
implements StrutsPortletAction, will actually wrap ViewAction of the Message
Boards portlet with the struts action path /message_boards/view.

// add your own implementation for processAction and serveResource
public String render(StrutsPortletAction originalStrutsPortletAction,
 PortletConfig portletConfig, RenderRequest renderRequest,
 RenderResponse renderResponse) throws Exception {
 // add your own logic here
 // see details in KBStrutsPortletAction.java
 return originalStrutsPortletAction.render(
 portletConfig, renderRequest, renderResponse);
}

The preceding code overwrites the method render. You should add your own logic
for the method render based on your own requirements. Of course, you should
overwrite the methods processAction and serveResource based on real use cases.

Ext Plugin and Hooks

[188]

What's happening?
There are two interfaces related to struts actions, namely, com.liferay.portal.
kernel.struts.StrutsAction and StrutsPortletAction. The StrutsAction is
used for regular struts actions such as /c/portal/update_password and /c/portal/
update_terms_of_use, and StrutsPortletAction is used for those that are used
from portlets such as /message_boards/view for the portlet Message Boards.

The interface StrutsAction has specified the following methods:

public String execute(HttpServletRequest request,
 HttpServletResponse response) throws Exception;
// see details in strutsAction.java
public String execute(StrutsAction originalStrutsAction,
 HttpServletRequest request, HttpServletResponse response)
 throws Exception;

Similarly, the interface StrutsPortletAction has specified the following functions:

public void processAction(PortletConfig portletConfig,
 ActionRequest actionRequest,ActionResponse actionResponse)
 throws Exception;
 // see details in StrutsPortletAction.java
public void serveResource(
 StrutsPortletAction originalStrutsPortletAction,
 PortletConfig portletConfig, ResourceRequest resourceRequest,
 ResourceResponse resourceResponse)
 throws Exception;

In fact, the method doInvokeDeploy of the class HookHotDeployListener initializes
struts actions as follows:

StrutsActionsContainer strutsActionContainer =
 _strutsActionsContainerMap.get(servletContextName);
// see details in HookHotDeployListener.java
List<Element> strutsActionElements =
 rootElement.elements("struts-action");
for (Element strutsActionElement : strutsActionElements) {
 String strutsActionPath = strutsActionElement.elementText(
 "struts-action-path");
 String strutsActionImpl = strutsActionElement.elementText(
 "struts-action-impl");
 // see details in HookHotDeployListener.java
}

Chapter 4

[189]

In brief, there are several kinds of hooks like portal properties, language properties,
custom JSP, indexer post processors, service wrappers, servlet filters and servlet
mappings, and struts actions. The class HookHotDeployListener specified how
hooks work, as shown in the following table:

Hook types Deploy/un-deploy Specific methods Description
portal
properties

invokeDeploy

doInvokeDeploy

initPortalProperties,

initAuthFailures,

initAutoDeployListeners,

initAutoLogins,

initAuthenticators,

initHotDeployListeners,

initModelListeners,

initEvents

add properties, reset
portal properties,
and register public
paths, auth token,
CAPTCHA engine
impl, control panel
default entry
class, Document
Library hook and
repository impl,
LDAP attributes
transformer impl,
mail hook impl,
sanitizer impl, user
e-mail address
generator, user full
name generator and
validator, user screen
name generator and
validator, release info
build number and
upgrade processes;

register auto deploy
listener,

register auto login,
and so on

portal
properties

invokeUndeploy

doInvokeUndeploy

destroyPortalProperties Destroy portal
properties

language
properties

invokeDeploy

doInvokeDeploy

getLocale

languagesContainer.add
Language

Add languages
into the languages
container

language
properties

invokeUndeploy

doInvokeUndeploy

languagesContainer.
unregisterLanguages

Remove languages
into the languages
container

custom JSP invokeDeploy

doInvokeDeploy

initCustomJspBag Add JSP files

Ext Plugin and Hooks

[190]

Hook types Deploy/un-deploy Specific methods Description
custom JSP invokeUndeploy

doInvokeUndeploy

destroyCustomJspBag Remove JSP files

indexer post
processor

invokeDeploy

doInvokeDeploy

indexer.
registerIndexerPost
Processor;

indexerPostProcessor
Container.
registerIndexerPost
Processor

Register the indexer
post processor in
both the indexer and
the container

indexer post
processor

invokeUndeploy

doInvokeUndeploy

indexerPostProcessor
Container.
unregisterIndexerPost
Processor

Unregister the
indexer post
processor in the
container

service
wrappers

invokeDeploy

doInvokeDeploy

initServices Initiate services

service
wrappers

invokeUndeploy

doInvokeUndeploy

destroyServices Destroy service
wrappers

servlet-
filter and
servlet-filter-
mappings

invokeDeploy

doInvokeDeploy

servletFiltersContainer.
registerFilter

servletFiltersContainer.
registerFilterMapping

Register servlet filters
and servlet filter
mappings

servlet-
filter and
servlet-filter-
mappings

invokeUndeploy

doInvokeUndeploy

servletFiltersContainer.
unregisterFilterMappings

Unregister servlet
filter mappings

struts
actions

invokeDeploy

doInvokeDeploy

initStrutsAction;

StrutsActionContainer.
registerStrutsAction;

Proxy.newProxyInstance

Elements: struts-
action, struts-action
path, struts-action-
impl

struts
actions

invokeUndeploy

doInvokeUndeploy

StrutsActionContainer.
unregisterStrutsActions

unregisterClpMessage
Listeners

Remove servlet
content name from
the struts action
container map,
unregister the
struts action, and
unregister the CLP
message listeners.

Chapter 4

[191]

Summary
This chapter first introduced Ext plugins. It then addressed hooks. You would
have learned about Ext plugin and project default templates, upgrading a legacy
Ext environment, deploying processes, class loader proxy, hooks and project
default templates, portal properties hooks, language properties hooks and multiple
languages support, custom JSP hooks, indexer post processors, service wrappers
hooks, servlet filters and servlet mappings hooks, and struts action hooks.

In the next chapter, we will address the enterprise content management system ECM.

Enterprise Content
Management

An Enterprise Content Management System (ECM) is a formalized means
of organizing and storing content, documents, details, and records, related to
the organizational processes of an enterprise. ECM manages the organization's
unstructured information content—images, documents, records, and so on,
with all its diversity of format, authoring, versioning, permissions, and location.

When building the Knowledge Base, articles, images, documents, videos, and
records would be part of the content. The portal provides a tool called Document
and Media Library, allowing individuals to upload and manage images, documents,
and videos to websites.

This chapter will introduce image management first. Then it will address
implementation of basic documents and videos management in the Document and
Media Library. In particular, this chapter will show how to customize features of
the Document and Media Library. It will then address multiple repositories, CMIS
(Content Management Interoperability Services) consumers and producers. Finally,
it will address web scanning and OCR (Optical Character Recognition)-based
Record Management (RM).

By the end of this chapter, you will have learned the following:
•	 Image management
•	 Basic document management
•	 Video management
•	 Multiple repository and WebDAV
•	 CMIS consumers and producers
•	 Web-scanning and OCR-based record management
•	 Content relationship, content authoring, and content archiving

Enterprise Content Management

[194]

Image management
Document imaging is a process to capture, store, scale, and reprint images. The
Document and Media Library provides a centralized repository to store images
used throughout the portal, and it assigns a unique URL to each image. Image is one
of the default document types (Basic Document, Image, and Video) in the Document
and Media Library (DL). This section will show the kernel of image management.

Models and services
The following diagram depicts an overview of image management conceptually.
An image (special document) called DL Image has a set of folders (called DLFolder)
associated with them. Each folder may have many sub folders associated with them.
Thus the folders and their sub folders form a hierarchy structure. Each folder (or
sub folder) may have a set of file entries called DLFileEntry. Each DL Image has a
unique URL that is to be referred to. More interestingly, each DL Image can have a
thumbnail and, optionally, two custom thumbnails. In a real world scenario, each DL
Image can have at least two images or up to four images associated with it:

Imagec

JournalArticleImagec

DLFileEntryc

DLFolderc<<enumeration>>
small image / icon image

*

*

*

DLFileEntry table stores image metadata. The real image is stored in the table
Image. The table Image not only stores images of the DL Image, but also images from
other entities, for example, JournalArticleImage, Journal Article (web content),
small image, page's icon image, and so on.

Models
The portal has defined the entity Image in the portal service, service.xml svn://
svn.liferay.com/repos/public/portal/trunk/portal-impl/src/com/
liferay/portal/service.xml, as follows:

<!-- PK fields -->
<column name="imageId" type="long" primary="true" />
<!-- Audit fields -->

Chapter 5

[195]

<column name="modifiedDate" type="Date" />
<!-- Other fields -->
<column name="text" type="String" />
<column name="type" type="String" />
<column name="height" type="int" />
<column name="width" type="int" />
<column name="size" type="int" />

As shown in the previous code, an image is defined with the primary key column
imageId, audit field modifiedDate, and other fields like text, type, height, width,
and size. Each image would have a mime type, height, width, and size. Image
binary would be stored in the field text if DBStore was in use. In versions prior to
6.1, DatabaseHook, DLHook, and FileSystemHook got supported. Since 6.1, only
DLStore is supported.

The entity DLFolder has been defined in the DL service.xml svn://svn.liferay.
com/repos/public/portal/trunk/portal-impl/src/com/liferay/portlet/
documentlibrary/service.xml as follows:

<!-- PK fields -->
<column name="folderId" type="long" primary="true" />
<!-- Group instance -->
<column name="groupId" type="long" />
<!-- Audit fields -->
<!-- Other fields -->
<column name="repositoryId" type="long" />
<column name="mountPoint" type="boolean" />
<column name="parentFolderId" type="long" />
<column name="name" type="String" />
<column name="description" type="String" />

As you can see, the primary key of the entity is defined as folderId, the group
instance is added as groupId, and the audit fields include companyId, userId,
createDate, and modifiedDate. Each folder has its name and description. The
folder hierarchy structure is defined as the column named parentFolderId. If the
column parentFolderId has the value 0, it means that this is a root folder.

Similarly, the entity DLFileEntry has been defined in the DL service.xml
as follows:

<!-- PK fields -->
<column name="fileEntryId" type="long" primary="true" />
<!-- see details in service.xml -->
<!-- Other fields -->
<column name="repositoryId" type="long" />
<column name="folderId" type="long" />

Enterprise Content Management

[196]

<column name="name" type="String" />
<column name="description" type="String" />
<column name="smallImageId" type="long" />
<column name="largeImageId" type="long" />
<column name="custom1ImageId" type="long" />
<column name="custom2ImageId" type="long" />

As shown in the previous code, the primary key of the entity is defined as imageId,
and the group instance and audit fields have the same columns as that of the entity
DLFolder. Each image has its name, description, and a folder—defined as the
column folderId. If the column folderId has the value 0, it means that the image
is stored in the root folder.

There are four columns for each image: smallImageId (pointing to the thumbnail
image), largeImageId (pointing to the original image), custom1ImageId, and
custom2ImageId (pointing to custom-defined images).

Thumbnails are reduced-size versions of pictures, which help in recognizing and
organizing them. The DL automatically creates thumbnails for images, when they are
uploaded (almost all image extensions got supported, such as BPM, PNG, GIF, JPG,
TIF). And in addition, another two thumbnails with different custom sizes can be
created, namely, custom1 and custom2.

The following table shows models (DLFolder, DLFileEntry, and Image), interfaces,
and their implementation:

Model Interface Implementation Description
com.liferay.
portlet.
documentlibrary.
model.DLFolder

DLFolderModel extends
BaseModel<DLFolder>

DLFolderImpl,
DLFolderModelImpl

Document and
Media Library
folder model
and its metadata

com.liferay.
portlet.
documentlibrary.
model.
DLFileEntry

DLImageModel extends
BaseModel<DLFileEntry>

DLFileEntryImpl,
DLFileEntryModelImpl

Document and
Media Library
File Entry model
and its metadata

com.liferay.
portal.model.
Image

ImageModel extends
BaseModel<Image>

ImageImpl,
ImageModelImpl

Global image
model and its
metadata like
type, height,
weight, size, and
so on.

Chapter 5

[197]

Base model
The base interface, BaseModel, is designed for all the model classes. This interface
should never be used directly. The interface BaseModel<T> extends the interfaces
ClassedModel, Cloneable, Comparable<T>, and Serializable.

The base interface BaseModel has defined following methods:

public void setNew(boolean n);
public void setCachedModel(boolean cachedModel);
public void setEscapedModel(boolean escapedModel);
// see details in BaseModel.java
public String toXmlString();

The previous code shows that it determines/sets if this model instance doesn't yet
exist in the database, it determines/sets if this model instance was retrieved from the
entity cache, and it determines/sets if this model instance is escaped, meaning that
all strings returned from getter methods are HTML safe.

The interface com.liferay.portal.model.ClassObject defines a set of functions
to get the model class, model class name, and primary key object as follows:

public interface ClassedModel
{
 public Class<?> getModelClass();
 public String getModelClassName();
 public Serializable getPrimaryKeyObj();
}

As shown in the previous code, getModelClassName() and getModelClass()
got added into the interface BaseModel. Since all classes have this data anyways,
the portal just exposes it as a friendly method. For example, DLFileEntry.
getModelClassName() will return com.liferay.portlet.documentlibrary.
model.DLFileEntry.

By the way, the interface AuditedModel got added too. Most of the base models
have companyId, createDate, modifiedDate, userId, and userName. If a model
like DLFileEntry has those fields, then it will also implement the AuditedModel
interface as follows:

public interface AuditedModel
{
 public long getCompanyId();
 // see details in AuditedModel.java
 public void setUserUuid(String userUuid);
}

Enterprise Content Management

[198]

If a BaseModel is an AuditedModel, and if it has a group ID, then it is also
a GroupedModel—it means that its data can be grouped into groups such as
sites/communities or organizations.

public interface GroupedModel extends AuditedModel
{
 public long getGroupId();
}

The previous code shows that the interface GroupedModel extends the interface
AuditedModel, and a group instance was added via group ID in the interface
GroupedModel.

Services
The service builder generated a set of services for Image, DLFileEntry, and
DLFolder. The following table shows the service interface, utilities, and service
implementation:

Service Utility Implementation Description
DLFileEntryLocal
Service

DLFileEntryLocal
ServiceUtil

DLFileEntryLocal
ServiceImpl

DLFileEntry local
service call. There
is no permission
check

DLFileEntryService DLFileEntry
ServiceUtil

DLFileEntryServiceImpl DLFileEntry
service call.
Adds Permission
check on the
entity instance
DLFileEntry

DLFolderLocal
Service

DLFolderLocal
ServiceUtil

DLFolderLocal
ServiceImpl

DLFolder
LocalService
call. There is no
permission check

DLFolderService DLFolder
ServiceUtil

DLFolderServiceImpl DLFolder
Service call.
Adds Permission
check on the
entity instance
DLFolder

Chapter 5

[199]

Service Utility Implementation Description
ImageLocalService ImageLocal

ServiceUtil
ImageLocalServiceImpl Image

LocalService
call. There is no
permission check

ImageService ImageLocalService ImageServiceImpl Image Service
call. Adds
Permission check
on the entity
instance Image

As shown in the previous table, both LocalService and Service provide a similar
function. The first one provides the LocalService call without permission checking;
the second one provides the Service call with permission checking. Depending on
your own requirements, you would be able to leverage one of them.

For example, both classes ImageLocalServiceImpl.java and
ImageServiceImpl.java provide the function getImage(long imageId). The
class ImageLocalServiceImpl.java provides method getImage, used for the
LocalService call, which doesn't check for permission, as follows:

public Image getImage(long imageId)
{
 try
{
 if (imageId > 0)
{
 return imagePersistence.findByPrimaryKey(imageId);
}
}
 // see details in ImageLocalServiceImpl.java
}

The class ImageServiceImpl.java provides the same method. However, it is used
for the Service call, which does check for permission, as follows:

public Image getImage(long imageId) throws PortalException,
SystemException
{
 DLFileEntryPermission.check(getPermissionChecker(),
 imageId, ActionKeys.VIEW);
 return imageLocalService.getImage(imageId);
}

Enterprise Content Management

[200]

Once an Image was uploaded in the Document and Media Library, you would be
able to use it and its thumbnails in your JSP files. In order to use the thumbnails,
you could do the following:

DLFileEntry fileEntry ; // getting the DLFileEntry
Image largeImage = ImageServiceUtil.getImage(fileEntry.
getLargeImageId());
Image smallImage = ImageServiceUtil.getImage(fileEntry.
getSmallImageId());
Image custom1Image = ImageServiceUtil.getImage(fileEntry.
getCustom1ImageId());
Image custom2Image = ImageServiceUtil.getImage(fileEntry.
getCustom2ImageId());

The previous code shows the methods for getting thumbnails—original image,
smallImage, custom1Image, and custom2Image.

Please note that you can use ImageLocalServiceUtil, other
than ImageServiceUtil, if a permission check is not required.

Usage
There are at least two ways to use images from the Document and Media Library
that are as follows:

•	 Call DLFileEntryLocalServiceUtil, DLFolderLocalServiceUtil or
DLFileEntryServiceUtil, DLFolderServiceUtil

•	 Call ImageLocalServiceUtil or ImageServiceUtil

For example, for each Knowledge Base article, it was required to insert images into
the content via the WYSIWYG editor. Thus, you can leverage the first approach
by calling DLFileEntryLocalServiceUtil, DLFolderLocalServiceUtil or
DLFileEntryServiceUtil, DLFolderServiceUtil. Once you have got a set of
images, you could build your own presentation, like a slideshow, using Alloy UI or
other JavaScript plus AJAX. Refer to the JSP at svn://svn.liferay.com/repos/
public/portal/trunk/portal-web/docroot/html/portlet/image_gallery_
display/view_slide_show.jsp.

Chapter 5

[201]

Considering the Knowledge Base again, for each article, it was required to add
small image as its thumbnail. Thus you can leverage the second approach by calling
ImageLocalServiceUtil or DLFileEntryServiceUtil. How do we implement this?

First, add the smallImage columns in the DL service.xml as follows:

<column name="smallImage" type="boolean" />
<column name="smallImageId" type="long" />
<column name="smallImageURL" type="String" />

As shown in the previous code, the column smallImage shows a flag to indicate
whether the smallImage is used for a Knowledge Base article or not. The column,
smallImageId, stores the actual small image ID from the table Image. The column,
smallImageURL, provides an option to use the image URL directly. This image URL
could be images from the Document and Media Library Image or anywhere else.

Then, call ImageLocalServiceUtil or DLFileEntryServiceUtil in the
AdminPortlet to save/get the smallImage via smallImageId.

Image processor
As you have noticed, the thumbnails (smallImage, custom1, and custom2) are
configurable in the portal.properties. The property dl.file.entry.thumbnail.
max.* sets the maximum thumbnail width in pixels as follows:

dl.file.entry.thumbnail.enabled=true
dl.file.entry.thumbnail.max.height=128
dl.file.entry.thumbnail.max.width=128

Another two thumbnail images with different custom sizes can be created: custom1
and custom2. This means you would be able to specify different thumbnail images—
you would be able to create a scaled image of that dimension. Of course, you can
override the previous properties in portal-ext.properties.

In fact, the previous properties got checked and got saved as scaled images in the
class IGImageLocalServiceImpl.java as follows:

// see functions deleteImage, updateImage, getImage
getImage(InputStream is,
 byte[] bytes, boolean cleanUpStream)
 {
 ImageBag imageBag = ImageToolUtil.read(bytes);
 RenderedImage renderedImage = imageBag.getRenderedImage();
 String type = imageBag.getType();
 Image image = new ImageImpl();
 }

Enterprise Content Management

[202]

The portal provides the interface ImageTool in order to scale the image and
to generate scaled images with different dimensions. The class ImageToolUtil
exposes the following functions for plugins:

public RenderedImage scale(RenderedImage renderedImage,
 int width);
public RenderedImage scale(RenderedImage renderedImage,
 int maxHeight, int maxWidth);

The first scale function scales the image, based on the given width along with the
height, which is calculated to preserve aspect ratio. The second function scales the
image, based on the maximum height and width given, while preserving the aspect
ratio. If the image is already larger in both dimensions, the image will not be scaled.

The class ImageToolImpl (and ImageToolUtil) implements the interface
ImageTool, by using java.awt.Graphics to draw images as follows:

// see details in ImageToolImpl (and ImageToolUtil).java
BufferedImage scaledBufferedImage = new BufferedImage(
 scaledWidth, scaledHeight, type);
Graphics graphics = scaledBufferedImage.getGraphics();
Image scaledImage = bufferedImage.getScaledInstance(
 scaledWidth, scaledHeight, Image.SCALE_SMOOTH);
graphics.drawImage(scaledImage, 0, 0, null);

The class ImageProcessorImpl (and ImageProcessorUtil) implements the
interface ImageProcessor, by using com.liferay.portal.kernel.image.
ImageToolUtil to process images. Of course, you may leverage ImageMagick
(referring to http://www.imagemagick.org) to implement the scale function and
many more like format convert, transform, add transparency, draw, decorate, add
special effects, add animation, add text and comments, and so on.

Image sprite processor
CSS sprite is the technique of combing images to lessen the number of calls that need
to be made to the server. Therefore, you just shift the position of the background
image to view the correct part of the image. The portal provides the image sprite
processor for the same service.

First, the portal specifies the following properties for the image sprite processor in
the portal.properties:

sprite.file.name=_sprite.png
sprite.properties.file.name=_sprite.properties

Chapter 5

[203]

The previous code sets the filenames used for the auto-generated sprites. The
default filename used to be .sprite.png, but now its name is _sprite.png, since
SiteMinder doesn't allow filenames to start with a period. This property will not
need to be changed unless your deployment has a conflict with filenames that start
with an underscore.

Then, the portal provides the interface SpriteProcessor with the following code:

public Properties generate(
 // see details in SpriteProcessor.java
 int maxHeight, int maxWidth, int maxSize)
throws IOException;

As shown in the previous code, properties.sprite.file.name and sprite.
properties.file.name are used to generate sprite properties. The following table
shows the relationship among SpriteProcessor, SpriteProcessorUtil, and the
implementation SpriteProcessorImpl:

Interface Method Implementation Description
SpriteProcessor generate SpriteProcessorImpl Provides

functions to
generate sprite
properties

SpriteProcessorUtil generate,
getSpriteProcessor,
setSpriteProcessor

_setSpriteImages at
PortletLocalServiceImpl,
ThemeLocalServiceImpl

Sprite processor
utilities

When initiating the portlet or theme, it will set sprite images. For example, the
implementation class PortletLocalServiceImpl (and ThemeLocalServiceImpl)
has the following code to set sprite images:

// see details in PortletLocalServiceImpl.java
Properties spriteProperties = SpriteProcessorUtil.generate(
 images, spriteFileName, spritePropertiesFileName,
 spritePropertiesRootPath, 16, 16, 10240);
//for portlet application
portletApp.setSpriteImages(spriteFileName, spriteProperties);
// for theme, see details in ThemeLocalServiceImpl.java
theme.setSpriteImages(spriteFileName, spriteProperties);

As shown in the previous code, it first reads the properties settings sprite.file.
name and sprite.properties.file.name, and the sprite properties root path. It
then calls SpriteProcessorUtil to generate sprite properties. Finally, it sets sprite
images for the portlet or the theme.

Enterprise Content Management

[204]

Permissions
Permissions in the DL are defined at three different levels, coinciding with the
different sections of the XML file at the svn://svn.liferay.com/repos/public/
portal/trunk/portal-impl/src/resource-actions/documentlibrary.xml file
as follows:

<resource-action-mapping>
 <portlet-resource>
 <portlet-name>20</portlet-name>
 <permissions>
 <supports>
 <action-key>ACCESS_IN_CONTROL_PANEL</action-key>
 <!—- see details in documentlibrary.xml -->
 </supports>
 <!—- see details in documentlibrary.xml -->
 </permissions>
 </portlet-resource>
 <model-resource>
 <model-name>com.liferay.portlet.documentlibrary</model-name>
 <portlet-ref>
 <portlet-name>20</portlet-name>
 </portlet-ref>
 <permissions>
 <supports>
 <action-key>ADD_FOLDER</action-key>
 <action-key>ADD_DOCUMENT</action-key>
 <!—- see details in documentlibrary.xml -->
 </supports>
 <!—see details in documentlibrary.xml -->
 </permissions>
 </model-resource>
 <model-resource>
 <model-name>com.liferay.portlet.documentlibrary.model.DLFolder</
model-name>
 <!—- see details in documentlibrary.xml -->
 </model-resource>
 <model-resource>
 <model-name>com.liferay.portlet.documentlibrary.model.
DLFileEntry</model-name>
 <!—- see details in documentlibrary.xml -->
 </model-resource>
</resource-action-mapping>

Chapter 5

[205]

First, in the portlet-resource section, actions and default permissions are defined
on the portlet itself.

The second level of permissions is based on the scope of an individual instance of the
portlet. These permissions are defined in the model-resource section. Notice that
the model-name is not the name of an actual Java class, but simply of the Document
and Media Library package.

The third level of permissions is based on the scope of models like DLFileEntry
and DLFolder. The model resource is surrounded by the model-resource tag. The
model-name is the name of an actual Java class of the model.

The portlet-name, which this model belongs to is defined under the portlet-ref
tag. A model can belong to multiple portlets, which you may use multiple
portlet-name tags to define.

Resource action mapping
The DTD for defining actions are specified at the svn://svn.liferay.com/
repos/public/portal/trunk/definitions/liferay-resource-action-
mapping_6_1_0.dtd. The resource-action-mapping is the root of the deployment
descriptor for a resource action descriptor that is used to define actions that are
supported on portal resources, such as portlets and models, as follows:

<!ELEMENT resource-action-mapping (portlet-resource*, model-
resource*,resource*) >

As shown in the previous code, the element resource-action-mapping can contain
one or many sub-elements such as portlet-resource, model-resource and
resource. The portlet-resource element defines the permissions of the portlet
as follows:

<!ELEMENT portlet-resource (portlet-name, permissions?) >

The portlet-name element is the name of the portlet. The permissions element
defines the default permissions granted and unsupported to community members,
guest users, and layout managers.

<!ELEMENT permissions (supports, community-defaults?, guest-defaults?,
guest-unsupported?, layout-manager?, owner-defaults?) >

The supports element defines the actions supported by this resource as follows:

<!ELEMENT supports (action-key*) >

Enterprise Content Management

[206]

The action-key element defines the name of the action. The name will be translated
as specified in the Language.properties. For example, if the name of the
action-key is VIEW, then the key in Language.properties will be action.VIEW.

The community-defaults element specifies the actions that community members are
permitted to perform by default. The guest-defaults element specifies the actions
that the guest users are permitted to perform, by default. The guest-unsupported
element specifies the actions that the guests are never permitted to perform. This
disables the ability to assign permissions for these actions. You define actions here,
only if you wish to prevent anyone from granting permissions to perform these actions.

The layout-manager element specifies the actions that layout (alternative name
page instance) managers are permitted to perform. If omitted, then layout managers
are granted permissions on all supported actions. If included, then the layout
managers can only perform actions specified in this element. The owner-defaults
element specifies the actions that the creator of the resource is permitted to perform.
If omitted, then owners are granted permissions on all supported actions.

The model-resource element defines the permissions and social-equity rules
of the model as follows:

<!ELEMENT model-resource (model-name, portlet-ref, permissions?,
social-equity?) >

The model-name element is the name of the model. The portlet-ref element is the
name of the portlet that the model belongs to. The social-equity element specifies
the social equity mappings for different actions that can be performed on the model
as follows:

<!ELEMENT social-equity (social-equity-mapping*) >

The social-equity-mapping element specifies the social equity values that can be
applied to a particular action on the model as follows:

<!ELEMENT social-equity-mapping (action-key, information-daily-limit?,
information-value?, information-lifespan?, participation-daily-limit?,
participation-value?, participation-lifespan?, social-activity-
mapping?, unique?) >

The information-daily-limit entity specifies the amount of added information
(information-value) that can be applied to a user's social score for the action
on an asset, and in turn, to its owner's contribution score on a daily basis. The
information-value specifies the value of contributing information added to the
asset, each time the action is performed. The information-daily-limit entity may
affect this setting.

Chapter 5

[207]

The information-lifespan entity specifies the length of time in days over
which the corresponding information-value is linearly decreased to zero.
The participation-daily-limit entity specifies the amount of participation
(participation-value) that can be applied to a user's participation score for the
action on an asset, on a daily basis. The participation-value entity specifies
the value added to the user's participation score for performing the action. The
participation-lifespan entity specifies the length of time in days, over which
the corresponding participation-value is linearly decreased to zero.

The social-activity-mapping element specifies the social-activity-mapping
class. The unique element specifies whether the action will provide value to the
user's or asset's score, if it is performed more than once on the same asset by
the user.

Last but not least, the resource element specifies an external file that contains
resource-action-mappings. The attribute file specifies the external file that
should be loaded to define resource actions.

Video management
As mentioned earlier, the DL provides the ability to define custom document
types and metadata sets, based on Dynamic Data Lists (DDL) and Dynamic
Data Mappings (DDM). By default, the DL introduced the document types Basic
Document, Image, and Video with the following metadata set:

Name Fields Description
Dublin Core
metadata set

Contributor, coverage, creator, date,
description, identifier, language,
publisher, relation, right, source, and
subject

Default document type
Basic Document

Default Image's
metadata set

Author, license, and location Default document type
Image

Default Video's
metadata set

Author, license, location, running-time,
and subtitles

Default document type
Video

What's happening? In fact, the default metadata set got pre-loaded from the XML file
svn://svn.liferay.com/repos/public/portal/trunk/portal-impl/src/com/
liferay/portal/events/dependencies/document-library-structures.xml.

Enterprise Content Management

[208]

Adding default document types
The portal has specified the property to pre-load the default data—such as DL
structure, page template, site template, and DDM structure, which is defined
as follows:

application.startup.events=com.liferay.portal.events.
AddDefaultDataAction,

Application startup event runs once for every website instance of the
portal that is initialized. The class AddDefaultDataAction loads/
runs the classes AddDefaultDocumentLibraryStructuresAction,
AddDefaultLayoutPrototypesAction, AddDefaultLayoutSetPrototypesAction,
and AddDefaultDDMStructuresAction in sequence.

The class AddDefaultDocumentLibraryStructuresAction added the DDM
structure's (defined at document-library-structures.xml) default document
types, such as Image and Video, and DL raw metadata structures. This is the reason
that the default metadata set and document types got pre-loaded.

Video and audio processors
The DL provides video/audio processors to handle video/audio preview and
decoding/encoding using the Xuggler. The following table shows a summary of
these processors:

Class Extension Interface Description
VideoProcessor DLPreviewable

Processor
DLProcessor VideoListener and VideoResizer

extends com.xuggle.mediatool.
MediaToolAdapter; preview
type: flv; thumbnail type: jpg;

AudioProcessor DLPreviewable
Processor

DLProcessor Preview type: mp3

RawMetadata
Processor

none DLProcessor Generates the raw metadata
associated with the file entry

Xuggler is the easy way to uncompress, modify, and re-compress any media file
(or stream) from Java, allowing Java programs to decode, encode, and experience
(almost) any video format. Refer to http://www.xuggle.com/xuggler/.

Chapter 5

[209]

Antivirus scanner
The portal provides capability to integrate a third-party Antivirus Scanner—
scanning for viruses in documents. By default, the portal has specified the following
properties in portal.properties:

dl.store.antivirus.enabled=false
dl.store.antivirus.impl=com.liferay.portlet.documentlibrary.antivirus.
DummyAntivirusScannerImpl

The previous code sets the property dl.store.antivirus.enabled to true to
enable the execution of an antivirus check, when files are submitted into a store.
Setting this value to true will prevent any potential virus files from entering the
store, but it won't allow for file quarantines.

The property dl.store.antivirus.impl sets the name of a class that implements
com.liferay.portlet.documentlibrary.antivirus.AntivirusScanner. The
Document Library server will use this to scan documents for viruses.

The following table shows the interface and its utility, wrapper, and implementation:

Class Interface/
Extension

Utility/Wrapper Description

BaseFileAntivirusScanner,
BaseInputStreamAntivirus
Scanner

AntivirusScanner AntivirusScannerUtil,
AntivirusScanner
Wrapper

Basic file and
input stream
antivirus scanner

ClamAntivirusScanner
Impl

BaseFileAntivirus
Scanner

None ClamAV:
antivirus engine
implementation,
refer to http://
www.clamav.
net/lang/en/

DummyAntivirus
ScannerImpl

AntivirusScanner None Dummy
antivirus scanner
implementation

Document management
A Document Management System (DMS) is a computer system, used to track and
store electronic documents and/or images of paper documents, while keeping track
of the different versions created by different users. The Document Library provides
one central place to aggregate and manage documents, images, videos, and any other
document types. It provides document management that can be backed by different
persistence systems, including capabilities like mounting existing CMIS repositories,
check-in, check-out, metadata, versioning, document converting, and document
imaging (live document preview) features.

Enterprise Content Management

[210]

Live document preview involves the following steps:

1. Upload documents (files with any extension) from a local box to the
Document Library in the remote server, or mount pre-existing CMIS
repositories.

2. Manage documents and its versions in the Document Library – move, revert,
compare, update, and so on. Meanwhile, documents will be converted into
different formats in the fly through OpenOffice (or LibreOffice) , PDF
documents will be generated and managed in the Document Library, and
moreover, PDF documents get imaged via PDFBox or ImageMagic.

3. Finally, the documents thumbnail preview and the documents page preview
will be ready in the Document Library.

Models and services
The following diagram depicts an overview of the Document Library, conceptually.
Document Library has a set of folders called DLFolder. Each folder may have
many sub folders associated with them. Therefore, hierarchy structure is supported
in folders. Each folder (or sub folder) may have a set of documents (called
DLFileEntry). Each document has a unique URL to be referred to. Each document
may have a list of versions (called DLFileVersion), ranks (called DLFileRank), and
shortcuts (called DLFileShortcut). A repository, called Repository, is associated
with the DLFolder folder, and it may contain many documents. It can also have
many repository entries called RepositoryEntry:

Repositoryc

CMISRepositoryc

DLFileVersionc

RepositoryEntryc

DLFileEntryTypec

DLSyncc DLAppHelperc

*

**

*

DLFileRankc

DLFolderc

DLContentc

*

*

DLAppc

DDMStructurecDLFileEntryMetadatacDLFileShortcutcDLFileEntryc

*

*

*

*

*

*

*

*

*

*

Chapter 5

[211]

Models
The portal has defined the entities, such as, Repository, CMISRepository, and
RepositoryEntry, in the portal service service.xml as follows:

<!-- PK fields -->
<column name="repositoryId" type="long" primary="true" />
<!-- see details in service.xml -->
<!-- Other fields -->
<column name="classNameId" type="long" />
<column name="name" type="String" />
<column name="description" type="String" />
<column name="portletId" type="String" />
<column name="typeSettings" type="String" />
<column name="dlFolderId" type="long" />

As shown in the previous code, a repository is defined with the primary key columns
repositoryId, group instance, audit fields, and other fields such as classNameId,
name, description, portletId, typeSettings, and dlFolderId.

The entity RepositoryEntry has been defined as follows:
<!-- PK fields -->
<column name="repositoryEntryId" type="long" primary="true" />
<!-- Group instance -->
<column name="groupId" type="long" />
<!-- Other fields -->
<column name="repositoryId" type="long" />
<column name="mappedId" type="String" />

The entities, such as DLApp, DLAppHelper, DLContent, DLFileEntryMetadata,
DLFileEntryType, DLSync, DLFolder, DLFileEntry, DLFileVersion,
DLFileShortcut, and DLFileRank, have been defined in the DL service.xml.

The following table shows the models (DLFileEntryType, DLFileEntry,
DLFileVersion, DLFileShortcut, DLFileRank, Repository, and RepositoryEntry),
interfaces, and their implementation:

Model Interface Implementation Description
com.liferay.portlet.
documentlibrary.
model.
DLFileEntryType

DLFileEntryType Model
extends BaseModel<
DLFileEntryType >,
GroupedModel

DLFileEntryType Impl,
DLFileEntryType
ModelImpl

Document
and Media
Library
document
type model
and its
metadata

Enterprise Content Management

[212]

Model Interface Implementation Description
DLFileEntry
Metadata

DLFileEntryMetadata
Model extends
BaseModel<DLFile
EntryMetadata>,
GroupedModel

DLFileEntryMetadataImpl,
DLFileEntryMetadata
ModelImpl

Document
and Media
Library
file entry
metadata
model and its
metadata

DLFileVersion DLFileVersionModel
extends BaseModel
<DLFileVersion>

DLFileVersionImpl,
DLFileVersionModelImpl

Document
Library
portlet file
version
model and its
metadata

DLFileShortcut DLFileShortcutModel
extends
BaseModel<DLFile
Shortcut>,
GroupedModel

DLFile Shortcut Impl, DL
Shortcut ModelImpl

Document
Library
portlet file
shortcut
model and its
metadata

DLFileRank DLFileRankModel
extends BaseModel
<DLFileRank>

DLFileRankImpl,
DLFileRankModelImpl

Document
Library
portlet file
rank model
and its
metadata

com.liferay.portal.
model.Repository

RepositoryModel extends
BaseModel<Repository>

RepositoryImpl,
RepositoryModelImpl

Global
repository
model and its
metadata

com.liferay.
portal.model.
RepositoryEntry

RepositoryEntryModel
extends
BaseModel<Repository
Entry>

RepositoryEntryImpl,
RepositoryEntryModel
Impl

Global
repository
entry model
and its
metadata

Services
There are at least three kinds of services generated for the Document Library:
DLAppService, DLRepositoryService, and DLService. The following table
shows these services, utilities, and service implementations:

Chapter 5

[213]

Service Utility Implementation Description
DLAppService DLAppServiceUtil DLAppServiceImpl

extends
DLAppServiceBaseImpl

DLAppService
calls with
permissions check

DLAppLocal
Service

DLAppLocalService
Util

DLAppLocalServiceImpl
extends
DLAppLocalService
BaseImpl

DL App local
service calls

DLRepository
Service

DLRepositoryService
Util

DLRepositoryLocalService
Impl extends
DLRepositoryLocal
ServiceBaseImpl

DL Repository
service calls
with permission
checking

DLRepository
Local
Service

DLRepositoryLocal
ServiceUtil

DLRepositoryServiceImpl
extends
DLRepositoryService
BaseImpl

DL Repository
service calls
with permission
checking

DLService DLServiceUtil DLServiceImpl DL local service
calls with
permission
checking

DLLocalService DLLocalServiceUtil DLLocalServiceImpl DL local service
calls with
permission
checking

Attachments
Once documents exist in the Document Library, you could insert documents as
links via the document-unique URL. When you build a Knowledge Base article, you
may require a set of documents as attachments. Or when you build web content,
you may upload documents as attachments in Document Library document.
These attachments are stored as files in a repository. The interface of the method
attachment is specified in the interface DLLocalService as follows:

dlLocalService.addFile(
 serviceContext.getCompanyId(),
 // see details in DLLocalService.java
 serviceContext, bytes);

The internal implementation is specified in the class DLLocalServiceImpl.
Of course, you can leverage the global utility class DLServiceUtil or
DLLocalServiceUtil in your plugins.

Enterprise Content Management

[214]

Document versioning
Document versioning is a process where by documents are checked in or out of a
document management system. It allows users to retrieve previous versions and to
continue work from a selected point. Document versioning is useful for documents
that change over time and require updating, but it may be necessary to go back to or
reference a previous copy.

The Document Library provides the ability to manage document versions. Once you
have different versions of documents, you could convert documents from one format
to another format, compare different versions, live document preview, and so on.

Converting document
The following table shows the possible formats for automatic conversion via
OpenOffice (or LibreOffice). Obviously, the plain text of the previous document could
be converted into Portable Document Format (PDF), OpenDocument Text (ODT),
OpenOffice.org 1.0 Text (SXW), Rich Text Format (RTF), Microsoft Word (DOC,
DOCX), and so on. Refer to http://www.openoffice.org/ for more information.

Category From To
Text
Formats

OpenDocument Text (*.odt)
OpenOffice.org 1.0 Text
(*.sxw)
Rich Text Format (*.rtf)
Microsoft Word (*.doc,
*.docx)
WordPerfect (*.wpd)
Plain Text (*.txt)

Portable Document Format (*.pdf)
OpenDocument Text (*.odt)
OpenOffice.org 1.0 Text (*.sxw)
Rich Text Format (*.rtf)
Microsoft Word (*.doc, *.docx)
Plain Text (*.txt)

Spreadsheet
Formats

OpenDocument Spreadsheet
(*.ods)
OpenOffice.org 1.0
Spreadsheet (*.sxc)
Microsoft Excel (*.xls,
*.xlsx)
Comma-Separated Values
(*.csv)
Tab-Separated Values (*.tsv)

Portable Document Format (*.pdf)
OpenDocument Spreadsheet (*.ods)
OpenOffice.org 1.0 Spreadsheet
(*.sxc)
Microsoft Excel (*.xls)
Comma-Separated Values (*.csv)
Tab-Separated Values (*.tsv)

Chapter 5

[215]

Category From To
Presentation
Formats

OpenDocument Presentation
(*.odp)
OpenOffice.org 1.0
Presentation (*.sxi)
Microsoft PowerPoint (*.ppt,
*.pptx)

Portable Document Format (*.pdf)
Macromedia Flash (*.swf)
OpenDocument Presentation (*.odp)
OpenOffice.org 1.0 Presentation
(*.sxi)
Microsoft PowerPoint (*.ppt,
*.pptx)

Drawing
Formats

OpenDocument Drawing
(*.odg)

Scalable Vector Graphics (*.svg)
Macromedia Flash (*.swf)

The document conversion global service got defined in the com.liferay.portal.
kernel.util.DocumentConversionUtil. It exposed two methods as follows:

public static File convert(
 String id, InputStream inputStream, String sourceExtension,
 String targetExtension)
 throws Exception

In fact, it uses the class com.liferay.portal.kernel.util.PortalClassInvoker
to invoke the internal implementation class com.liferay.portlet.
documentlibrary.util.DocumentConversionUtil. This implementation class
DocumentConversionUtil provides functions to connect to OpenOffice, disconnect,
convert, read the following properties, and so on:

openoffice.server.enabled=false
openoffice.server.host=127.0.0.1
openoffice.server.port=8100
see details in portal.properties
openoffice.conversion.target.extensions[text]=doc,odt,pdf,rtf,sxw,txt

The previous code enables OpenOffice integration to allow the Document Library
portlet and the Wiki portlet to provide conversion functionality. It then specifies the
file extensions which allow conversions from source to target.

Please note that entries must be limited by what is supported by
OpenOffice, as shown in the previous table.

Enterprise Content Management

[216]

As you can see, the portal has provided an effective way to carry out method invoking
(PortalClassInvoker), using the portal class loader PortalClassLoaderUtil.
For example, the document conversion class com.liferay.portal.kernel.
util.DocumentConversionUtil uses the invoker class PortalClassInvoker
to invoke the implementation class com.liferay.portlet.documentlibrary.
util.DocumentConversionUtil. Meanwhile, the portal also provides the
PortletClassInvoker, which is very similar to PortalClassInvoker, except
that it uses the portlet class loader.

Comparing versions
Diff is a file comparison utility that outputs the differences between two files,
showing the changes between one version of a file and a former version of the
same file. Diff displays the changes made on each line for text files.

The portal provides an interface called com.liferay.portal.kernel.util.Diff
as a file (document, web content, or any other content types) comparison utility.
For example, you would be able to compare two versions of a document and
find changes.

The interface Diff defines the following methods, implemented by the class com.
liferay.portal.util.DiffImpl:

public List<DiffResult>[] diff(Reader source, Reader target);
public List<DiffResult>[] diff(
 // see details in Diff.java
 String deletedMarkerEnd, int margin);

The class DiffImpl can compare two different versions of text by calling Java-diff.
source refers to the earliest version of the text and target refers to a modified
version of source. Changes are considered either as a removal from the source or
as an addition to the target. This class detects changes to an entire line, and also
detects changes within lines, such as, removal or addition of characters.

The class DiffResult represents a change between one or several lines. The
changeType tells if the change happened in the source or target. The lineNumber
holds the line number of the first modified line. This line number refers to a line in
the source or target, depending on the changeType value. The changedLines is a
list of strings; each string is a line that is already highlighted, indicating where the
changes are.

Chapter 5

[217]

The UI tag liferay-ui:diff uses Diff and DiffResult in the $PORTAL_SRC_HOME/
portal-web/docroot/html/taglib/ui/diff/page.jsp. Of course, you can
leverage the class utility DiffUtil in your plugin. By default, you can set which file
extensions are comparable by the diff tool as follows:

dl.comparable.file.extensions=.css,.doc,.docx,.js,.htm,.html,.odt,.
rtf,.sxw,.txt,.xml

Any binary file listed here will only be comparable if either OpenOffice or
LibreOffice is enabled and the file is convertible to text.

Java-diff is an implementation of the longest common sub sequences algorithm;
its main method Diff:diff() returns a list of Difference objects, as two classes,
its main method Diff:diff() returning a list of Difference objects, each of which
describes an addition, deletion, or change between the two collections. Refer to
http://www.incava.org/ for more information.

Previewing a live document
As mentioned earlier, document imaging is the process of capturing, storing, scaling
documents as images, and reprinting images. Live document preview is a nice
feature that rescales documents as images for live preview. The portal provides
a PDF processor utility called com.liferay.portlet.documentlibrary.util.
PDFProcessorUtil. Which kind of image format is used for live document preview?
The utility class PDFProcessorUtil provides a static string as follows:

public static final String PREVIEW_TYPE = ImageProcessor.TYPE_PNG;
public static final String THUMBNAIL_TYPE = ImageProcessor.TYPE_PNG;

Where are the thumbnail preview images and page preview images that are stored
temporally? See the following snippet from PDFProcessorUtil:

private static final String _PREVIEW_PATH =
 SystemProperties.get(SystemProperties.TMP_DIR) +
 "/liferay/document_preview/";
private static final String _THUMBNAIL_PATH =
 SystemProperties.get(SystemProperties.TMP_DIR) +
 "/liferay/document_thumbnail/";

As you can see, the PDFProcessorUtil uses Apache PDFBox or ImageMagic
(through im4java) to scale thumbnail preview images and page preview images.
The following properties are involved in PDFProcessorUtil:

dl.file.entry.preview.enabled=true
see details in portal.properties
imagemagick.enabled=false
imagemagick.global.search.path[windows]=C\:\\Program Files\\
ImageMagick

Enterprise Content Management

[218]

The previous code sets the values related to preview and thumbnail generation for
Document Library files. Image generation will occur for all PDF files, if OpenOffice
(or LibreOffice) is enabled for formats convertible to PDF. Image generation will use
PDFBox by default, unless ImageMagick is enabled.

Please note that PDFBox is less accurate in image generation
and has trouble with certain fonts.

Apache PDFBox is an open source Java PDF library for working with PDF
documents, allowing the creation of new PDF documents, manipulation of
existing documents, and the ability to extract content from documents. Refer
to http://pdfbox.apache.org/.

The im4java is a pure-java interface to the ImageMagick command line. Refer to
http://im4java.sourceforge.net/.

The following is a sample to set up the preview UI via AUI. You may refer to the JSP
file svn://svn.liferay.com/repos/public/portal/trunk/portal-web/docroot/
html/portlet/document_library/view_file_entry.jsp for more details:

<aui:script use="aui-base,liferay-preview">
new Liferay.Preview({
 actionContent: '#<portlet:namespace />previewFileActions',
 // see details in view_file_entry.jsp
 toolbar: '#<portlet:namespace />previewToolbar' }
).render();
</aui:script>

The JavaScript function of live document preview is specified at the svn://svn.
liferay.com/repos/public/portal/trunk/portal-web/docroot/html/js/
liferay/preview.js.

Document check-in and check-out
Document check-in and check-out functions are persisted by the entity Lock. Once a
document is locked, nobody besides the owner can update that document. When the
lock is expired, or it gets unlocked by the owner, everyone who has permissions can
update that document.

The entity lock is specified in svn://svn.liferay.com/repos/public/portal/
trunk/portal-impl/src/com/liferay/portal/service.xml as follows:

<!-- PK fields -->
<column name="lockId" type="long" primary="true" />
<!-- Audit fields, see details in service.xml -->

Chapter 5

[219]

<!-- Other fields -->
<column name="className" type="String" />
<column name="key" type="String" />
<column name="owner" type="String" />
<column name="inheritable" type="boolean" />
<column name="expirationDate" type="Date" />

The previous code shows that the entity lock has a column lockId as its primary
key, a set of audit fields, and other field columns such as className, key, owner,
inheritable, and expirationDate. As you can see, a lock could be applied on
any content type via the pair of class name and primary key, and document content
type is one of them. For a given document, the className will have the value com.
liferay.portlet.documentlibrary.model.DLFileEntry and the key will have
that document primary key as its value.

Once a document is locked, one row of the lock table will be created; when that
document gets unlocked, the same row will get deleted. If the owner locks a
document for a while, but he/she forgets to unlock the same document in time,
the document will get unlocked at a pre-defined expiration date/time. The default
expiration time of lock is defined in portal.properties as follows:

lock.expiration.time.com.liferay.portlet.documentlibrary.model.
DLFolder=86400000
lock.expiration.time.com.liferay.portlet.documentlibrary.model.
DLFileEntry=86400000
lock.expiration.time.com.liferay.portlet.messageboards.model.
MBThread=0

The previous code sets the lock expiration time for each model. Locks for Document
Library folders and files should expire after one day, but locks for message board
threads should never expire. Obviously, the lock duration for both folder and file
entry is measured in seconds.

The following table shows the lock model and services:

Name Extension/Utility Implementation Description
Lock LockModel extends

BaseModel<Lock>
LockImpl extends
LockModelImpl

LockModelImpl extends
BaseModelImpl<Lock>

Model, extension,
and model
implementation

LocalLocalService LockLocalService
Util

LockLocalServiceImpl Local service,
utility, and
implementation

Enterprise Content Management

[220]

Name Extension/Utility Implementation Description
LocalService LockServiceUtil LockServiceImpl Service call

with permission
checking,
utility, and
implementation

Moving document
A document always has a folder associated to it. If the folderId has the value 0,
it means that the folder is the root. This means documents are managed in a folder
structure. In some use cases, you may be required to change the folder association
of a given document. Thus the document moving from one folder to another is in
the picture.

The signature document moving is specified in the utility class DLAppServiceUtil.
The real implementation is specified in DLAppLocalServiceImpl as follows:

public FileEntry moveFileEntry(
 long userId, long fileEntryId, long newFolderId,
 ServiceContext serviceContext)
 throws PortalException, SystemException
{
 LocalRepository localRepository = getLocalRepository(0,
fileEntryId, 0);
 return localRepository.moveFileEntry(
 userId, fileEntryId, newFolderId, serviceContext);
}

More details of documents moving are specified in the class
DLRepositoryLocalServiceImpl.

Document indexing
Document indexing functions are specified in the class com.liferay.portlet.
documentlibrary.util.DLIndexer. The Document Library indexes metadata and
text for readable documents as follows:

Document document = new DocumentImpl();
document.addUID(portletId, repositoryId, fileName);
document.addModifiedDate(modifiedDate);
// see details in DLIndexer.java
document.addKeyword("path", fileName);
document.addKeyword("extension", extension);
ExpandoBridgeIndexerUtil.addAttributes(document, expandoBridge);

Chapter 5

[221]

As you can see, repositoryId and its modified date are added in the indexing
document. Metadata path, extension, and many others are added as document
keywords, while metadata name and description are added as document text. In
addition, custom attributes of a given image are indexed as well. In particular,
extracted text (from PDF, Excel, Word, PowerPoint, Publisher, and Visio) is indexed
as a file. What's happening?

The com.liferay.portal.kernel.util.File interface specifies text extraction as
follows. The utility class FileUtil exposes these methods as global ones:

public String extractText(InputStream is, String fileName);

The previous interface is implemented in the class com.liferay.portal.util.
FileImpl. This is shown in the following code snippet:

Tika tika = new Tika();
boolean forkProcess = false;
if (PropsValues.TEXT_EXTRACTION_FORK_PROCESS_ENABLED)
{
 // see details in FileImpl.java
if (forkProcess)
{
 text = ProcessExecutor.execute(
 new ExtractTextProcessCallable(getBytes(is)),
 ClassPathUtil.getPortalClassPath());
}
else
{
 text = tika.parseToString(is);
}

Obviously, you would see many other file-related functions as well. The class
FileImpl checks the following properties and uses file Tika to parse stream into
text as follows:

text.extraction.fork.process.enabled=false
text.extraction.fork.process.mime.types=application/x-tika-ooxml

As you can see, you can set the property text.extraction.fork.process.enabled
to true, if you want to carry out text extraction of certain MIME types to use
separate Java processes. This will utilize extra resources from the operating system,
while improving the portal's stability. The property text.extraction.fork.
process.mime.types sets a list of comma-delimited MIME types that will trigger
text extraction using a separate Java process.

Enterprise Content Management

[222]

Apache Tika is a toolkit for detecting and extracting metadata and structured text
content from various documents using existing parser libraries (refer to http://
tika.apache.org/). For example, it uses PDFBox to extract text from PDF files.
Apache POI provides text extraction for all the supported file formats (such as Excel,
Word, PowerPoint, Publisher, and Visio) that have access to the metadata associated
with a given file such as title and author. In addition, POI works closely with the
Apache Tika text extraction library (refer to http://poi.apache.org).

WebDAV
WebDAV (Web-based Distributed Authoring and Versioning) is defined as a set
of methods, based on the HTTP that facilitates collaboration between users in editing
and managing documents and files stored on WWW servers. WebDAV provides
functionality to create, change, and move documents on a remote server and is
supported by all major Operating Systems and Desktop Environments, including
Windows, MacOS X, and Linux (KDE and GNOME).

The portal provides support for the WebDAV protocol, so users can upload and
organize resources from both the web interface and the file explorer of their desktop
operating system. It automatically generates WebDAV URL for the Document
Library documents, images, and web content articles. How does the WebDAV URL
get generated?

WebDAV storage
The portal generated the WebDAV URL for each Document Library document in
svn://svn.liferay.com/repos/public/portal/trunk/portal-web/docroot/
html/portlet/document_library/view_file_entry.jsp as follows:

String webDavUrl = themeDisplay.getPortalURL() + "/tunnel-web/
secure/webdav" + group.getFriendlyURL() + "/document_library" +
sb.toString();

You would find a similar expression for each Document and Media Library image
and web content article.

This servlet can be protected by the secure filter com.liferay.portal.servlet.
filters.secure.SecureFilter.

webdav.servlet.hosts.allowed=
webdav.servlet.https.required=false

Chapter 5

[223]

The previous code shows that a list of comma-delimited IPs can access this servlet
via the property webdav.servlet.hosts.allowed. Enter a blank list to allow any IP
to access this servlet. You can set the property webdav.servlet.https.required to
true, if this servlet can only be accessed via https.

It is the WebDAVServlet class that extends the HttpServlet class and also handles
WebDAV URLs. To bring WebDAV into the Knowledge Base portlet, you can specify
it with two tags as follows. You would find similar specification for Document
Library, and web content in the portal core as follows:

<webdav-storage-token>knowledge_base</webdav-storage-token>
<webdav-storage-class> com.liferay.knowledgebase.admin.webdav.
KBWebDAVStorageImpl</webdav-storage-class>

The webdav-storage-token value is the WebDAV directory name for data managed
by this portlet. The webdav-storage-class value must be a class that implements
com.liferay.portal.kernel.webdav.WebDAVStorage and allows data to be
exposed via the WebDAV protocol.

WebDAV models and services
The portal provides a set of models and services to support WebDAV, and to
generate a WebDAV URL. The following table shows an overview of these models
and services:

Model/Service Utility Implementation Description
WebCacheItem,

WebCachePool

WebCache
PoolUtil

WebCachePoolImpl Web cache
management

Resource

Status

WebDAVUtil BaseResourceImpl
DLFileEntryResourceImpl

WebDAV
models:
resource and
status

WebDAVRequest WebDAVUtil WebDAVRequestImpl WebDAV
request
interface

WebDAVStorage WebDAVUtil BaseWebDAVStorageImpl
CompanyWebDAVStorageImpl
GroupWebDAVStorageImpl
DLWebDAVStorageImpl

WebDAV
storage
interface

Enterprise Content Management

[224]

Multiple repositories
On one hand, documents can be added into different repositories. On the other hand,
an additional repository can be added into a specific folder—mounting existing
CMIS repositories (per folder basis), that is, the portal supports multiple repositories.

Repository interface
The portal defines the repository access interface for access to third-party
repositories, and it enables support for simultaneous access to the Liferay repository
and third party repository at the folder level, that is, the interface com.liferay.
portal.kernel.repository.Repository defines a set of signatures. The following
code snippet demonstrates this:

public FileEntry addFileEntry(long folderId, String title,
String description, String changeLog,
InputStream is, long size, ServiceContext serviceContext)
throws PortalException, SystemException;
public Folder addFolder(
// see details in Repository.java

The interface BaseRepository extends the interface Repository. It brings the
interface LocalRepository into the picture. This interface got implemented by the
abstract class BaseRepositoryImpl. Third-party repository implementations should
extend this class.

The interface LocalRepository got implemented by the class
BaseLocalRepositoryImpl. This class is designed for third-party repository
implementations. Since, the paradigm of remote and local services exist only within
the portal, the assumption is that all permission-checking will be delegated to the
specific repository.

There are also many calls within the class BaseLocalRepositoryImpl that are
passed into a user ID as a parameter. These methods should only be called for
administration of Liferay repositories and are hence not supported in all third-party
repositories. This includes moving between Document Library hooks and LAR
import/export.

Chapter 5

[225]

Document hooks
The portal provides configurable hooks to bring document files into various
persistence systems. The hooks include File System Store, Advanced File System
Store, CMIS Store, S3 Store, and JCR Store. A new hook called Documentum Hook
is available for allowing the Document Library to use Documentum as a repository.
The default repository is set via the property dl.store.impl in portal.properties
as follows:

#dl.store.impl=com.liferay.documentlibrary.util.AdvancedFileSystemStore
#dl.store.impl=com.liferay.portlet.documentlibrary.store.DBStore
#dl.store.impl=com.liferay.documentlibrary.util.CMISStore
dl.store.impl=com.liferay.documentlibrary.util.FileSystemStore
#dl.store.impl=com.liferay.documentlibrary.util.JCRStore
#dl.store.impl=com.liferay.documentlibrary.util.S3Store

The previous code sets the name of the class that implements the interface com.
liferay.documentlibrary.store.Store. The Document Library server will use
the interface Store to persist documents. Store defines a set of signatures to persist
documents as follows:

public static final String DEFAULT_VERSION = "1.0";
public void addDirectory
// see details in Hook.java

The Store interface is implemented by the abstract class BaseStore. All specific
hooks must extend this abstract class. The following table shows specific hooks and
their implementation details:

Hook Services Interface Description
CMISStore CMISObject

CMISUtil

Store
BaseStore

Content Management
Interoperability Services
(CMIS) - a standard
proposal consisting of a
set of Web services for
sharing information among
disparate content repositories,
which seeks to ensure
interoperability for people,
and applications using
multiple content repositories.

DBStore ava.sql.Blob Store
BaseStore

Saved directly to the server's
database as Blob.

Enterprise Content Management

[226]

Hook Services Interface Description
FileSystemStore Java.io.File Store

BaseStore

Saved directly to the server's
FileSystem and doesn't use
any database or translation
layer

AdvancedFileSystem
Store

Java.io.File extends
FileSystemStore

Advanced File System Store
extends File System Store
by distributing the files in
multiple directories, and thus
avoiding filesystem limits on
number of files per directory.
It divides the data into
smaller groups.

JCRStore javax.jcr.
Session,
Node

Store

BaseStore

Content Repository API for
Java (JCR) - a specification
for a Java platform API for
accessing content repositories
in a uniform manner;
provides hooks to a for using
Jackrabbit.

S3Store S3Bucket

S3Service

Store

BaseStore

Amazon S3 (Simple Storage
Service) is an online storage
web service offered by
Amazon Web Services.
Amazon S3 provides
unlimited storage through a
simple web services interface.

Converting repositories
By default, the portal specifies File System Hook in portal.properties to persist
documents. After a while, you may want to convert the repository from File System
Store to Database Store. This conversion process can be done by the administration
tool in the Control Panel.

As you can see, the conversion processes include database migration, Document
Library hook migration, hook, and legacy permission algorithm migration. What's
happening? The portal has specified the following properties
for conversion processes:

convert.processes=\
 com.liferay.portal.convert.ConvertDatabase,\
 com.liferay.portal.convert.ConvertDocumentLibrary,\
 // see details in portal.properties
 com.liferay.portal.convert.ConvertWikiCreole

Chapter 5

[227]

As shown previously, you could input a list of comma-delimited class
names that implement com.liferay.portal.convert.ConvertProcess.
These classes, such as, ConvertDatabase, ConvertDocumentLibrary,
ConvertDocumentLibraryExtraSettings, ConvertImageGallery,
ConvertPermissionAlgorithm, ConvertPermissionTuner, and
ConvertWikiCreole provide capabilities to convert database, documents
repositories, images repositories, and permission algorithms.

The abstract class ConvertProcess leverages the class org.apache.commons.
lang.time.StopWatch and the utility class com.liferay.portal.util.
MaintenanceUtil for the method convert(). This is the main reason that
while converting, you will see a message about maintenance. By the way,
the abstract methods getDescription(), isEnabled(), and doConvert()
must get implemented by specific classes like ConvertDocumentLibrary and
ConvertDocumentLibraryExtraSettings.

The class ConvertDocumentLibrary extends ConvertProcess and implements
the methods getDescription(), isEnabled(), and doConvert(). This class is
used to convert documents from one document repository to another document
repository. Similarly, the class ConvertDocumentLibraryExtraSettings extends
ConvertProcess and implements the methods getDescription(), isEnabled(),
and doConvert() as well. This class is used to convert the Document Library's
extra settings.

CMIS consumer and producer
The portal supports CMIS, acting as either a consumer or producer through
OpenCMIS. CMIS Hook is built-in in the Document and Media Library, acting
as a CMIS consumer. Furthermore, the portal allows the Document Library acting
as a CMIS producer, much like that of WebDAV.

Apache Chemistry provides open source implementations of the Content
Management Interoperability Services (CMIS) specification. OpenCMIS is the
CMIS client and server library for Java. OpenCMIS provides two CMIS client
APIs, which are called Client API and Client Bindings API. The OpenCMIS
Server Framework handles both CMIS bindings on the server side and maps
them to a common set of Java interfaces. The Apache Chemistry can be found
at: http://chemistry.apache.org/.

Enterprise Content Management

[228]

The following table shows the main models for both CMIS and the Liferay local
repository:

Model Extends Implementation Description
RepositoryModel GroupedModel,

ClassedModel

None Repository base
model

CMISModel None CMISFileEntry
CMISFileVersion
CMISFolder

CMIS model

LiferayModel LiferayBase LiferayFileEntry,
LiferayFileVersion,
LiferayFolder

Liferay repository
model

FileEntry RepositoryModel
<FileEntry>

CMISFileEntry,
LiferayFileEntry

File entry for both
CMIS and Liferay

FileVersion RepositoryModel
<FileVersion>

CMISFileVersion,
LiferayFileVersion

File version for both
CMIS and Liferay

Folder RepositoryModel
<Folder>

CMISFolder,
LiferayFolder

Folder for both
CMIS and Liferay

As a CMIS consumer, the portal is able to mount existing CMIS repositories into the
Document Library through the Atom Publishing Protocol (AtomPub) or the web
service. Similarly, as a CMIS producer, the portal has the capability to export the
functionality of the Document Library through the AtomPub or web service.

The following table shows CMIS AtomPub and web services, along with their
implementation:

Service Extends Implementation Description
com.liferay.
portal.kernel.
repository.cmis.
Session

none com.liferay.portal.repository.
cmis.SessionImpl

CMIS session and set
Default Context

CMISRepository
Handler

BaseRepository
Impl

CMISAtomPubRepository

CMISWebServicesRepository

CMIS Repository
Handler

com.liferay.
portal.kernel.
repository.cmis.
CMISRepository
Util

none com.liferay.portal.repository.
cmis.CMISRepositoryUtil

CMIS repository utility;
use PortalClassInvoke
to invoke an internal
implementation

Chapter 5

[229]

SharePoint integration
The portal implements the SharePoint protocol, which allows us to save documents
to the portal, as if it were a SharePoint server. In portal.properties, you will find
the following configuration:

sharepoint.storage.tokens=document_library
sharepoint.storage.class[document_library]=com.liferay.portlet.
documentlibrary.sharepoint.DLSharepointStorageImpl

The previous code shows the integration of SharePoint in the portal. It sets
the tokens for supported SharePoint storage paths first. It then sets the class
names for supported SharePoint storage classes, for example, com.liferay.
portlet.documentlibrary.sharepoint.DLSharepointStorageImpl. The class
DLSharepointStorageImpl extends the abstract class com.liferay.portal.
sharepoint.BaseSharepointStorageImpl, which implements the interface com.
liferay.portal.sharepoint.SharepointStorage.

The following table shows SharePoint integration-related interfaces, abstract base
implementation, and normal implementation:

Interface Base
Implementation

Implementation Description

com.liferay.
portal.sharepoint.
SharepointStorage

BaseSharepoint
StorageImpl

CompanySharepoint
StorageImpl

GroupSharepoint
StorageImpl

DLSharepoint
StorageImpl

SharePoint
storage:
company-level,
group-level, and
Document Library
implementation

com.liferay.portal.
sharepoint,Response
Element

none Property

Leaf

Tree

SharePoint
response element
interface and its
implementation

com.liferay.portal.
sharepoint.dws.
ResponseElement

none RoleResponseElement

MemberResponseElement

SharePoint
Document
Workspace Web
service response
element and its
implementation

Enterprise Content Management

[230]

Interface Base
Implementation

Implementation Description

com.liferay.portal.
sharepoint.methods.
Method

BaseMethodImpl CreateURLDirectories
MethodImpl
GetDocsMetaInfoMethod
Impl
GetDocumentMethodImpl
ListDocumentsMetaInfo
MethodImpl
MoveDocumentMethod
Impl
OpenServiceMethodImpl
PutDocumentMethodImpl
RemoveDocumentMethod
Impl
UncheckoutDocument
MethodImpl
UrlToWebUrlMethodImpl

SharePoint
integration
methods

In addition to the previous interfaces, the portal provides the class
SharepointRequest to set up Sharepoint Storage, Http Servlet Request, Http
Servlet Response, and more. It also provides a set of filters and servlets to integrate
SharePoint: SharepointDocumentWorkspaceServlet, SharepointFilter
(extending SecureFilter), SharepointServlet, SharepointWebServicesServlet,
and so on.

Documentum integration
Documentum, an Enterprise Content Management (ECM) platform, provides
management capabilities for all types of content, including business documents,
photos, videos, medical images, e-mails, web pages, fixed content, XML-tagged
documents, and so on. The core of Documentum is a repository in which the content
is stored securely under compliance rules. Refer to http://www.emc.com/ for
more information.

Besides the CMIS integration with the Documentum, the portal provides a Hook
called DocumentumHook, so that you can integrate Documentum as a direct repository
of the Document Library as follows:

dl.hook.impl=com.liferay.documentum.hook.DocumentumHook

http://www.emc.com/ for

Chapter 5

[231]

The class DocumentumHook extends the abstract class BaseHook, implementing the
interface Hook. Based on the web service calls, it provides implementation for a set of
methods: add directory, add file, delete directory, delete file, get file
as stream (downloading a file), re-index, update file, and so on.

In fact, the Hook, DocumentumHook, leverages a set of services provided by the
Documentum web service client such as, com.documentum.com.DfClientX, com.
documentum.fc.client.IDfClient, IDfCollection, IDfDocument, IDfFolder,
IDfSession, IDfSessionManager, and so on.

The following properties could be used to configure the Documentum web
service calls:

dfc.docbroker.host=localhost
dfc.docbroker.port=1489
dfc.globalregistry.repository=documentum
dfc.globalregistry.username=dm_bof_registry
dfc.globalregistry.password=test

The first two properties set the host and port to the Documentum server. The next
three properties set the global repository and credentials for accessing Documentum.

Alfresco integration
Alfresco is an open source enterprise content management system for displaying
documents, web, records, images, and collaborative content development.
Refer to http://www.alfresco.com for more information.

In brief, Alfresco could be integrated in the portal, using the following approaches:

1. Web services: referring to the Alfresco Content portlet
2. RESTful services: OpenSearch, referring to the Alfresco Content portlet
3. RESTful services: web scripts, using Alfresco as the direct repository of the

Document Library
4. CMIS: using CMIS Document Library Hook
5. Portlets: using the Alfresco web client as a set of portlets

Alfresco CMIS explores the benefits of introducing CMIS into the content
applications. CMIS is an emerging standard for improving RESTful interoperability
between ECM systems. For CMIS-based integration, Alfresco provides the following
CMIS bindings:

1. CMIS AtomPub binding: This is used to see the AtomPub service document
2. CMIS web services binding: This is used to see WSDL documents

Enterprise Content Management

[232]

In fact, the class CMISHook extends the abstract class BaseHook, implementing the
interface Hook. Based on the CMIS AtomPub binding or CMIS web service binding,
it provides detailed implementation to add a directory and file, to delete a directory
and file, get a file as stream (downloading a file), re-index, update a file, and so on.
The class CMISStore could use the following properties to consume Alfresco CMIS:

dl.store.cmis.credentials.username=none
dl.store.cmis.credentials.password=none
cmis.repository.url= http://localhost:8080/alfresco/service/api/cmis
dl.store.cmis.system.root.dir=Liferay Home

Of course, you would be able to overwrite the previous properties in portal-ext.
properties. As you can see, both CMIS version 1.0 and 0.61 got supported in the
CMISStore. The following table shows details of the CMISStore implementation:

Name Extends Model Description
CMISConstants_1_0_0 CMISConstants None CMIS 1.0

constants
CMISConstants_0_6_1 CMISConstants none CMIS 0.61

constants
CMISObject org.apache.abdera.model.

ExtensibleElementWrapper
org.apache.
abdera.
model.
Element

CMIS Object

CMISRepositoryInfo org.apache.abdera.model.
ElementWrapper

org.apache.
abdera.
model.
Element

CMIS repository
information

CMISExtensionFactory org.apache.abdera.util.
AbstractExtensionFactory

none CMIS extension
factory

Apache Abdera provides a functionally-complete, high-performance implementation
of the IETF Atom Syndication Format (RFC 4287) and Atom Publishing Protocol
(RFC 5023) specifications, which are standards for creating, editing, and publishing
web feeds and other web resources. Refer to http://abdera.apache.org/ for
more information.

Chapter 5

[233]

Records management
Records management (RM) is the practice of maintaining the records of an
organization from the time they are created up to their eventual disposal, including
scanning, classifying, storing, securing, capturing, and tracking records, and
automatic data extraction – using the OCR (Optical Character Recognition)
component to convert TIFF and other unsearchable files to text. A record can be
either a tangible object or digital information, for example, birth certificates, medical
x-rays, office documents, databases, application data, fax, and e-mail.

The United States Department of Defense standard DoD 5015.02-STD defines
records management as

The planning, controlling, directing, organizing, training, promoting, and other
managerial activities involving the life cycle of information, including creation,
maintenance (usage, storage, retrieval), and disposal, regardless of media.

OCR is an electronic translation of scanned images of handwritten, typewritten, or
printed text into machine-encoded text. OCR software enables us to extract text from
an image and convert it into an editable text document. For example, you need the
text from an image (such as, fax, e-mail, EDI, scanned document, scanned PDF, and
so on). And you don't have to sit and type in the whole text. What can you do? Just
scan the document and then use the OCR tool to convert it into editable text.

Records in Document Library
As you know, Document Library provides capabilities to manage documents with
folders, file entries, searchable file content, and whether the file content is readable
by Tika. Apache Tika is a toolkit for detecting and extracting metadata and
structured text content from various documents, using existing parser libraries, that
is, Document Library is able to manage documents and extract document content.
Records management isn't in the picture, by default. This section will address how to
build the records management system on top of Document Library, as well as that of
documents management.

The records management system should have features: web-based, remote scanning,
and remote site, capturing scanned document information using bar-code, regular
expressions, and phrases.

Enterprise Content Management

[234]

Document scanning (or called image scanning) is the process of converting text and
graphic paper documents, photographic film, photographic paper, or other files to
digital images. Records are scanned documents, such as, insurance claims, mortgage
files, patient records, tax reports, invoices, and sales orders coming via mail, fax,
e-mail, and EDI (Electronic Data Interchange). In general, a record can be either a
tangible object or digital information—an un-editable and unsearchable document.

The regular data flow of records management should first include document tracking
capability. Document tracking allows you to initiate document tracking right at the
beginning of the process.

Then it covers document ingestion, such as, scanning, importing, and linking.
Importable records would be fax, e-mail, EDI, or any scanned documents. And the
scanners would be web scanner (using the local scanner device in web browsers and
the store scanned document in the web application server) and other devices such as
pen scanners, card scanners, or mobile scanners. All scanned documents are saved
in the web application server. Generally speaking, it scans documents using web
scanners or other devices like pen scanners, card scanners, and mobile scanners, and
ingests documents using mailroom level scanners such as IBML, Opex, or NCR, or
receives documents via fax from a fax server, e-mail from an e-mail server, or EDI
(short for Electronic Data Interchange).

When uploading records, it will perform automatic data extraction via an OCR
engine, that is, it captures appurtenant data from the records, and meanwhile, it
extracts the full text from the records too. Most importantly, the OCR engine should
show capability to recognize English text, other languages, and Unicode characters
like Chinese.

Metadata information should cover dates, patient card ID, load numbers, policy
numbers, claim numbers, invoice numbers, bar-coded values, and even a table, a
line item, and so on. This metadata information can be retrieved through learning
processes based on different content types—training the OCR engine to recognize
special metadata by learning processes.

OCR-supported bar code formats should cover the following:

1. CODE 128 (128b, 128C, 128raw)
2. EAN (International Article Number) 8 and 13
3. UPC (Universal Product Code)
4. Code 3 of 9
5. Code interleaved 2 of 5

Chapter 5

[235]

OCR-supported image formats should cover the following:

Format Extension Description
Adobe Photoshop .psd Photoshop's native format stores an image with

support for most imaging options available in
Photoshop.

Bitmap, Windows/OS2 .bmp, .dib A raster graphics image file format used to
store bitmap digital images

Cursor .cur The cursor file format is an almost identical
image file format for non-animated cursors

Graphics Interchange
Format

.gif A bitmap image format

Icon .ico An image file format for icons; contains one or
more small images at multiple sizes and color
depths.

JPEG .jpeg, .jpg A commonly used method of lossy
compression for digital images

Macintosh PICT Format .pict, .pct A graphics file format as standard metafile
format

PCX Format .pcx A device-independent raster image format
Portable Network
Graphics

.png A bitmapped image format and video codec
that employs lossless data compression

Sun Raster Format .ras A raster graphics file format
Tag Image File Format .tif, .tiff A file format for mainly storing raster images
Targa .tga A raster graphics file format; an acronym

for Truevision Advanced Raster Graphics
Adapter.

X Bitmap .xbm A plain text monochrome image format for
storing cursor and icon bitmaps used in the X
GUI.

X PixMap .xpm Primarily used for creating icon pixmaps, and
supporting transparent color

In addition, Portable Document Format (PDF) is a file format widely used for all
kinds of documents. PDF could be used to extract text, and then index the text
extracted for search. Thus, OCR engine should be able to extract text from images
stored in PDF files.

Enterprise Content Management

[236]

By the way, OCR engines should have a high-level of accuracy and page layout
analysis, and should be able to recognize text in multiple languages such as, Arabic,
English, Bulgarian, Catalan, Czech, Chinese (both simplified and traditional), Danish
(standard and Fraktur script), German, Greek, Finnish, French, Hebrew, Croatian,
Hungarian, Indonesian, Italian, Japanese, Korean, Latvian, Lithuanian, Dutch,
Norwegian, Polish, Portuguese, Romanian, Russian, Slovak (standard and Fraktur
script), Slovenian, Spanish, Serbian, Swedish, Tagalog, Thai, Turkish, Ukrainian,
Vietnamese, and so on. Moreover, OCR engines should be flexibly trained to work
in other languages too.

After OCR data extraction, it saves the original scanned document as a file entry—
that is, a scanned document. It also saves metadata as part of the record metadata.
And it saves the full text extracted by OCR engine as an extra string.

Once having scanned documents, metadata, and full text saved, it manages records
in the Liferay Portal. And a record could be previewed as scanned document and
searchable via its metadata and full text. Of course, the records management system
would be able to allow the admin to update the full text of records—manually
correcting OCR text extraction results, if needed.

Record model
The Document Library does have a model currently to support document
management. For records management, we're not going to create a new wheel.
Instead, reuse the current model, and make it support both document management
and records management.

First, let's extend the model to support records management in the Document
Library. To do so, add the following columns for the entity, DLFileEntry, in the DL,
service.xml:

<column name="type" type="String" />
<column name="text" type="String" />

As shown in the previous code, it adds two columns: type and text. The column type
should be a short string, such as, 75 characters; while the column text should be a
long text.

The column type will be used to identify whether it is a document or a record. If it is
a document, use Document Library's default processes. Otherwise, use the previous
OCR-based data flow processes.

Chapter 5

[237]

The column text will be used for the type record only, storing the full text extracted
by an OCR engine. Keep this column blank, when the type is document.

Once the updated service.xml is ready, you can use the service-builder to
re-generate models and services. From now on, the Document Library is going
to support both documents management and records management.

Records validation and classification
During the OCR recognition phase, you would be able to review records, validate
metadata extraction, train the OCR engine to recognize metadata from different
record types, and classify records via record types in the records management
systems (RMS).

Record classification includes determining document or file naming conventions
and identifying metadata. The best way to ensure that the record can be retrieved is
to group the records within a category. This process is called classifying the record,
as they are grouped into record types. For example, the record type Patient Record
must have metadata such as card ID, date of birth, and so on, while the record type
Invoice Record should have metadata such as invoice date, part number, invoice
total, state, and city. Obviously, RMS should have the capability to allow end users
to define custom record types in runtime.

Records, where certain data fields are missing from OCR extraction, need to be
validated by the user. This can be done by entering the correct data in the empty
textboxes. And different data fields will be seen, depending on the type of record.

The previous tasks (records review, validation, and classification) can be done
through a pre-defined workflow, and different workflows can be applied for the same
purpose in runtime. Users can train the engine to recognize the documents by giving
samples, and the RMS will learn them by utilizing several technologies like OCR.

Records indexing
Once a record is saved in the Document Library, the metadata and the full text
of that record should be indexed as well. One simple option to present record
metadata is by using custom attributes. The following is the sample code from the
method doGetDocument of the class com.liferay.portlet.documentlibrary.
DLIndexer.java:

String type = fileEntry.getType();
String text = fileEntry.getText();
document.addKeyword("type", type);
// see details in DLIndexer.java
ExpandoBridgeIndexerUtil.addAttributes(document, expandoBridge);

Enterprise Content Management

[238]

As shown in the previous code, it indexes the type as addKeyword, the text as
addText, and record metadata is indexed as custom attributes.

OCR engines
The following OCR engines may meet your requirements for converting images
into text:

1. Tesseract: This is an optical character recognition engine for various
operating systems, and one of the most accurate open source OCR engines
available. The source code will read a binary, gray, or color image and output
text. A TIFF reader is built in and it reads uncompressed TIFF images. It also
supports multiple language recognition. Refer to http://code.google.
com/p/tesseract-ocr for more information.

2. Readiris: This converts your paper documents into editable text or PDF
files that you can edit, share, and store. Refer to the I.R.I.S. at http://www.
irislink.com/ for more information.

3. Asprise OCR: This is an OCR engine used to transform images (for example,
images scanned from paper documents) into editable text-based computer
files. Its features include high-level of accuracy, format retention, and
barcode recognition. Refer to http://asprise.com/ for more information.

4. ABBYY FineReader: This is an OCR software for text recognition and
for creating editable and searchable electronic files from scanned paper
documents, PDFs, and digital photographs. Refer to http://finereader.
abbyy.com/ for more information.

5. RecoStar: This extracts text from bitmap documents, scans, or faxes, making
the information accessible for file search, indexing, or data warehousing
tools. The supported input formats include: TIFF, JPEG, BMP, PNG, GIF, and
PDF. Output can be stored as Searchable PDF (PDF/A), plain text, or XML.
Refer to OpenText at http://www.captaris-dt.com/product/recostar/
for more information.

6. OCRopus: This is a state-of-the-art document analysis and OCR system,
featuring pluggable layout analysis, pluggable character recognition,
statistical natural language modeling, and multi-lingual capabilities. Refer to
http://code.google.com/p/ocropus/ for more information.

7. GOCR: This is an OCR program, converting scanned images of text back to
text files. Refer to http://jocr.sourceforge.net/ for more information.

8. SimpleOCR: This is the popular freeware OCR software, a royalty-free OCR
SDK for custom applications. Refer to http://www.simpleocr.com/ for
more information.

Chapter 5

[239]

9. OmniPage: This is an optical character recognition application, converting
images, such as, scanned paper documents and PDF files into document
file formats. Refer to http://www.nuance.com/for-individuals/by-
product/omnipage/ for more information.

10. Microsoft OneNote: This is simplicity personified. But it's not too great for
handwritten characters or even fuzzy ones. Microsoft Office Document
Imaging handles printed text ably.

11. TopOCR (called SnapReader): This is designed more for digital cameras and
mobile phones along with scanners. Refer to http://www.topocr.com/ for
more information.

The following online OCR services may meet your needs to convert images into text.

1. Google Docs: These allow us to upload images or PDF files, scan the file, and
use computer algorithms to convert the file into a Google document. Refer to
https://docs.google.com for more information.

2. FineReader Online: This is an online OCR service to provide accurate and
swift conversion of scanned and photographed images, and PDFs into
editable Word, Excel, RTF, TXT, and searchable PDF documents. Refer
to http://finereader.abbyyonline.com for more information.

3. Free OCR: This is a graphical frontend for Google's Tesseract OCR engine
that is often considered as one of the most accurate text recognition engines
around. Refer to http://www.free-ocr.com/ for more information.

4. OCR Terminal: This is an online OCR service that converts image formats
(TIFF, JPEG, PNG, PDF, and so on) to editable (RTF, DOC, TXT) and
searchable PDF formats. Refer to https://www.ocrterminal.com/ for
more information.

5. OCR Online: This extracts text from image formats (JPG, JPEG, BMP, TIFF,
and GIF) and converts it into editable Word, Text, Excel, PDF, and HTML
output formats. Converted documents look exactly like the original—tables,
columns, and graphics. Refer to http://www.free-ocr.com/ for more
information.

Building relationship
A relationship is a general term, covering the specific types of logical connections
found on class diagrams and object diagrams of UML. Instance-level relationships
of UML cover external link, association, aggregation, composition, dependency, and
so on.

Enterprise Content Management

[240]

Relationships exist in the records management system. For example, record A and
record B may have different relationships, such as external link (called reference),
association, aggregation (like whole-part), and composition (like parent-child).

Relationships can exist among records and documents inside the Document Library.
For example, record A is associated with document A and record B refers to
document B.

Relationships can exist among different content types like Document Library,
web content, and so on. For example, record A and document B are associated
with image A.

This relationship could be a one-one, presented as 1:1, or a one-many, presented as
1:n, or a many-one, presented as m:1, or a many-many, presented as m:n. Moreover,
relationships could exist among any entities. How to implement the same in the
portal? The following section will propose a solution for this.

Model
First of all, define an entity called Relationship in the service XML file portal
service.xml as follows:

<entity name="Relationship" uuid="true" local-service="true" remote-
service="true">
 <!-- PK fields -->
 <column name="relationshipId" type="long" primary="true" />
 <!-- Audit fields -->
 <!-- Other fields -->
 <column name="fromGroupId" type="long" />
 <column name="fromClassNameId" type="long" />
 <column name="fromClassPK" type="long" />
 <column name="toGroupId" type="long" />
 <column name="toClassNameId" type="long" />
 <column name="toClassPK" type="long" />
 <column name="type" type="String" />
 <!-- Finder methods -->
 <!-- see details in service.xml -->
</entity>

As shown in the previous code, the entity Relationship is defined with the
primary key relationshipId, audit fields such as, companyId, userId, userName,
and createDate, and other fields such as fromGroupId, fromClassNameId,
fromClassPK, toGroupId, toClassNameId, toClassPK, type, and description.

Chapter 5

[241]

As you can see, relationships are scoped into the portal instance level, that is, from-
entity and to-entity, and must share the same companyId. For example, record
A and document B are associated with image A, and record A, document B, and
image A can be scoped into different groups, but they should be scoped into the
same portal instance. Moreover, the from-entity, fromClassPK and the to-entity,
toClassPK can be scoped into the same group, when the from-group, fromGroupId
and the to-group, toGroupId have the same values. Alternatively, the from-entity
and the to-entity can be scoped into different groups, when from-group and
to-group have different values.

More specifically, the from-entity, fromClassPK, and the to-entity, toClassPK
can belong to a same content type, when the from-class-name, fromClassNameId
and the to-class-name, toClassNameId have the same values. Alternatively, the
from-entity and the to-entity can belong to different content types, when the
from-class-name and to-class-name are different.

The column type can have configurable values like external link, association,
aggregation, composition, dependency, and so on. Of course, you will be able to
predefine relationship types through the property entity.relationship.types
in the portal.properties and be able to override the same in portal-ext.
properties later.

Services
Once service.xml is ready, you could use the service builder to generate models
and services in the portal core. Afterwards, you would see a set of models
and services generated. Of course, it would be nice if you could add your own
implementation in the source code RelationshipLocalServiceImpl.java and
RelationshipServiceImpl.java.

Next, insert functions of updating relationships in the UI part, when updating
an entity like image, document, record, web content, and so on. This can be
done by calling relationship service utility RelationshipLocalServiceUtil or
RelationshipServiceUtil.

As you can see, the previous model can present different relationships among
different content types and/or entities, including a one-one, like 1:1; a one-many,
like 1:n; a many-one, like m:1; or a many-many, like m:n.

Enterprise Content Management

[242]

Portal-instance level relationship
The portal has specified a few relationships in the portal-instance level. For example,
the entity Role and Group have a many-many relationship, same as that of Role and
Permission, and Role and User:

<!-- Relationships -->
<column name="groups" type="Collection" entity="Group" mapping-
table="Groups_Roles" />
<column name="users" type="Collection" entity="User" mapping-
table="Users_Roles" />

As shown in the previous code, the entity Group and mapping-table,
Groups_Roles attributes are specified, but attribute mapping-key is not specified.
The service builder will assume that you are specifying a many-many relationship.

Similarly, the portal has specified a many-many relationship between the entity Team
and User, and Team and User Group as follows:

<!-- Relationships -->
<column name="users" type="Collection" entity="User" mapping-
table="Users_Teams" />
<column name="userGroups" type="Collection" entity="UserGroup"
mapping-table="UserGroups_Teams" />

You will find similar many-many relationships among the entities User Group,
Group, User, Team, Organization, Role, and Permission. More details can be
found in the portal service XML service.xml.

In particular, if the entity and mapping-key attributes are specified, but the
mapping-table is not specified, then the service builder will assume that you
are specifying a one-many relationship. For example:

<column name="shoppingItemPrices" type="Collection"
 entity="ShoppingItemPrice" mapping-key="itemId"
/>

The previous column specifies that there will be a getter called pojo.
getShoppingItemPrices() that will return a collection. It will map to a column
called itemId in the table that maps to the entity ShoppingItemPrice.

Content authoring
Authoring is the process of composing a course-ware, web page, or a multimedia
application (presentation) with text, sound, still and video pictures, and animation.
Authoring also includes creating and navigating other tools that allow interaction
between the user and the application.

Chapter 5

[243]

In the portal core, it would be nice to have the capability to add authoring
information in any content database schema. For example, when adding a record
into the Document Library, you would be able to add author information, and when
auditing information, you would be able to see who updated the record and when
the record got updated.

For content types, such as image, DL document/record, and web content article, the
following fields are added for content creation or modification:

<column name="userId" type="long" />
<column name="userName" type="String" />
<column name="createDate" type="Date" />
<column name="modifiedDate" type="Date" />

As you can see, the model is able to store created date and modified date, that is, for
a given entity like a record, you would know when it got created and when it got
updated. However, there is one and only one username existing in the model. When
an entity instance gets created, the username will be marked as the content creator
(or called content author). When the entity instance gets updated, the username will
be marked as the content modifier, where the original content creator information
will get lost.

Document Library has added version-related user information as follows:

<column name="versionUserId" type="long" />
<column name="versionUserName" type="String" />

This is a good thing that will keep version-related content-creator information. As
you know, Document Library will maintain different versions of documents or
records. Content versioning is the process of assigning either unique version names
or unique version numbers to unique states of content (such as documents, records,
images, web content, and so on). Within a given version number category (either
major or minor), these numbers are generally assigned in increasing order and
correspond to new updates of content.

Obviously, content authoring is missing by default. But the content authoring is
widely used in many real use cases. Therefore, it would be nice to add content
authoring capabilities for different content types.

How to implement content authoring? You can simply add authoring fields for any
content models. For example, add the following two fields in the Document Library
(referring to the service XML documentlibrary DL service.xml):

<column name="authorId" type="long" />
<column name="authorName" type="String" />

Enterprise Content Management

[244]

As shown in the previous code, at least two use cases are covered as well. When
adding a new content like a record, you would have a chance to input author
information. This author could be a regular user inside the portal. Thus, the system
will save selected user's ID and name as the author's user ID and author's name,
respectively. This is one use case. Another use case is that the author is not a regular
user of the portal yet. Thus the system should ask the end user to input the author's
name manually.

Once author information becomes part of metadata of the content, the portal will
be able to index the author's name as well. In any use case, the portal would have
capabilities to associate author information with any content. Furthermore, all
content will be searchable by author name.

Content archiving
An archive is defined as a collection of historical records, as well as the physical
place where they are located. Archives contain primary source documents that are
kept to show the function of an organization.

For many reasons, either known or unknown, the portal should have capabilities
to archive historical documents and records in the Document Library and to manage
all archives properly. How to implement this feature?

First, add a column called archive as the Boolean type in the entity DLFileEntry
specification as follows:

<column name="archive" type="boolean" />

The previous code adds the archive flag on a document or a record. By default, it is
false, meaning that the document or record is not archived yet. Once it is true, the
document or record becomes part of the archives.

Then, use the service builder to update models and services in order to support
archiving capabilities. Of course, you would be able to implement the same on
other content types such as web content, and so on.

Last, but not least, don't forget the indexing of the archive flag. The following sample
code should be added to the doGetDocument method of the class com.liferay.
documentlibrary.util.DLIndexer.java:

boolean archive = fileEntry.isArchive();
document.addKeyword("archive", archive);

Chapter 5

[245]

Expected features of content archiving are listed as follows. Of course, you may
have your own specific requirements. What you can do is that you can use the same
framework and add new functions on top of the framework. These functions are
as follows:

1. The ability to auto-archive documents, based on a specific date
2. The ability to manage archives
3. The ability to make all archives searchable or classifiable
4. The ability to navigate archives in a very intuitive way, by using a

calendar view

Summary
In this chapter, you learnt about video and image management, document
management, WebDAV implementation, multiple repositories integration, CMIS
consumers and producers, web scanning, OCR and record management, content
relationships, content authoring, and content archiving.

In Chapter 6, DDL and WCM, we're going to introduce DDL and WCM.

DDL and WCM
A Web Content Management (WCM) system is designed to simplify the publication
of web content to both regular websites and mobile devices. In particular, it allows
content creators to submit the content without requiring technical knowledge of
HTML or the uploading of files.

A WCM is a software system used to control a dynamic collection of web material,
such as, HTML documents, images, and other forms of media. While a CMS
facilitates document control, auditing, editing, and timeline management, a WCM
typically facilitates automated templates, access control, scalable expansion, easily
editable content, scalable feature sets, content virtualization, content syndication,
multiple languages, versioning, and so on.

This chapter will introduce web content first. Then, it will address what custom
attributes are and how they work. Afterwards, it will introduce CKEditor, Dynamic
Data Lists (DDL), and Dynamic Data Mapping (DDM). Finally, assets, asset links,
tagging, and categorization will be addressed in detail.

By the end of this chapter, you will have learned how to:

•	 Customize web content models and services
•	 Build web content structure
•	 Build a web content template
•	 Publish web content—asset publisher
•	 Integrate CKEditor and its plugins
•	 Use Expando—custom attributes
•	 Leverage DDL—dynamisc data lists
•	 Employ DDM—dynamic data mapping
•	 Manage assets, asset links, tags, and categories
•	 Publish assets with asset query

DDL and WCM

[248]

Web content management
Web content is the textual, visual, or aural content, as part of user experience, on
websites. It may include, among other things, text, images, sounds, videos, and
animations. The portal provides a Web Content Management (WCM) portlet, which
manages the structured and unstructured content to be published in a website. The
features cover tagging, categorization, versioning, multilanguage support, workflow,
scheduled publishing, defining the fields of the web content by creating structures,
editing the XML file with a desktop application through WebDAV, defining the look
of the custom structures by using Velocity or XSL templates, dynamic publishing,
and so on.

Models and services
The following figure depicts an overview of web content management, conceptually.
Web content has a set of resources, called JournalArticleResource, associated with
it. Each resource may have many versions of journal articles, called JournalArticle,
associated with them. As you can see, web content supports versioning at the
model level.

And each article called JournalArticle has a unique URL and a WebDAV URL
to be referred. Each article like the JournalArticle can have a structure called
JournalStructure and a template called JournalTemplate associated with it. The
structure is a logical structure of the article—it only states what the article contains,
while the template is the real article layout. Therefore, you can first define the fields
of the web content by creating structures and then define your own look of the
custom structures by defining custom velocity or XSL or FreeMarker template. The
structure of the models and services is given as follows:

JournalArticleResource JournalArticlec JournalStructurec
versioning

JournalContentSearch JournalArticleImagec JournalFeedc c

*

*

JournalTemplate

c

c

*

Chapter 6

[249]

As you can see, based on JournalStructure and JournalTemplate, RSS feeds
of journal articles can be built dynamically, by using JournalFeed. In addition,
a JournalArticle article can have many images associated with it, called
JournalArticleImage. For search purposes, a model called JournalContentSearch
is defined, referring to the JournalArticle model as dependencies. That is, it
provides the ability to search web content associated with journal articles.

Models
The portal has defined the entity JournalArticleResourse, in the journal service
XML svn://svn.liferay.com/repos/public/portal/trunk/portal-impl/src/
com/liferay/portal/service.xml, as follows:

<!-- PK fields -->
<column name="resourcePrimKey" type="long" primary="true" />
<!-- Other fields -->
<column name="groupId" type="long" />
<column name="articleId" type="String" />
<!-- Finder methods -->

As shown in the preceding code, a JournalArticleResource entity is defined
with the primary key column resourcePrimKey and other fields, such as, groupId
and articleId. That is, the JournalArticleResource entity mainly specifies
association among JournalArticleResource and JournalArticle, with the
help of resourcePrimKey and articleId, respectively.

In the same service XML, you will find the entity JournalArticle, specified
as follows:

<!-- PK fields -->
<column name="id" type="long" primary="true" />
<!-- Resource -->
<column name="resourcePrimKey" type="long" />
<!-- Group instance -->
<!-- Audit fields -->
<!-- Other fields -->
<column name="smallImageId" type="long" />
<!-- see details in service.xml -->

The preceding code shows that the entity JournalArticle has a primary key field
ID, a resource resourcePrimKey, a group instance, audit fields, and other fields;
such as, articleId, version, title, urlTitle, description, content, type,
smallImage, smallImageId, smallImageURL, and more.

DDL and WCM

[250]

In the same service XML, you will find other entities and their definitions, such as,
JournalArticleImage, JournalStructure, JournalTemplate, JournalFeed, and
JournalContentSearch. The following table shows a summary of these models,
their extension, and implementation:

Name Extension Implementation Description
JournalArticle JournalArticle

Model extends
BaseModel
<JournalArticle>,
GroupedModel,
ResourcedModel

JournalArticleImpl
extends
JournalArticleModelImpl

Journal
article
model

JournalArticle
Display

Serializable JournalArticle
DisplayImpl

Journal
article
display
model

JournalArticle
Image

JournalArticle
ImageModel
extends BaseModel
<JournalArticle
Image>

JournalArticleImageImpl
extends JournalArticle
ImageModelImpl

Journal
article image
model

JournalArticle
Resource

JournalArticle
ResourceModel
extends BaseModel
<JournalArticleRe
source>

JournalArticle
ResourceImpl extends
JournalArticle
ResourceModelImpl

Journal
article
resource
model, for
versioning

JournalContent
Search

JournalContent
SearchModel

JournalContentSearchImpl
extends JournalContent
SearchModelImpl

Journal
content
search
model, for
web content
search
capabilities

JournalFeed JournalFeedModel JournalFeedImpl extends
JournalFeedModelImpl

Journal
article RSS
feed model

Journal
Structure

JournalStructure
Model

JournalStructureImpl
extends JournalStructure
ModelImpl

Journal
article
structure
model

Journal
Template

JournalTemplate
Model

JournalTemplateImpl
extends
JournalTemplateModelImpl

Journal
article
template
model

Chapter 6

[251]

In fact, each journal article has a different workflow status; such as approved,
pending, inactive, denied, and so on. This kind of status is predefined in the class
workflow constant com.liferay.portal.kernel.workflow.WorkflowConstants.

Services
JournalArticle is also called web content. Based on the previous service.xml file,
the service builder generates a set of services, such as, JournalArticleResource,
JournalArticle, JournalStructure, JournalTemplate, JournalFeed, and
JournalContentSearch. The following table shows service interface, utilities,
wrappers, and service implementation:

Name Utility/Wrapper Implementation Description
JournalArticle(
Local)Service

JournalArticle(local)
ServiceUtil

JournalArticle(local)
ServiceWrapper

JournalArticle(Local)
ServiceImpl extends
JournalArticle(Local)
ServiceBaseImpl

Journal
article
service with
permission
checking
and local
service

JournalArticle
Resource
(Local)Service

JournalArticleResource
(Local)ServiceUtil

JournalArticleResource
(Local)ServiceWrapper

JournalArticleResource
(Local)
ServiceImpl extends
JournalArticleResource
(Local)ServiceBaseImpl

Journal
article
resource
service and
local service

JournalStructu
re(Local)
Service

JournalStructure
(Local)ServiceUtil

JournalStructure
(Local)
ServiceImpl extends
JournalStructure
(Local)ServiceBaseImpl

Journal
structure
service and
local service

JournalTemplate
(Local)Service

JournalTemplate(Local)
ServiceUtil

JournalTemplate(Local)
ServiceImpl extends
JournalTemplate(Local)
ServiceBaseImpl

Journal
template
service and
local service

JournalFeed
(Local)Service

JournalFeedServiceUtil

JournalFeedLocal
Service

JournalFeed(Local)
ServiceImpl extends
JournalFeed(Local)
ServiceBaseImpl

Journal feed
service and
local service

JournalArticle
Image(Local)
Service

JournalArticleImage
ServiceUtil

JournalArticleImage
LocalServiceUtil

JournalArticleImage
(Local)
ServiceImpl extends
JournalArticleImage
(Local)ServiceBaseImpl

Journal
article
image
service and
local service

JournalContent
Search(Local)
Service

JournalContent
Search(Local)
ServiceUtil

JournalContentSearch
(Local)
ServiceImpl extends
JournalContentSearch
(Local)ServiceBaseImpl

Journal
content
search
service and
local service

DDL and WCM

[252]

By the way, the class JournalArticleConstants defines the following journal
article constants:

public static final String CANONICAL_URL_SEPARATOR = "/-/";
// see details in JournalArticleConstants.java
public static final String[] TYPES =
 PropsUtil.getArray(PropsKeys.JOURNAL_ARTICLE_TYPES);

As shown in the preceding code, the default version will start with 1.0, and the
canonical URL separator will be /-/.

Comparator services
Journal articles can be displayed with columns, such as, ID, title, version, created
date, display date, modified date, review date, structure primary key, and so on. And
these columns can be sorted in ascending or descending order. Eventually, these
sortable features are specified in a set of comparators. The following table shows
these comparator services:

Name Extension Package Description
ArticleCreateDate
Comparator

com.liferay.
portal.
kernel.util.
OrderByComparator

com.liferay.
portlet.journal.
util.comparator

Compare to
object Date
create date

ArticleDisplay
DateComparator

OrderByComparator
implements
Comparator,
Serializable

com.liferay.
portlet.journal.
util.comparator

Compare to
object Date
display date

ArticleID
Comparator

OrderByComparator
implements
Comparator,
Serializable

com.liferay.
portlet.journal.
util.comparator

Compare to
object Long
ID

ArticleModified
DateComparator

OrderByComparator
implements
Comparator,
Serializable

com.liferay.
portlet.journal.
util.comparator

Compare to
object Date
modified date

ArticleReview
DateComparator

OrderByComparator
implements
Comparator,
Serializable

com.liferay.
portlet.journal.
util.comparator

Compare to
object Date
review date

ArticleTitle
Comparator

OrderByComparator
implements
Comparator,
Serializable

com.liferay.
portlet.journal.
util.comparator

Compare to
object String
Title

Chapter 6

[253]

Name Extension Package Description
ArticleVersion
Comparator

OrderByComparator
implements
Comparator,
Serializable

com.liferay.
portlet.journal.
util.comparator

Compare to
object Double
version

StructurePK
Comparator

OrderByComparator
implements
Comparator,
Serializable

com.liferay.
portlet.journal.
util.comparator

Compare to
object Long
Structure
Primary Key

In the same way, you will find comparator services for the Document
Library (DL), for instance, FileRankCreateDateComparator,
FileVersionComparator, RepositoryModelCreateDateComparator,
RepositoryModelModifiedDateComparator, RepositoryModelNameComparator,
RepositoryModelReadCountComparator, and RepositoryModelSizeComparator,
in the package com.liferay.portlet.documentlibrary.util.comparator.

Journal content services
The portal defines a set of journal content services in the interface JournalContent.
The JournalContent constants, static variables, and their values are abstracted from
the interface JournalContent:

public static final String CACHE_NAME = JournalContent.class.
getName();
// see details in JournalContent.java
public static final String VIEW_MODE_SEPARATOR = "_VIEW_MODE_";

Content that is displayed needs to be cached, depending on the protocol. Journal
templates have a token called @protocol@, which returns either HTTP or HTTPS,
depending on the protocol used by the user to access the page. In fact, the cached
function interface is specified in the interface JournalContent.java, as follows:

public void clearCache();
public void clearCache(long groupId, String articleId, String
templateId);

The other two function interfaces are specified in the interface JournalContent.
java. They are getContent, which returns a string, and getDisplay, which returns
the interface JournalArticleDisplay.

The interface JournalContent is implemented by JournalContentImpl, and all
the methods are exposed to the end user in the utility class JournalContentUtil.
That means, in your plugins, you can leverage these methods via the class
JournalContentUtil.

DDL and WCM

[254]

Journal tokens
At runtime, several tokens (called journal tokens) included in the journal elements,
such as JournalArticle, JournalStructure, and JournalTemplate, will be
translated to their applicable runtime value at processing time. Tokens have this
form: @token_name@.

For example, you can add a view counter through the JournalArticle token. You
can just add a token @view_counter@ to either the content of JournalArticle
or the output of the JournalArticle template used. This token is automatically
translated to the logic of view counter increment. In fact, the logic (replacing
the counter token with the increment call) has been defined in the class
ViewCounterTransformerListener.java, in the package com.liferay.portlet.
journal.util, as follows:

protected String replace(String s)
{
 Map<String, String> tokens = getTokens();
 // see details in ViewCounterTransformerListener.java
 s = StringUtil.replace(s, counterToken, sb.toString());
 return s;
}

The preceding code shows same logic as that of the JournalArticle JSP file.
Since it is AJAX-based, even if the page is cached somewhere in a proxy, you
will get the correct number of views counted. The following table shows a few
transformer listeners:

Listener Extension Interface Description
ViewCounterTrans
formerListener

BaseTransformer
Listener

Transformer
Listener

View counter
transformer listener,
for the token @view_
counter@

TokensTrans
formerListener

BaseTransformer
Listener

Transformer
Listener

Tokens transformer
listener

RegexTrans
formerListener

BaseTransformer
Listener

Transformer
Listener

Regex transformer
listener

PropertiesTrans
formerListener

BaseTransformer
Listener

Transformer
Listener

Properties
transformer listener

LocaleTrans
formerListener

BaseTransformer
Listener

Transformer
Listener

Locale transformer
listener, for the token
@language_id@

ContentTrans
formerListener

BaseTransformer
Listener

Transformer
Listener

Content transformer
listener

Chapter 6

[255]

Besides the token @view_counter@, there are a set of tokens that you can use at
runtime, translating to their applicable runtime value at processing time. The
following is a subset of the list of tokens and their runtime values:

@cdn_host@: themeDisplay.getCDNHost()
// ignore details
@language_id@: the language id of the current request

Of course, you are able to add custom journal tokens in the portal-ext.
properties, as follows:

journal.article.token.page.break=@page_break@
journal.article.custom.tokens=custom_token_1,custom_token_2
journal.article.custom.token.value[custom_token_1]=token1
journal.article.custom.token.value[custom_token_2]=token2

As shown in the preceding code, you can set the token @page_break@, which is used
when inserting simple page breaks in articles, and set a list of custom tokens that
will be replaced, when article content is rendered. For example, if custom_token_1
is set, @custom_token_1@ will be replaced with its token value before an article
is displayed.

You can also find the same details in the utility class com.liferay.portlet.
journal.util.JournalUtil. The following is the code snippet to populate
custom tokens:

// see details in JournalUtil.java
for (String customToken :
PropsValues.JOURNAL_ARTICLE_CUSTOM_TOKENS)
{
 _customTokens.put(customToken, value);
}

In addition, there are several meta-elements, called reserved elements, which are
added to an article's XML before they are processed by the template. The following
is an abstracted list of reserved elements. Of course, you can find the same list in the
class com.liferay.portlet.journal.model.JournalStructureConstants.

reserved-article-asset-tag-names
// ignore details
reserved-article-version

DDL and WCM

[256]

Retrieving structures, templates, and articles
There are a few backend journal services calls allowing us to retrieve structures,
templates, and articles, for use in various ways. The following table shows details
about these backend call services:

URL Service action Parameters Parameters' values
/journal/get_
article

com.liferay.
portlet.journal.
action.GetArticle
Action

groupId=$
{groupId}

articleId=$
{articleId}

Group Id, and
article Id; article Id
is different from
resource primary
key; output
ContentTypes.
TEXT_XML_UTF8

/journal/get_
article_content

GetArticleContent
Action

xml=${xml} Input xml, Output
ContentTypes.
TEXT_XML_UTF8
and file name
article.xml

/journal/get_
articles

GetArticlesAction

/journal/get_
latest_article_
content

GetLatestArticle
ContentAction

groupId=$
{groupId}

articleId=$
{articleId}

Group Id, and
article Id; output
ContentTypes.
TEXT_XML_UTF8

/journal/get_
structure

GetStructure
Action

groupId=$
{groupId}

structureId=$
{structureId}

Group Id,
and structure
Id; output
ContentTypes.
TEXT_XML_UTF8

/journal/
get_structure_
content

GetStructure
ContentAction

xml=${xml} Input XML, Output
ContentTypes.
TEXT_XML_UTF8
and file name
structure.xml

/journal/get_
template

GetTemplateAction groupId=$
{groupId}

templateId=$
{templateId}

transform=$
{transform}

Group Id,
template Id and
transform; output
ContentTypes.
TEXT_XML_UTF8

Chapter 6

[257]

URL Service action Parameters Parameters' values
/journal/
get_template_
content

GetTemplate
ContentAction

xslContent=${
xslContent}

formatXsl=${
formatXsl }

langType=${
langType}

XSL content,
format XSL
and language
type; output
ContentTypes.
TEXT_XML_UTF8
UTF8 and file name
template.$
{langType}

Content type constants have been defined in the interface com.liferay.portal.
kernel.util.ContentTypes.

Structure
Structure is an XML (Extensible Markup Language) definition of the dynamic parts
of journal articles. These parts may be a text, a textbox, a text area (HTML), an image,
a Document Library image, a Document Library document, a Boolean flag (true or
false), a selection list, a multiple selection list, a link to a page, selection break, and so
on. Actually, the structure is a specific XML schema.

The main columns of journal structure have been defined in the journal service XML
service.xml file, as follows:

<column name="structureId" type="String" />
<column name="parentStructureId" type="String" />
<column name="xsd" type="String" />

As shown in the preceding code, each journal structure has an ID column called
structureId and a parent ID column called parentStructureId—value 0 means
that there is no parent structure. Thus, structureId and parentStructureId form
journal structure hierarchy.

Besides ID columns, there are other columns, called name, description, and xsd. The
value of the journal structure is stored as XML in the field xsd.

Types
The field xsd of journal structure is made up of a set of rows. Each row can have
subrows as its children. Rows are placed in order, FIFO first in (the place) first
out (to be displayed).

DDL and WCM

[258]

Each row has a set of attributes, such as, name, type, index type, and repeatable.
The attribute name and type are required. The following table shows the predefined
types and their default values:

Type Value Description
text <aui:option label="text-

field" value="text" />
Input text

text_box <aui:option label="text-
box" value="text_box" />

Input textbox

text_area <aui:option label="text-
area" value="text_area" />

Text area HTML, using
WYSIWYG

boolean <aui:option label="checkbox"
value="boolean" />

Checkbox

list <aui:option label="select-
box" value="list" />

Select box

multi-list <aui:option label="multi-
selection-list"
value="multi-list" />

Multiple selection list

image <aui:option label="image-
uploader" value="image" />

Upload image into Image table

image_
gallery

<aui:option label="image-
gallery" value="image_
gallery" />

Display image using image URL
from the Document Library

/journal/select_image_gallery
document_
library

<aui:option label="document-
library" value="document_
library" />

Display document link using
image URL from the Document
Library

/journal/select_document_
library

link_to_
layout

<aui:option label="link-
to-page" value="link_to_
layout" />

Display page link using page
friendly URL

selection_
break

<aui:option
label="selection-break"
value="selection_break" />

Display selection break

Chapter 6

[259]

Each row can have optional attributes, such as, index type, predefined value,
repeatable, required, and localized. The following table shows these optional
attributes:

Column Value Description
Index-type: Not
searchable,

searchable keyword,

searchable text

none

keyword

text

Attribute Index type could have values:
not searchable

Searchable keyword,

Searchable text
predefinedValue text Predefined values
Repeatable checkbox Repeatable structure fields
Required checkbox Required structure fields
Localized checkbox Localized field; this property is active only

in journal article render processes

For more details, you can refer to svn://svn.liferay.com/repos/public/
portal/trunk/portal-web/docroot/html/portlet/journal/edit_article_
structure_extra.jspf. Of course, you can add custom types; such as date, polls,
and Knowledge Base articles, by modifying this JSP file using JSP hooks in plugins.

Value format
The value of the field xsd has the root element <root></root>, which contains many
rows. Each row is presented as the element <dynamic-element>. Each row has
many attributes, such as, name, type, index-type, and repeatable. Each row may have
many subrows. Subrows are presented as the element <dynamic-element>, too. The
following is an example of the value of the field xsd:

<root>
 <dynamic-element name='link-to-page' type='link_to_layout'
 index-type='' repeatable='false'></dynamic-element>
 </dynamic-element>
</root>

Template
Template (or web template) is a pattern to rapidly generate and mass-produce web
pages that are associated with a structure. A template defines the layout of journal
articles, and determines how the content items will be arranged.

DDL and WCM

[260]

The main columns of journal template have been defined in the journal service XML
service.xml file, as follows:

<column name="templateId" type="String" />
<column name="structureId" type="String" />
<column name="smallImageURL" type="String" />

As shown in the preceding code, each journal template has an ID column called
templateId and an associated journal structure called structureId. Besides ID
columns, there are other columns called name, description, and xsd. The value of
journal structure is stored as XML, in the field xsd.

Each journal template can have an image as its thumbnail, stored in the table image
as the file samllImageId, or the image can be an external image URL or an image
URL from the Document Library.

In addition, each journal template can be cacheable, set by the column cacheable.
Most importantly, each journal template can have a different language type,
presented as the column langType.

Language types
Each journal template can be presented as different template languages, such as,
CSS, FreeMarker, VM (Velocity template), or XSL. The following table shows these
template language types:

Type Property Value
css journal.template.language.

content

journal.template.language.
parser

com/liferay/portlet/journal/
dependencies/template.css

ftl journal.template.language.
content

journal.template.language.
parser

com/liferay/portlet/journal/
dependencies/template.ftl

com.liferay.portlet.journal.
util.FreeMarkerTemplateParser

vm journal.template.language.
content

journal.template.language.
parser

template.vm

VelocityTemplateParser

xsl journal.template.language.
content

journal.template.language.
parser

template.xsl

XSLTemplateParser

Chapter 6

[261]

Variables and values
Considering the previous example, the dynamic element main-text can be
accessed in the following ways (velocity template variables are defined
in the interface VelocityVariables.java and its implementation class
VelocityVariablesImpl.java):

•	 $main-text.getName(): This is the name in the article for the field
main-text.

•	 $main-text.getData(): This is the data in the article for the field
main-text.

•	 $main-text.getType(): This is the type in the article for the field
text-area.

•	 $main-text.getChildren(): This is a collection of two nodes, for example,
subimage and subtext.

•	 $main-text.getSiblings(): This is a collection of elements with the name
main-text. This will only return more than one element, if this element is
repeatable.

•	 Element of type multi-list: $ms-list.getOptions() is a collection with
up to three string entries that can be used in the #foreach clause.

•	 Element of type link_to_layout: $linkToPage.getUrl() is the URL that
links to the selected page in the current site, organization, and so on.

The variable $journalTemplatesPath can be used to include another journal
template, for example, #parse("$journalTemplatesPath/LAYOUT-PARENT").By the
way, the variable $viewMode, specifies the mode in which the article is being viewed.
For example, if $viewMode is set to print, it means that the user clicked the print icon
to view this article.

Custom CSS
You may have your own CSS to display articles. Fortunately, you can add this CSS
inside the journal template, in the following format. This CSS should stay at the
beginning of the template text:

<style type="text/css">
/*add your own CSS*/
</style>

DDL and WCM

[262]

Custom JavaScript
Similarly, you may have your own JavaScript to display articles. Obviously, you
can add this JavaScript inside the Journal template, in following format. The
JavaScript could stay either at the beginning of the template text or at the end
of the template text.

<aui:script>
// add your own JavaScript
</aui:script>

The preceding code uses the AUI script tag. You can also use normal a JavaScript tag,
shown as follows:

<script type="text/javascript">
// add your own JavaScript
</script>

Localization
Internationalization (i18n) and localization (L10n) are the means of adapting
computer software to different languages, regional differences, and the technical
requirements of different target markets. Localization is defined as the process of
adapting internationalized software for a specific region or language by adding
locale-specific components and translating text.

Liferay portal supports up to 42 languages or locales. The portal framework is
flexible enough to include any new locales. The following section will discuss how
to add localization for the title, description, and content of many content types; web
content is one of these content types.

Localized column
As mentioned earlier, the localized value specifies whether or not the value of the
column can have different values for different locales. For example, the columns
title and description have been specified as localized="true". The service
builder will use model.ftl and model_impl.ftl to generate model interface and
implementation, respectively. The following is an example code snippet, abstracted
from model_impl.ftl:

<#if column.localized>
 public String get${column.methodName}(Locale locale)
{
 String languageId = LocaleUtil.toLanguageId(locale);

Chapter 6

[263]

 return get${column.methodName}(languageId);
}
// see details in model_impl.ftl
</#if>

The following code snippet is abstracted from model.ftl. ${column.type} here
presents String, and ${column.methodName} presents column method name, say,
title, description, and so on:

public ${column.type} get${column.methodName}(Locale locale);
public Map<Locale, String> get${column.methodName}Map();

Value format
The value of the field title, description, and content, is persisted in the database in the
following XML format. The keyword Title is used as an example only:

<?xml version='1.0' encoding='UTF-8'?>
<root available-locales="en_US" default-locale="en_US">
<Title language-id="en_US">Test</Title>
</root>

The preceding code shows that the first line is XML version, that is, 1.0, and XML
encoding, that is, UTF-8. The second line defines available locales, such as en_US,
and a default locale, say en_US, with element root.

What's happening? The model JournalArticleModel, implemented by
JournalArticleModelImpl, has defined getters/setters. That is, the localized title of
this journal article, optionally using the default language if no localization exists for
the requested language, . The following code snippet illustrates this:

// see details in JournalArticleModelImpl.java
public void setTitle(String title, Locale locale, Locale
defaultLocale)
{
 String languageId = LocaleUtil.toLanguageId(locale);
 String defaultLanguageId =
 LocaleUtil.toLanguageId(defaultLocale);
}

In the same way, the model JournalArticleModel has defined the getters/setters,
that is, the localized description (and content) of this journal article.

DDL and WCM

[264]

Localization interface
The interface com.liferay.portal.kernel.util.Localization stores and
retrieves localized strings from XML, and provides utility methods for updating
localizations from JSON, portlet requests, and maps, used for adding localization
to strings, most often for model properties.

Caching of the localized values is done in this class rather than in the value object,
since value objects get flushed from cache quickly. Although lookups performed
on a key based on an XML file are slower than lookups done at the value object
level in general, the value object will get flushed at a rate that works against the
performance. The cache is a soft hash map that prevents memory leaks within the
system while enabling the cache to live longer than in a weak hash map.

The following table shows the localization interface, utility, and implementation:

Interface Implementation Utility Description
Localization LocalizationImpl Localization

Util
Stores and retrieves
localized strings from
XML and JSON

Cloneable,

Serializable

java.util.Locale LocaleThread
Local

LocaleUtil

Represents a specific
geographical, political, or
cultural region.

A java.util.Locale object represents a specific geographical, political, or
cultural region. An operation that requires a locale to perform its task is called
locale-sensitive and uses the locale to tailor information for the user. For example,
displaying a number is a locale-sensitive operation; the number should be formatted
according to the customs/conventions of the user's native country, region, or culture.

You can create a Locale object using the constructors in the following class:

Locale(String language)
Locale(String language, String country, String variant)

Indexer
In order to find web content fast and easily, all web content gets indexed with a
search engine, such as, Lucene (a high-performance, full-featured text search engine
library, written entirely in Java) and/or Solr (enterprise search platform). This search
engine indexing is used to collect, parse, and store data, to facilitate fast and accurate
information retrieval.

Chapter 6

[265]

The web content indexer is specified in the class JournalIndexer.java, which
extends BaseIndexer, as follows:

// see details in JournalIndexer.java
public static final String[] CLASS_NAMES =
 {JournalArticle.class.getName()};
// UID
document.addUID(PORTLET_ID, groupId, articleId);
// title and localized title
document.addKeyword(Field.TITLE,
 article.getTitle(defaultLocale), true);
document.addLocalizedText("titleMap", titleMap);
// see details in JournalIndexer.java
// related custom attributes
ExpandoBridgeIndexerUtil.addAttributes(document,
 expandoBridge);

The preceding code first shows an indexer class name. It is called JournalArticle.
class.getName(), in this indexer, which is used in the indexer registration process.
Then it adds a UID (Unique Identification Number), generated by three elements,
PORTLET_ID, groupId, and articleId. As you can see, there is one and only one
version that gets indexed, since the entity articleId is a unique ID for all the
versions of that article. If you want to index all versions, you can use the articleId
plus the version number, such as, 1.0, 1.2, 2.0, and so on, instead of using
the articleId only.

As mentioned earlier, the title, description, and content get localized. The portal
improves the search by indexing localized content as separate fields, and it adds
the Locale parameter to search methods, such as, addLocalizedKeyword and
addLocalizedText, from the interface Document. The portal adds support, so that
when a field is localized from the service builder level, you just need to pass the map
to the document. The following is an example code snippet, abstracted from the class
DocumentImpl, which implements the interface Document:

// see details in DocumentImpl.java
public void addLocalizedText(String name,
 Map<Locale, String> values)
{
 _fields.put(name, field);
}

DDL and WCM

[266]

The structure content fields get indexed as well. Besides these, the category names
list, the category IDs list, and the tag names list get indexed as keywords. All related
custom attributes get indexed as well, for example, ExpandoBridgeIndexerUtil.
addAttributes(document,expandoBridge). We will address the details of custom
attributes in the coming section.

XML security
As you have noticed, structure, template, and localized content are specified by XML
values, which are stored in the database. Similarly, the XSL Content portlet provides
the ability to publish XML-based content. A security vulnerability exists within
the XSL Content portlet that can potentially allow execution of code on the server.
Specifically, the XML/XSL specification allows for potentially dangerous code to be
executed. Therefore, the question about XML security arises.

XML security should adhere to security best practices and minimize the
opportunities for threats based on XML security mechanisms. Refer to
http://www.w3.org/TR/2010/WD-xmlsec-reqs-20100204/.

However, this can be a feature that is useful for portals. The portal is now able to
set permission in roles to determine who can add the XSL Content portlet to a page.
By default, users with a personal site will no longer be able to add the XSL Content
portlet to their personal pages. If users were given permission to add an XSL Content
portlet to their personal pages, additional permissions must be granted to the users.

Programmatically, the class com.liferay.portlet.xslcontent.util.
XSLContentUtil transforms XSL content XML to stream. The following
code snippet demonstrates this:

// see details in XSLContentUtil.java
String xsl = HttpUtil.URLtoString(xslUrl);
StreamSource xslSource = new StreamSource(new
UnsyncStringReader(xsl));

The class XSLTemplateParser extends VelocityTemplateParser and
BaseTemplateParser, which implements TemplateParser. The class
XSLTemplateParser provides the ability to parse XML content with XSL
structure and values, as shown in the following table:

Interface Implementation Extension Description
Template
Context

XSLContext None Template context

FreeMarker
Context

FreeMarker
ContextImpl

TemplateContext FreeMarker
template context

Chapter 6

[267]

Interface Implementation Extension Description
Velocity
Context

Velocity
ContextImpl

TemplateContext Velocity template
context

Template
Parser

BaseTemplate
Parser

VelocityTemplate
Parser

FreeMarkerTemplate
Parser

XSLTemplate
Parser

Template parser

Sanitizer
What are sanitizers? Sanitizers are filtering elements that sanitize web content,
usually HTML or JavaScript code, so that it doesn't contain inappropriate content,
for example, JavaScript malicious code or swearwords.

The portal provides the interface com.liferay.portal.kernel.sanitizer.
Sanitizer, a filtering element that sanitizes web content usually HTML or
JavaScript code. The following is the code snippet for sanitizer constants,
abstracted from the interface Sanitizer:

public static final String MODE_ALL = "ALL";
public static final String MODE_XSS = "XSS";

The following table shows Sanitizer interface, implementation, wrapper,
and utility:

Interface Wrapper Implementation Utility
Sanitizer SanitizerWrapper BaseSanitizer SanitizerUtil

SanitizerImpl

none DummySanitizerImpl none

The following property has been provided in the portal.properties element,
allowing the use of a custom sanitizer:

sanitizer.impl=com.liferay.portal.sanitizer.DummySanitizerImpl

The preceding code sets the name of a class that implements the interface Sanitizer.
This class is used to sanitize content. As you can see, you can use custom sanitizers
by setting the property sanitizer.impl.

DDL and WCM

[268]

Before entering the contents into the database, the sanitizer can be applied to any
entity, either portal core entities, such as, wiki pages, blog entries, message board
threads, journal articles, and so on, or custom entities such as Knowledge Base
articles in plugins. For example, you can use the utility class SanitizerUtil in
the model service wrapper hook WikiPageLocalServiceWrapper for wiki pages,
or the model service wrapper hook BlogsEntryLocalServiceWrapper for blogs
entries, or the model service wrapper hook JournalArticleLocalServiceWrapper
for journal articles. For custom entities such as Knowledge Base articles, you can
apply the utility class SanitizerUtil in the local service class implementation
KBArticleLocalServiceImpl; more specifically, inside the method addKBArticle,
use the utility class SanitizerUtil, to sanitize the content. The following is an
example code snippet, abstracted from the class KBArticleLocalServiceImpl:

String sanitizedContent = SanitizerUtil.sanitize(
 // see details in KBArticleLocalServiceImpl.java
 ContentTypes.TEXT_HTML, content);

Antisamy
OWASP AntiSamy is an API that helps you make sure that clients don't supply
malicious cargo code in the HTML that they supply for their profile, comments, and
so on, that get persisted on the server. Refer to https://www.owasp.org/index.
php/Category:OWASP_AntiSamy_Project.

AntiSamy can be used as a starting point that may be interested in implementing
your custom sanitizers. How does it work? The following are the main steps that you
can follow to bring AntiSamy into the portal. Of course, in the same process, you will
be able to bring other sanitizers into the portal as well:

1. Create a hook plugin project, for example, antisamy-hook, and add the
following line to portal.properties:
sanitizer.impl=com.liferay.antisamy.hook.sanitizer.
AntiSamySanitizerImpl

2. The preceding code sets the name of the class AntiSamySanitizerImpl that
implements the interface Sanitizer. This class is used to sanitize content.

3. Add the portal properties hook by adding the following line in
liferay-hook.xml:
<portal-properties>portal.properties</portal-properties>

Chapter 6

[269]

4. Bring the AntiSamy API (downloadable at https://www.owasp.org/index.
php/Category:OWASP_Download) into the plugin. For example, copy the
JAR file antisamy.jar and its dependent JAR files, such as, batik-css.jar,
batik-util.jar, and xml-apis-ext.jar into the folder /docroot/WEB-
INF/lib.

5. Finally, provide an implementation of com.liferay.antisamy.hook.
sanitizer.AntiSamySanitizerImpl in the folder /docroot/WEB-INF/src,
as follows:

public class AntiSamySanitizerImpl implements Sanitizer
{
 public byte[] sanitize(
 // see details in AntiSamySanitizerImpl.java
 byte[] bytes, Map<String, Object> options)
{
 // add custom logic here
 return bytes;
}
 // see details in AntiSamySanitizerImpl.java
}

As shown in the preceding code, the class AntiSamySanitizerImpl implements the
interface Sanitizer.

ClassName-classPK pattern
The journal portlet provides the interesting functionality of storing structured
content and then applying templates to it. This functionality is also useful outside
the world of web content, since a common pattern can use its backend to build
third-party applications on top of it. Therefore, the data stored in JournalArticle
by those applications also appears as web content.

One possible solution is to apply the className-classPK pattern to separate the
JournalArticle entries for web content (for example, classNameId=0) from those
that have other purposes. To implement the same, you can add the following lines
inside the entry JournalArticle, from the service XML /journal/service.xml:

<column name="classNameId" type="long" />
<column name="classPK" type="long" />

The preceding code uses the column classNameId to present different content type.
It shows web content if the value of classNameId is 0. The column classPK presents
a different content table primary key.

DDL and WCM

[270]

WYSIWYG editor
The WYSIWYG editor will be helpful in building content on top of the portal, for
example, blog entries, forum topics, articles, journal articles, and so on. The portal is
integrated with the WYSIWYG editors. Thus, content creation and publishing in the
portal is simple and straightforward.

The WYSIWYG editor of the portal is highly configurable. In general, you can
configure individual JSP pages to use a specific implementation of the available
WYSIWYG editors: liferay, CKEditor, FCKeditor, simple, tinymce, or tinymcesimple.
Moreover, you can include the WYSIWYG editor in the edit page of blog entries, web
content, wiki pages, mail configuration, and custom assets such as Knowledge
Base articles.

The following table shows WYSIWYG editor system files, runtime files and folders,
and integration connections. You will be able to find the system files in the folder
$PORTAL_SRC_HOME/portal-web/third-party and the runtime files in the folder
$PORTAL_SRC_HOME/portal-web/docroot/html/js/editor:

Name System file Runtime folder Integration Connection
CKEditor ckeditor_3

.x.x.zip
CKEditor ckeditor_diffs,

ckeditor.jsp

FCKeditor FCKeditor_2
.x.x.zip

FCKeditor fckeditor_diffs,

fckeditor.jsp

tinymce

tinymcesimple

tinymce_3_
x_x.zip

tiny_mce tiny_mce, tinymce.jsp

Tinymcesimple.jsp

codepress codepress-v
.x.x.x.zip

codepress codepress_diffs

simple none none simple.jsp

liferay none liferay none

CKEditor integration
CKEditor (previously called FCKeditor) is a web-based HTML text editor with
powerful formatting capabilities. It brings to the web much of the power of desktop
editors such as MS Word. Moreover, it is the most-used rich HTML editor on the
Web. It's also lightweight and doesn't require any kind of installation on the client's
computer. Refer to http://ckeditor.com for more details.

Chapter 6

[271]

The CKEditor File Browser Connector offers a unique interface that can be used
by all server-side languages that are developed completely on JavaScript DHTML;
integration is available by XML.

The portal sets CKEditor as the default WYSIWYG editor included in the edit page of
blog entries, web content, wiki pages, mail configuration, and so on. The following
section will show more integration details.

CKEditor structure
The following table shows the CKEditor folder structure:

Folder name Subfolders Files
_sample adobeair, api_dialog, asp,

assets, php
sample.css, sample.js, *.html

_source adapters, core, lang,
plugins, skins, themes/
default

theme.js and more

adapters none jquery.js

images none spacer.gif

lang none c_languages.js, af.js, ar.js,
en.js, en-au.js, en-ca.js, en-
gb.js, zh.js, zh-cn.js, and so on

plugins a11yhelp, about, scaty,
xml, and so on

For example, option.js, toolbar.css
under the folder scayt/dialogs

skins kama, office2003, v2 For example, dialog.css, editor.
css, skin.js, template.css
under the folder kama

themes default theme.js

In addition, you will find a set of configuration files in the root, such as, ckeditor.
js, ckeditor_basic.js, ckeditor_source.js, ckeditor_basic_source.js,
config.js, and so on.

DDL and WCM

[272]

CKEditor diffs
The portal uses two folders, ckeditor_diffs and fckeditor_diffs, to integrate
CKEditor/FCKeditor. The following table shows the integration details:

Name Folder Overwrite
file

Description

ckeditor.jsp root none ckeditor integration specification
fckeditor.
jsp

root none fckeditor integration
specification

ckeditor.js ckeditor_diffs ckeditor.
js

Overwrite CKEditor core
JavaScript

ckconfig.jsp ckeditor_diffs config.js Overwrite CKEditor
configuration JavaScript -
CKEDITOR.config.toolbar
definition

editor fckeditor_
diffs

none /filemanager/browser/
liferay

images
js and files

The main entry point of CKEditor integration is the file ckconfig.jsp. The
following code snippet shows this:

CKEDITOR.replace('<%= name %>',
{// see details in ckconfig.jsp
toolbar: '<%= TextFormatter.format(HtmlUtil.escape(toolbarSet),
TextFormatter.M) %>'
}
);

The preceding code shows how to load ckconfig.jsp and /ckeditor/editor/
filemanager/browser/liferay/browser.html. You can find details in the file
/editor/ckeditor.jsp.

To upgrade CKEditor, download the latest version and unzip it to CKEditor.
Then, add custom configuration to fckeditor/fckconfig.jsp, and copy
fckeditor/editor/filemanager/browser/default to ckeditor/editor/
filemanager/browser/liferay. Modify browser.html, frmresourceslist.html,
frmresourcetype.html, and frmupload.html.

Chapter 6

[273]

CKEditor plugins
By default, CKEditor has a lot of built-in plugins, specified in the folder
$PORTAL_SRC_HOME/portal-web/docroot/html/js/editor/ckeditor/plugins.
The following table shows some of the built-in plugins:

Name Folders Files Description
a11yhelp

about

dialogs,
lang

dialogs

a11yhelp.js, en.js, he.js
about.js, logo_ckeditor.
png

Help
about

adobeair none plugin.js Adobe air
ajax none plugin.js AJAX
autogrow none plugin.js Auto grow
clipboard dialogs paste.js Clipboard
colordialog dialogs colordialog.js Colour dialog
dialog none dialogDefinition.js Dialog

Besides the previous built-in plugins, you will see more plugins under the same
folder, such as, div, find, flash, forms, iframe, inframedialog, image, link,
liststyle, pagebreak, pastefromword, pastetext, placeholder, scayt,
showblocks, smiley, specialchar, styles, table, tablesize, tabletools,
templates, uicolor, wsc, and xml.

Custom plugins
By default, the portal provides three custom plugins, as shown in the following
table, in the folder $PORTAL_SRC_HOME/portal-web/docroot/html/js/editor/
ckeditor_diffs/plugins. In the portal building process, these plugins will get
copied into the folder /ckeditor/plugins:

Name Folder Files Description
BBcode none bbcode_data_

processor.js, bbcode_
parser.js, plugin.js,

ckconfig_bbcode.js

Bulletin Board Code or
BBCode is a lightweight
markup language used to
format posts in many message
boards.

Creole none creole_data_
processor.js, creole_
parser.js, plugin.js,

ckconfig_creole.js

Creole is a lightweight markup
language for formatting wiki
text.

DDL and WCM

[274]

Name Folder Files Description
Wiki link dialogs link.js, plugin.js Wiki link is created simply by

smashing together capitalized
words, at least two of them.

As you can see, JavaScript CKEditor.plugins.add gets specified in the file
plugin.js. Let's see one more custom example, adding a plugin to implement
pull quote function in the CKEditor.

A pull quote is a quotation or excerpt from an article that is typically placed in
a larger or more distinctive typeface, on the same page, serving to entice readers
into an article, or to highlight a key topic. Authors would need to duplicate the text
excerpt. This feature could be implemented as a plugin called pullquote in the
CKEditor, automating and simplifying the use of pull quotes with the following
main functions:

1. Remove the need to duplicate excerpts.
2. Automatically add opening and closing quotation marks to the pull quote.
3. Leave the excerpt unchanged in the body text.
4. Format the pull quote to match your site's design by using CSS.

You can implement pullquote by performing the following steps:

1. First create a folder named pullquote.
2. Then create a folder dialogs, and add a JavaScript file pullquote.js, and a

CSS file pullquote.css. Of course, workable code is required here.
3. Finally, add a JavaScript file plugin.js in the folder pullquote.

Expando—custom attribute
The portal provides a feature called custom attribute (or called custom field),
which allows extending the profile of users and organizations, with fields, to store
custom information. In fact, it allows extending any core entities, such as, Document
Library folders and documents, web content, wiki pages, blogs entries, bookmarks
entries, calendar events, users, and organizations, and custom entities such as
Knowledge Base articles. The Custom attribute is safely stored within the database
and is fully indexed.

Chapter 6

[275]

Models and services
As shown in the following figure, a custom attribute is defined by four entities:
ExpandoTable, ExpandoColumn, ExpandoRow, and ExpandoValue. As you can
see, the entity ExpandoTable can have many entities, such as, ExpandoColumn,
ExpandoRow, and ExpandoValue. In other words, each ExpandoColumn, ExpandoRow,
and ExpandoValue will have an ExpandoTable associated with it. And especially,
each ExpandoValue will have ExpandoColumn, ExpandoRow, and ExpandoTable
associated with it. That is, an ExpandoValue is always unique and is identified by
ExpandoColumn, ExpandoRow, and ExpandoTable. This is shown as follows:

ExpandoTable

ExpandoColumn

ExpandoRow

ExpandoValuec c

c

c

*

*

*

*

*

Models
The entity ExpandoTable has been specified as follows, in the service XML /
expando/service.xml:

<!-- PK fields -->
<column name="tableId" type="long" primary="true" />
<!-- Audit fields -->
<column name="companyId" type="long" />
<!-- Other fields -->
<column name="classNameId" type="long" />
<column name="name" type="String" />

The preceding code shows that the entity ExpandoTable is defined as a set of
columns, for example, tableId, companyId, classNameId, and name. Custom
fields are scoped on company-level objects, such as, users, organizations, and so
on. In order to support group-level objects, you can add the audit field groupId, in
the table ExpandoTable. When the value of groupId is 0, it means custom fields
are scoped on company-level objects. Otherwise, custom fields are scoped on
group-level objects.

DDL and WCM

[276]

Of course, you could find other entities and their column specifications in the
same service XML, such as, ExpandoColumn, ExpandoRow, and ExpandoValue. The
following table shows these models plus the models CustomAttributesDisplay
and ExpandoBridge, their extension, and implementation:

Name Extension Implementation Description
ExpandoTable ExpandoTableModel

extends BaseModel
<ExpandoTable>

ExpandoTableImpl
extends
ExpandoTable
ModelImpl

Expando table
model

ExpandoColumn ExpandoColumnModel
extends BaseModel
<ExpandoColumn>

ExpandoColumnImpl
extends
ExpandoColumn
ModelImpl

Expando
column model

ExpandoRow ExpandoRowModel
extends BaseModel
<ExpandoRow>

ExpandoRowImpl
extends
ExpandoRow
ModelImpl

Expando row
model

ExpandoValue ExpandoValueModel
extends BaseModel
<ExpandoValue>

ExpandoValueImpl
extends
ExpandoValue
ModelImpl

Expando
value model

ExpandoBridge none ExpandoBridgeImpl Expando
bridge

CustomAttributes
Display

none BaseCustom
AttributesDisplay

Custom
attribute
display model

Services
The service builder has generated a set of services based on the service XML. The
following table shows service interface, implementation, and utility classes:

Interface Utility Implementation Description
ExpandoTable
LocalService

ExpandoTableLocal
ServiceUtil

ExpandoTableLocal
ServiceImpl extends
ExpandoTableLocal
ServiceBaseImpl

Expando Table
service

ExpandoColumn
LocalService

ExpandoColumnLocal
ServiceUtil

ExpandoColumnLocal
ServiceImpl extends
ExpandoColumnLocal
ServiceBaseImpl

Expando Column
service

Chapter 6

[277]

Interface Utility Implementation Description
ExpandoRow
LocalService

ExpandoRowLocal
ServiceUtil

ExpandoRowLocal
ServiceImpl extends
ExpandoRowLocal
ServiceBaseImpl

Expando Row
service

ExpandoValue
LocalService

ExpandoValueLocal
ServiceUtil

ExpandoValueLocal
ServiceImpl extends
ExpandoValueLocal
ServiceBaseImpl

Expando Value
service

ExpandoBridge none ExpandoBridgeImpl getExpandoBridge
at ExpandoBridge
Factory(Impl)

Taglib
There are three tags related to custom attributes: liferay-ui:custom-attribute-
list, liferay-ui:custom-attributes-available, and liferay-ui:custom-
attribute.

The tag liferay-ui:custom-attribute-list generates a list of all non-hidden
and viewable tags for a given entity type and portal instance; the tags liferay-
ui:custom-attributes-available and iferay-ui:custom-attribute generate
a view of a specific attribute for a given entity type and portal instance.

Data types
Custom attributes support data types, both primitive (such as, Boolean, Integer,
String, Short, and so on) and preset (such as, textbox, selection, and so on). The
following table shows these types:

Name Value Label Description
BOOLEAN,
BOOLEAN_ARRAY

1

2

custom.field.boolean custom.
field.boolean.array

Primitive data
type, Boolean,
and Boolean list

DATE, DATE_
ARRAY

3

4

custom.field.java.util.Date
custom.field.java.util.Date.
array

Data type: Date
and Date list

DOUBLE,
DOUBLE_ARRAY

5

6

custom.field.double custom.
field.double.array

Primitive data
type: double and
double list

FLOAT, FLOAT_
ARRAY

7

8

custom.field.float custom.
field.float.array

Primitive data
type: float and
float list

DDL and WCM

[278]

Name Value Label Description
INTEGER,
INTEGER_ARRAY

9

10

custom.field.int custom.
field.int.array

Primitive data
type: int and int
list

LONG, LONG_
ARRAY

11

12

custom.field.long custom.
field.long.array

Primitive data
type: long and
long list

SHORT, SHORT_
ARRAY

13

14

custom.field.short custom.
field.short.array

Primitive data
type: short and
short list

STRING,
STRING_ARRAY

15

16

custom.field.java.lang.String
custom.field.java.lang.
String.array

Data type: String
and String list

You can look up the details in the class ExpandoColumnConstants.java.

Default Expando table constants get defined in the class ExpandoTableConstants.
java, as follows:

public static final String DEFAULT_TABLE_NAME = "CUSTOM_FIELDS";

Indexer
The custom fields can be indexed as none (not indexed), Keyword (exact matching
only plus faceted support and sorting), Text (prose plus stop words, language
analysis, and no sorting) In the summary, all custom field types can be indexed.

The following table shows custom field indexer interface, implementation, utility,
and factory:

Interface Utility Implementation
ExpandoBridgeIndexer ExpandoBridgeIndexerUtil ExpandoBridge

IndexerImpl

ExpandoBridgeFactory ExpandoBridgeFactoryUtil none
ExpandoBridge ExpandoConverterUtil ExpandoBridgeImpl

You can find different data types and indexing details in the class
ExpandoBridgeIndexerImpl.java. And, moreover, you may leverage converting
functions (from string to attribute, and from attribute to string) from the utility class
ExpandoConverterUtil.java. Date functions, such as, date compareTo, date
equals, ISO date format, UTC date format, locale, and time zone, are specified
in the utility class DateUtil.java.

Chapter 6

[279]

NoSQL adapter
NoSQL is a broad class of database management systems that differ from classic
relational database management systems. Data stores may not require fixed table
schemas, usually avoid join operations, and typically scale horizontally. Loosely
speaking, NoSQL is schema-free and has easy replication support, a simple API,
and a huge amount of data.

MongoDB (a kind of NoSQL) is a scalable, high-performance, open source,
document-oriented database. Refer to http://www.mongodb.org/. The portal can
be a prime candidate as a viable platform for scaling dynamically via a NoSQL-like
MongoDB backend. The most obvious way to leverage a NoSQL solution is with the
most dynamic aspect of the portal—Expandos and their custom fields.

An adapter using a hook pattern can be used to build a backend for Expando on
MongoDB. You can find implementation details in the plugin mongodb-hook.

Dynamic data lists and dynamic data
mapping
The portal provides capabilities to build Dynamic Data Lists (DDL) and Dynamic
Data Mapping (DDM). Through DDL and DDM, users can define web form,
document types, metadata set, and columns of various input styles, such as, free
form, drop-down list, combo-box, date, number, text, and predefined list values
(such as list of users, list of order types, and list of inventory types). Some columns
can be drop-downs with predefined values that only allow you to choose one of the
options defined. Other columns can be drop-downs with predefined values that are a
collection of all previously entered values in that column and that allow you to enter
a new value. The other columns may allow selecting more than one value. The DDL
and DDM can be tied to a service to retrieve values.

Models and services
The following figure depicts DDL models, DDM models, and their relationships.
The entity DDLRecordSet is associated with the entity DDMStructure. It may
contain many entities, such as, DDLRecord and DDLRecordVersion. The
entity DDLRecord is associated with the entity DDMStructureLink. The entity
DDMStructure may have many entities such as DDMStructureLink. Each
DDMStructure can have many DDMStorageLink entities, and each DDMTemplate
may be associated with a DDMStructure.

DDL and WCM

[280]

Each DDMContent may refer to DDMStructure, DDMStorageLink, and DDMTemplate,
as follows:

DDMStructure DDMContent

DDLRecordVersion

DDMStructureLink

DDMTemplate

DDMStorageLink

c

c c

c

c

reference
reference

reference

*

*

*

DDLRecordSet

DDLRecord

c

c

c

* *

*

Models
DDL and DDM functions are defined as a set of models: DDLRecordSet,
DDLRecord, DDLRecordVersion, DDMStructure, DDMStructureLink, DDMTemplate,
DDMStorageLink, and DDMContent. The following table shows DDL and DDM
models, their extensions and implementation:

Model Extension Implementation Description
DDLRecord DDLRecordModel

extends BaseModel
<DDLRecord>

DDLRecordImpl extends
DDLRecordModelImpl

DDL record
model

DDLRecord
Version

DDLRecordVersion
Model extends
BaseModel
<DDLRecordVersion>

DDLRecordVersionImpl
extends
DDLRecordVersion
ModelImpl

DDL record
version
model

DDLRecordSet DDLRecordSetModel
extends BaseModel
<DDLRecord>

DDLRecordSetImpl
extends
DDLRecordModelImpl

DDL record
set model

DDMContent DDMContentModel
extends
BaseModel<DDM
Content>, Grouped
Model

DDMContentImpl
extends
DDMContentModelImpl

DDM
content
model

DDMStorage
Link

DDMStorageLinkModel
extends BaseModel
<DDMStorageLink>

DDMStorageLinkImpl
extends
DDMStorageLink
ModelImpl

DDM
storage link
model

DDMStructure DDMStructureModel
extends BaseModel
<DDMStructure>,
GroupedModel

DDMStructureImpl
extends DDMStructure
ModelImpl

DDM
structure
model

Chapter 6

[281]

Model Extension Implementation Description
DDMStructure
Link

DDMStructureLink
Model extends
BaseModel
<DDMStructureLink>

DDMStructureLinkImpl
extends
DDMStructureLink
ModelImpl

DDM
structure
link model

DDMTemplate DDMTemplateModel
extends BaseModel
<DDMTemplate>,
GroupedModel

DDMTemplateImpl
extends
DDMTemplateModelImpl

DDM
template
model

These models have been defined well in the service XML /dynamicdatamapping/
service.xml and /dynamicdatalists/service.xml.

Services
Based on the previous service XML files, the service builder generated a set of
services. The following table shows DDL service interface, utility, wrapper, and
implementation:

Interface Utility Implementation Wrapper Description
DDLRecord
(Local)
Service

DDLRecord
(Local)
ServiceUtil

DDLRecord(Local)
ServiceImpl extends
DDLRecord(Loca)
ServiceBaseImpl

DDLRecord
(Local)
Service
Wrapper

DDL record
local service
and service

DDLRecord
Set(Local)
Service

DDLRecordSet
(Local)
ServiceUtil

DDLRecordSet(Local)
ServiceImpl extends
DDLRecordSet(Local)
ServiceBaseImpl

DDLRecord
Set(Local)
Service
Wrapper

DDL record
set local
service and
service

DDLRecord
Version
(Local)
Service

DDLRecord
Version(Local)
ServiceUtil

DDLRecordVersion
(Local)ServiceImpl
extends DDLRecord
Version(Local)
ServiceBaseImpl

DDLRecord
Version
(Local)
Service
Wrapper

DDL record
version
service and
local service

Similarly you can find the DDM service interface, utility, wrapper, and implementation
in the package com.liferay.portlet.dynamicdatamapping.service.

DDL and WCM

[282]

Storage adapter
The portal provides a set of service interface, implementation, and utility class for
DDM storage, storage query, and XML/XSD. The following table shows details of
these services:

Interface Utility/
Implementation

Model/Constant Description

DDMXML DDMXMLUtil DDMFieldConstants DDM XML
interface

DDMSXD DDXSDUtil DDMFieldConstants DDM SXD
interface

StorageEngine
extends
StorageAdapter

StorageEngine
Util,
BaseStorage
Adapter,
StorageEngine
Impl,

Field, Fields
StorageType

DDM
storage,
engine, and
type

FieldCondition extends
Condition

FieldCondition
Impl

ComparisonOperator,
LogicalOperator

DDM storage
query field
condition

Junction extends
Condition

JunctionImpl ComparisonOperator,
LogicalOperator

DDM storage
query
junction

ConditionFactory ConditionFactory
Util

ComparisonOperator,
LogicalOperator

DDM storage
condition
factory

Asset, tagging, and categorization
An asset can be defined formally as a resource, controlled by the entity as a result
of past events, and from which future economic benefits are expected to flow to the
entity. The portal uses assets to present any kind of entities, either core entities, such
as, DLFileEntry, JournalArticle, BookmarkEntry, MBMessage, BlogsEntry, and
so on, or custom entities, such as, KBArticle, MicroblogsEntry, PMUserThread, and
so on.

Folksonomies are a user-driven approach to organizing content through tags, co-
operative classification, and communication through shared metadata. The portal
implements folksonomies through tags. A tag may be associated with content. With
tags, you can tag almost anything: bookmarks entries, blog entries, wiki articles,
Document Library documents and images, journal articles, message board threads,
custom entities such as Knowledge Base articles, and so on.

Chapter 6

[283]

Taxonomies are a hierarchical structure used in scientific classification schemes.
Although taxonomies are common, it can be difficult to implement them. The portal
implements taxonomies as vocabulary, category, and category hierarchy, in order to
tag contents and classify them.

Models and services
The following figure depicts an overview of asset tags, asset categories, and
asset entries. An asset called AssetEntry may be associated with many tags
such as AssetLink.

A tag called AssetTag may be associated with many assets, whereas an asset may
have many tags associated with it. This is called tagging content. Also, a tag may
have many properties associated with it. Each property, called AssetTagProperty,
is made up of a name-value pair.

You can have more than one vocabulary, which forms a top-level item of the
hierarchy. Each vocabulary, called AssetVocabulary, may have many categories.
That is, a category called AssetCategory can't be a top-level item of the hierarchy.
However, a category can have other categories as its child or siblings. Therefore,
vocabulary and categories form a hierarchical tree structure.

In the same way, a category may have many properties. Each property, called
AssetCategoryproperty, is made up of a name and a value. In addition, a
predefined category will be applied to any asset. In a word, assets can be managed
and grouped by categories:

AssetCategoryProperty AssetCategoryStats AssetEntry AssetTagStats AssetTagProperty

AssetCategory AssetVocabulary AssetLink AssetTag

c c c c c

c c c c

AssetEntries_AssetCategories AssetEntries_AssetTags

*

* **

*

*

DDL and WCM

[284]

Models
The portal extends asset model to store the layoutUuid value of the default
display page. Asset tags, asset categories, and asset entries are defined in the
service XML /asset/service.xml, as follows:

<!-- PK fields -->
<column name="entryId" type="long" primary="true" />
<!-- Group instance -->
<!-- Audit fields -->
<!-- Other fields -->
<column name="classNameId" type="long" />
<column name="classPK" type="long" />
<!—- see details in service.xml -->
<column name="viewCount" type="int" />
<!-- Relationships -->
<column name="categories" type="Collection" entity="AssetCategory"
mapping-table="AssetEntries_AssetCategories" />
<column name="tags" type="Collection" entity="AssetTag" mapping-
table="AssetEntries_AssetTags" />

The preceding code gives detailed column specification for the entity AssetEntry.
Based on these columns, we should be able to summarize the following items:

1. Each asset can be scoped into both company-level and group-level categories.
2. Associated content is presented in a classNameId-classPK pattern. As you

can see, the class Name can be any entity. Thus, the classNameId-classPK
pattern can be used to present any content type and, furthermore, any
content instance.

3. The UUID layoutUuid is stored for the default display page.
4. Relationships, categories, and tags get recorded in different database

tables—AssetEntries_AssetCategories and AssetEntries_AssetTags.
5. View count number is recorded based on individual assets.

Similarly, you will find more entities in the same service XML, such as,
AssetLink, AssetTag, AssetTagProperty, AssetTagStat, AssetCategory,
AssetCategoryProperty, AssetVocabulary, and so on. The following table
shows these models:

Chapter 6

[285]

Entity Extension Implementation Wrapper Description
Asset
Entry

AssetEntryModel
extends BaseModel
<AssetEntry>,
GroupedModel

AssetEntryImpl
extends
AssetEntryModel
Impl

AssetEntry
Wrapper

Asset entry
model

Asset
Link

AssetLinkModel
extends BaseModel
<AssetLink>

AssetLinkImpl
extends
AssetLinkModelImpl

AssetLink
Wrapper

Asset link
model – a
link among
entries

AssetTag AssetTagModel
extends
BaseModel<AssetTag>,
GroupedModel

AssetTagImpl
extends
AssetTagModelImpl

AssetTag
Warpper

Asset tag
model

AssetTag
Property

AssetTagProperty
Model extends
AuditedModel,
BaseModel
<AssetTagProperty>

AssetTagProperty
Impl extends
AssetTagProperty
ModelImpl

AssetTag
Property
Wrapper

Asset tag
property
model

Asset
TagStats

AssetTagStatsModel
extends BaseModel
<AssetTagStats>

AssetTagStatsImpl
extends
AssetTagStats
ModelImpl

Asset
TagStats
Wrapper

Asset tag
stats model

Asset
Category

AssetCategory
Model extends
BaseModel
<AssetCategory>,
GroupedModel

AssetCategoryImpl
extends
AssetCategory
ModelImpl

Asset
Category
Warpper

Asset
category
model

Asset
Category
Property

AssetCategory
PropertyModel
extends
AuditedModel, BaseMo
del<AssetCategoryPr
operty>

AssetCategory
PropertyImpl
extends
AssetCategory
PropertyModelImpl

Asset
Category
Property
Wrapper

Asset
category
property
model

Asset
Category
Stats

AssetCategory
StatsModel extends
BaseModel<Asset
CategoryStats>

AssetCategory
StatsImpl extends
AssetCategory
StatsModelImpl

Asset
Category
Stats
Wrapper

Asset
category
stats model

AssetVoca
bulary

AssetVocabulary
Model extends BaseM
odel<AssetVocabular
y>,GroupedModel

AssetVocabulary
Impl extends
AssetVocabulary
ModelImpl

Asset
Vocabulary
Wrapper

Asset
vocabulary
model

DDL and WCM

[286]

As you can see, the entity AssetLink provides the ability to link one AssetEntry
entity called entryId1 with another AssetEntry entity called entryId2. This kind
of link can present any association, specified by column type and weight, as follows:

<column name="entryId1" type="long" />
<column name="entryId2" type="long" />
<column name="type" type="int" />
<column name="weight" type="int" />

The portal provides the ability for an asset to link different assets via the model
AssetLink. This feature gets implemented as the taglibs <liferay-ui:input-
asset-links> and <liferay-ui:asset-links>. The first taglib will be applied to
all assets, to link one asset to another; the second taglib will show the list of related
assets linked to the current asset.

Services
As shown in the following table, a set of services have been generated for the entities
AssetEntry and AssetLink, via the service builder:

Service Utility Wrapper Implementation Description
AssetEntry
(Local)
Service

AssetEntry
(Local)
ServiceUtil

AssetEntry
(Lolcal)
ServiceWrapper

AssetEntry(Local)
ServiceImpl
extends
AssetEntryLocal
ServiceBaseImpl

Asset entry
service and
local service

AssetLink
(Local)
Service

AssetLink
(Local)
ServiceUtil

AssetLink
(Local)
ServiceWrapper

AssetLink(Local)
ServiceImpl
extends
AssetLink(Local)
ServiceBaseImpl

Asset link
service and
local service

View count
As mentioned earlier, view count number gets recorded, based on individual asset,
using the className-classPK pattern. Anyway, you can increase the view count
using any portal core entities or custom entities in the following code:

AssetEntry(Local)ServiceUtil.incrementViewCounter(
 String className, long classPK)

Chapter 6

[287]

The following table shows how to record view count for any content types, no matter
whether they are portal core entities or custom entities, with a few examples. As you
can see, the entity AssetEntry can be used to present any kind of content types:

Asset Type Class Name Class PK Description
Web content
article

JournalArticle.
class.getName()

JournalArticle.
getResourcePrimKey()

Journal article
@view_
counter@
does have the
same function

Wiki page WikiPage.class.
getName()

WikiPage.
getResourcePrimKey()

Wiki pages

Blogs entry BlogsEntry.class.
getName()

entry.getEntryId() Blogs entries

Message Board
thread

MBThread.class.
getName()

thread.getThreadId() Forums threads

Bookmark entry BookmarkEntry.
class.getName()

entry.getEntryId() Bookmarks

Document
Library
documents

DLFileEntry.
class.getName()

fileEntry.
getFileEntryId()

Document
Library
documents

Knowledge Base
article

KBArticle.class.
getName()

KBArticle.
getResourcePrimKey()

Knowledge
Base articles

Based on view count, you can easily find out which assets are being viewed the most
(called most popular assets) at either group level (by the key groupId) or asset-type
level (by the key className). Obviously, the least viewed assets will be available at
both group level and content-type level, too. Whenever an asset is viewed, the portal
will increase the view count number.

Tag
Tags are scoped into the group instance. That is, a different group (either a site or
organization) will have its own non-shared tags set, since the entity AssetTag gets
defined with companyId and groupId. Thus the tag name must be unique for a
given group. The following code snippet explains this:

<column name="tagId" type="long" primary="true" />
<!-- Group instance -->
<!-- Audit fields -->
<!-- Other fields -->
<column name="name" type="String" />
<column name="assetCount" type="int" />

DDL and WCM

[288]

Services
The following table shows services related to the entities AssetTag,
AssetTagProperty, and AssetTagStats:

Interface Utility Implementation Wrapper Description
AssetTag(Local)
Service

AssetTag
(Local)
ServiceUtil

AssetTag(Local)
ServiceImpl
extends
AssetTag(Local)
ServiceBaseImpl

AssetTag
(Local)
Service
Wrapper

Asset tag
(local)
service,

group-wise

AssetTagProperty
(Local)Service

AssetTag
Property
(Local)
ServiceUtil

AssetTagProperty
(Local)
ServiceImpl
extends
AssetTagProperty
(Local)
ServiceBaseImpl

AssetTag
Property
(Local)
Service
Wrapper

Asset tag
property
(local)
service

AssetTagStats
(Local)Service

AssetTagStats
(Local)
ServiceUtil

AssetTagStats
(Local)
ServiceImpl
extends
AssetTagStats(
Local)
ServiceBaseImpl

Asset
TagStats
(Local)
Service
Wrapper

Asset tag
stats (local)
service,
content-type
wise.

Tags cloud
The tag group-wise popularity (presented as tags cloud) is recorded in the column
AssetCount. The following is the code snippet showing how to calculate the tag
popularity based on the group-wise asset count:

int count = tag.getAssetCount();
int popularity = (int)(1 + ((maxCount - (maxCount - (count -
minCount))) * multiplier));

The preceding code shows group-wise tag popularity. You can check details in the
JSP file $PORTAL_SRC_HOME/portal-web/docroot/html/taglib/ui/asset_tags_
navigation/page.jsp. Of course, you leverage a tag cloud through the entity
AssetTagStats. As you can see, columns tagId, classNameId, and assetCount
get specified in the entity AssetTagStats, as follows:

<column name="tagStatsId" type="long" primary="true" />
<!-- Other fields -->
<column name="tagId" type="long" />
<column name="classNameId" type="long" />
<column name="assetCount" type="int" />

Chapter 6

[289]

Category
Categories are scoped into a group instance. Furthermore, a category must have
a container associated, called AssetVocabulory. Again, AssetVocabulory is
scoped into a group instance. Therefore, category name must be unique for a
given vocabulary. In addition, a category can have a parent category, identified
by parentCategoryId, which forms a category hierarchy. A category can have a
left category and right category associated with it, which can be used to improve
category retrieval capability. This is shown in the following code snippet:

<column name="categoryId" type="long" primary="true" />
<!-- Group instance -->
<!-- Audit fields -->
<!-- Other fields -->
<column name="parentCategoryId" type="long" />
<column name="leftCategoryId" type="long" />
<column name="rightCategoryId" type="long" />
<column name="name" type="String" />
<column name="vocabularyId" type="long" />

Services
The following table shows services related to the entities AssetCategory,
AssetCategoryProperty, and AssetVocabulary:

Interface Utility Implementation Wrapper Description
Asset
Category
(Local)
Service

AssetCate
gory(Local)
ServiceUtil

AssetCategory
(Local)
ServiceImpl
extends
AssetCategory
(Local)
ServiceBaseImpl

AssetCategory
(Local)
ServiceWrapper

Asset
Category
(local)
service,

group-wise

Asset
Category
Property
(Local)
Service

AssetCate
goryProp
erty(Local)
ServiceUtil

AssetCategory
Property
(Local)ServiceImpl
extends
AssetCategory
Property (Local)
ServiceBaseImpl

AssetCategory
Property(Local)
ServiceWrapper

Asset
Category
property
(local)
service

AssetVoca
bulory
(Local)
Service

AssetVoca
bulory
(Local)
ServiceUtil

AssetVocabulory
(Local)ServiceImpl
extends
AssetVocabulory
(Local)
ServiceBaseImpl

AssetVocabulory
(Local)
ServiceWrapper

Asset
Vocabulory
(local)
service,

group-wise

DDL and WCM

[290]

Categories cloud
Categories cloud capability isn't supported at the time of writing. One method of
adding categories cloud capability is shown in the following steps:

1. Add column AssetCount inside the specification of the entity
AssetCategory. The column AssetCount will be used to present group-level
asset count for a given category, as follows:
<column name="assetCount" type="int" />

2. Add an entity called AssetCategoryStats to present the asset-type-level
asset count for a given category. When the model is ready, use the service
builder to generate required models and services, shown as follows:
<!-- PK fields -->
<column name="categoryStatsId" type="long" primary="true" />
<!-- Other fields -->
<column name="categoryId" type="long" />
<column name="classNameId" type="long" />
<column name="assetCount" type="int" />

3. Update UI taglib liferay-ui:asset-categories-navigation to support
category cloud.

4. Add category cloud capability in the configuration of the portlet
asset-category-navigation.

Category tree
As mentioned earlier, any category must have a vocabulary associated with it, and
it may have a parentCategoryId entity associated, too. Meanwhile each category
has leftCategoryId and rightCategoryId associated. The entities; such as
parentCategoryId, categoryId, leftCategoryId, and rightCategoryId, form a
tree called category tree. The following code shows how the category tree gets built:

protected void expandTree(AssetCategory assetCategory)
 throws SystemException
{
 // see details in AssetCategoryPersistenceImpl.java
 assetCategory.setLeftCategoryId(leftCategoryId);
 assetCategory.setRightCategoryId(rightCategoryId);
}

Chapter 6

[291]

Asset query
As shown in the following table, the portal provides asset-query capability to find
out asset entries by category, tag, group, asset type, date, and so on:

Group Parameters Description
All _allcategoryIds, _

allTagIds
All category ids, all tag ids

Any _anyCategoryIds,
_anyTagIds, _
classNameIds, _
groupIds

Any category ids, any tag ids, any class
name ids, any group ids

not _notAllCategoryIds,

_notAllTagIds, _
notAnyCategoryIds,
_notAnyTagIds

Not all category ids,

not all tag ids, not any category ids, not any
tag ids

Order _orderByCol1,
_orderByCol2,
_orderByType1, _
orderByType2

Order by column 1, Order by column 2,
Order by type 1, Order by type 2

Date _publishDate, _
expirationDate

Publish date, expiration date

Integer _end, _start Pagination end number,
Pagination start number

boolean _excludeZeroViewCount,
_visible

Whether exclude zero view count or not,
where it is visible or not

For more details, you can refer to the class AssetEntryQuery.java.

DDL and WCM

[292]

The following table shows two methods countEntries and findEntries, the
interface AssetEntryFinder, implementation, utility, and involved database tables:

Method Interface Utility Implementation Database tables
count
Entries

AssetEntry
Finder

AssetEntry
FinderUtil

AssetEntry
FinderImpl

AssetEntry,
AssetEntries_
AssetTags,
AssetTag,
AssetEntries_
AssetCategories

AssetCategory

find
Entries

AssetEntry
Finder

AssetEntry
FinderUtil

AssetEntry
FinderImpl

AssetEntry,
AssetEntries_
AssetTags,
AssetTag,
AssetEntries_
AssetCategories

AssetCategory

Related content
Related content is the kind of content related to the main topic featured on the page.
These links may be populated by the content management system, based on same
or partially same tags and/or categories. The idea is that if you are interested in the
article on this page, you may want to read additional articles on similar subjects,
presented as either tags or categories. This is in contrast to Read More, reading more
of the article that you are currently reading.

Based on number of tags and/or categories (such as, _anyTagIds and/or
_anyCategoryIds) existing in original content, related content can be further
divided into the groups most-related content and regular-related content. Most-
related content is a set of content that has at least the same set of tags and/or
categories as that of the original content. Regular-related content is a set of content
that has at least one tag and/or category as that of the original content.

Range query
Range queries allow one to match documents the fields' values of which are
between the lower and upper bound specified by the range query. Range queries
can be inclusive or exclusive of the upper and lower bounds. Sorting is done
lexicographically.

Chapter 6

[293]

In some use cases, you may want to get most viewed content and/or related content
in any time period, no matter how long it is. Some use cases may require a time
period based on most viewed and/or related content. For example, you may require
related content and most viewed content on a weekly, monthly, or yearly basis.
These can be implemented by a date query with conditions displayDateLT and
displayDateGT, as follows:

displayDate before displayDateLT
displayDate after displayDateGT

Similar scenarios can occur with the most shared content.

Please note that the entity RatingEntry gets involved in
the methods countEntries and findEntries, of the class
AssetEntryFinderImpl. The rating will be addressed in
Chapter 7, Collaborative and Social API.

Asset publishing
Asset publisher is a flexible tool for publishing many types of assets with tags and
categories. It allows for the showing of lists of web content, blog entries, images,
documents, bookmark entries, wiki pages, and so on. Each element on the list can be
displayed as a title, a summary (that is, an abstract), in full detail, and many other
ways. And most importantly, all of them are configurable.

The following code shows the utility class of the Asset publisher:

public static void addAndStoreSelection
// see details in AssetPublisherUtil.Java
public static void removeRecentFolderId(PortletRequest
portletRequest, String className, long classPK) {}

For more details about the class AssetPublisherUtil, refer to the source code
AssetPublisherUtil.java.

Asset renderer framework
The portal provides a framework called asset renderer framework with the tag
AssetRendererFactory, in the file liferay-portlet-app_6_1_0.dtd. This
framework will allow registering custom asset types, so that generic portlets
such as Asset Publisher can be used to publish them.

DDL and WCM

[294]

Please note that the AssetRendererFactory value in the core
or custom asset types must be a class that implements com.
liferay.portlet.asset.model.AssetRendererFactory
and is called by AssetPublisher.

The following table shows AssetRendererFactory and AssetRenderer, and their
implementation:

Interface Abstract
implementation

Implementation examples Description

Asset
Renderer
Factory

BaseAsset
Renderer
Factory

LayoutRevisionAssetRendererFactory,
BlogsEntryAssetRendererFactory,
BookmarksEntryAssetRendererFactory,
CalEventAssetRendererFactory,
UserAssetRendererFactory,
DLFileEntryAssetRendererFactory,
JournalArticleAssetRendererFactory,
MBMessageAssetRendererFactory,
WikiPageAssetRendererFactory,
KBArticleAssetRendererFactory

Asset render
factory

Asset
Renderer

BaseAsset
Renderer

LayoutRevisionAssetRenderer,
BlogsEntryAssetRenderer,
BookmarksEntryAssetRenderer,
CalEventAssetRenderer,
UserAssetRenderer,
DLFileEntryAssetRenderer,
JournalArticleAssetRenderer,
MBMessageAssetRenderer,
WikiPageAssetRenderer,
KBArticleAssetRenderer

Asset render

Summary
In this chapter, you learnt how to customize web content models and services,
build web content structure and templates, publish web content via asset publisher,
integrate CKEditor and its plugins, use Expando—custom attributes, leverage DDL
(dynamic data lists) and DDM (dynamic data mapping), manage assets, asset links,
tags, and categories, and publish assets with asset query.

In Chapter 7, Collaborative and Social API, we're going to introduce the collaborative
API and the social API.

Collaborative and Social API
The portal is the best ECM for team collaboration, supporting industry standards
such as Web Experience Management Interoperability (WEMI), CMIS, WebDAV,
and JCR. Event data can be specific to a group within a company. In any
organization, some data will be relevant at a team level and some other data will be
relevant across the whole business. The portal supports such things very well. The
portal's collaboration and social networking features take advantage of the benefits
of today's virtualized work environment.

Social office gives us a social collaboration on top of the portal—a full virtual
workspace that streamlines communication and builds up group cohesion. All
components in social Office are tied together seamlessly, getting everyone on the
same page by sharing the same look and feel. More importantly, dynamic activity
tracking gives us a bird's eye view of who has been doing what and when within
each individual site. Social equity can be used to measure the contribution and
participation of a user, and the information value of an asset. The activities that
award equities include adding contributions, rating, commenting, viewing content,
searching and tagging, and more.

This chapter will introduce collaboration tools first. Then it will address collaborative
assets management and assets collaborations. Afterwards, it will introduce social
networking, social coding, social office, social activity, social equity, open social API,
and many other features.

By the end of this chapter, you will have learned about the following:
•	 Collaboration tools—wiki, blogs, calendar events, message boards,

bookmarks, and polls
•	 Collaborative assets management—both core assets and custom assets
•	 Assets collaboration building—both core assets and custom assets
•	 Social networking, social coding, and social office
•	 Social activity and social equity
•	 OpenSocial

Collaborative and Social API

[296]

Collaboration
The portal provides a collaboration suite, which takes advantage of the benefits of
the virtualized work environment for collaboration. These collaboration tools include
blogs, calendar event, web mail, message boards, polls, RSS feeds, Wiki, AJAX chat
client, dynamic friend list, activity wall, activity tracker, alerts and announcements,
and more.

Wiki
The Wiki portlet provides a straightforward wiki solution. The following figure
shows Wiki from viewpoint of models. Wiki articles are presented by the entity
WikiPage. Each WikiPage has a unique resource-primary-key associated. These
resource-primary-keys are defined in the entity WikiPageResource. All wiki pages
are grouped as Wiki nodes and presented as the entity WikiNode. Each WikiNode
may have many wiki page resources and wiki pages associated. In particular,
WikiPageResource connects between WikiNode and WikiPage. So, there is a
many-to-many relationship between WikiPage and WikiNode, shown as follows:

AnnouncementsDeliveryc

AnnouncementsFlagcAnnouncementsEntrycCalEventc

WikiNodec

*
BlogsStatUserc

*
BlogsEntryc

*

WikiPageResourcec
*

WikiPagec

*

Wiki models
The following table shows the wiki models WikiPage, WikiPageResource,
WikiNode, and their implementation:

Interface Extension Implementation Description
WikiNode WikiNodeModel

extends
BaseModel<WikiNode>,
GroupedModel

WikiNodeImpl
extends WikiNode
ModelImpl

Wiki node model,
extension, and
implementation

WikiPage
Display

none WikiPage
DisplayImpl

Wiki page display

Chapter 7

[297]

Interface Extension Implementation Description
WikiPage WikiPageModel

extends
BaseModel<WikiPage>,
GroupedModel,
ResourcedModel

WikiPageImpl
extends
WikiPageModelImpl

Wiki page model,
extension, and
implantation

WikiPage
Resource

WikiPageResource
Model extends
BaseModel<Wiki
PageResource>

WikiPageResource
Impl extends
WikiPageResource
ModelImpl

Wiki page
resource model,
extension, and
implementation

Wiki services
Based on the service XML model svn://svn.liferay.com/repos/public/portal/
trunk/portal-impl/src/com/liferay/portlet/wiki/service.xml, the service
builder generated a set of services for Wiki pages and nodes. The following table
shows a summary of these services:

Interface Utility Wrapper Main methods
WikiNode(
Local)
Service

WikiNode(Local)
ServiceUtil

WikiNode(Local)
ServiceWrapper

addNode,
deleteNode,
getNode,
importPages,
subscribeNode,
unsubscribeNode,
updateNode

WikiPage(
Local)
Service

WikiPage(Local)
ServiceUtil

WikiPage(Local)
ServiceWrapper

add*,
changeParent,
delete*, get*,
movePage,
revertPage,
subscribePage,
unsubscribePage,
update*

WikiPage
Resource
LocalService

WikiPageResource
LocalServiceUtil

WikiPageResource
LocalService
Wrapper

add*, create*,
delete*,
dynamicQuery,
get*, set*, update*

Collaborative and Social API

[298]

Wiki engines
The portal provides the interface com.liferay.portlet.wiki.engines.WikiEngine
with functions like convert, getOutGoingLinks, setInterWikiConfiguration,
setMainConfiguration, and validate. The function convert converts the content
of the given page to HTML using the view and edit URLs to build links. The function
getOutGoingLinks gets a map with the links included in the given page. The key
of each map entry is the title of the linked page. The value is a Boolean object that
indicates if the linked page exists or not.

The function setInterWikiConfiguration sets the configuration to support quick
links to other wikis. The format of the configuration is specific to the WikiEngine.
While the function setMainConfiguration sets the main wiki configuration as a
String. And the function validate validates the content of a wiki page for
this engine.

A specific wiki engine must implement the interface WikiEngine. The following
table shows several integrated Wiki engines: Text wiki, HTML wiki, JSP wiki, and
JAM wiki:

Name Interface Engine Description
HtmlEngine WikiEngine Built-in HTML wiki engine
TextEngine WikiEngine Built-in Text wiki engine
JSPWikiEngine WikiEngine JSPWiki JSP wiki is a wiki software

built around the standard J2EE
components of Java, servlets,
and JSP. Refer to http://www.
jspwiki.org/

MediaWikiEngine WikiEngine JAMWiki JAM wiki is a wiki software built
around the standard components
of Java, servlets, and JSP. It is very
similar to MediaWiki. Refer to
http://jamwiki.org/wiki/en/
JAMWiki

In addition, you may want to order wiki pages by created date, title, and version.
You can leverage the comparator utilities, such as PageCreateDateComparator,
PageTitleComparator, and PageVersionComparator, respectively. The Wiki
portlet supports versioning, RSS feeds, and different languages, such as Creole,
text, and HTML. Of course, it leverages WYSIWYG editors to edit the wiki page.
By default, it supports workflow on the wiki pages.

Chapter 7

[299]

Blogs
The Blogs portlets provide a straightforward Blogs solution, including full
WYSIWYG editing capability and publication date, RSS support, workflow support,
threaded user and guest comments, tags and labels, social bookmarking links, e-mail
notifications of blog replies, and an entry rating system.

As shown in the previous diagram, blogs got defined in two entities, namely,
BlogsEntry and BlogsStatsUser. The entity BlogsEntry covers the following
special columns in the service XML /blogs/service.xml:

<column name="trackbacks" type="String" />
<column name="smallImageId" type="long" />
<column name="smallImageURL" type="String" />

As shown in the previous code, each blog entry could have a column displayDate
or be called publishDate to show whether the blogs entry would be visible to the
guest users or not by that date. And each blog entry will have trackbacks—either
allowing ping backs or allowing track backs. In particular, each blog entry can have
an image as its thumbnail. This image can be stored in the table image referred by
the filed samllImageId, or this image can be an external image URL or an image
URL from the Image Gallery.

Similarly, the entity BlogsStatsUser shows detailed information about the recent
bloggers, covering the following special columns in the service XML /blogs/
service.xml:

<column name="ratingsTotalScore" type="double" />
<column name="ratingsAverageScore" type="double" />

The previous code shows detailed blogger information, like blog entry counts, last
post date ratings, total entries ratings, total score ratings, and average score ratings.
These messages would get displayed in the Recently Blogs portlet.

Based on the service XML /blogs/service.xml, the service builder generates Blogs
models: BlogsEntry, BlogsStatsUser, wrappers, and their implementation.

Collaborative and Social API

[300]

The following table shows the blog entries services, their services' utilities, wrappers,
and implementation:

Service Utility Wrapper Main methods
BlogsEntry(
Local)
Service

BlogsEntry(Local)
ServiceUtil

BlogsEntryService
Wrapper

add*, delete*,
get*,
subscribe,
unsubscribe,
update*

BlogsStats
UserLocal
Service

BlogsStatsUser
LocalServiceUtil

BlogsStatsUser
LocalService
Wrapper

add*, create*,
delete*,
dynamicQuery,
get*, set*,
update*

Shared calendar
The calendar portlet provides calendar information and shares the calendar among
users from different departments. Based on the iCal, we can import/export calendar
events from/to other calendars like iGoogle. It also supports connections of AIM,
ICQC, MSN, and YM. The calendar events got defined via an entity called CalEvent
in the service XML /calendar/service.xml. The following code shows the other
fields of the entity CalEvent:

<column name="firstReminder" type="int" />
<column name="secondReminder" type="int" />

The previous code shows the title, description, and type of the calendar events. Each
event can have location information, start-date, and end-date. Each event can have
a duration of time in hours and minutes, whether it should be all day or not. Each
event can be time zone sensitive, for example, repeating with recurrence text. Or it
has reminder interval, such as, first reminder and second reminder time interval.

Similarly, the shared calendar has simple services, as shown in the following table:

Interface Utility Wrapper Implementation Main methods
CalEvent
(Local)
Service

CalEvent
(Local)
ServiceUtil

CalEvent
(Local)
Service
Wrapper

CalEvent(Local)
ServiceImpl
extends
CalEvent(Local)
ServiceBaseImpl

add*, delete*,
get*, has*,
export*,
importICal4j,
update*

Chapter 7

[301]

Announcements
Announcements and Alerts are two separate portlets, which are responsible for
broadcasting messages to a list of users within a scope. Essentially, these portlets
provide a mass messaging engine and one-way messaging. All Announcement
and/or Alert entries are tracked, so that they can be read by each individual user,
and each user can individually hide an entry.

The portal defines a set of entities like AnnouncementsDelivery,
AnnouncementsEntry, and AnnouncementsFlag in the service XML/announcements/
service.xml.

Based on the previous service XML, Service-Builder generates a set of
services, utilities, wrappers, and main method implementation, as shown
in the following table:

Interface Utility Wrapper Main methods
Announcements
Entry(Local)
Service

Announcements
Entry(Local)
ServiceUtil

Announcements
Entry(Local)
ServiceWrapper

addEntry,
deleteEntry,
updateEntry

Announcements
Delivery(Local)
Service

Announcements
Delivery(Local)
ServiceUtil

Announcements
Delivery(Local)
ServiceWrapper

updateDelivery

Announcements
Flag(Local)
Service

Announcements
Flag(Local)
ServiceUtil

Announcements
Flag(Local)
ServiceWrapper

addFlag,
deleteFlag,
updateFlag

Message Boards
Message Boards is a full-featured forum solution with threaded views, categories,
RSS capability, avatars, file attachments, previews, dynamic list of recent posts,
and forum statistics. Message Boards work with the fine-grained permissions and
role-based access control model to give detailed levels of control to administrators
and users.

The following diagram depicts a forum structure overview of Message Boards. A
forum is made up of a set of categories. Each category, called MBCategory, may have
many subcategories and threads. In addition each category can have many mailing
lists called MBMailingList. Furthermore, each thread called MBThread may have
many posts (in the form of replies).

Collaborative and Social API

[302]

The thread refers to the collection of messages called MBMessage. A thread itself is a
post, too. The posts may be displayed in flat chronological order by date of posting,
or in a question-answer order. Actually, threads can be regarded as the root-level
posts. Sub-posts are also supported, which enable comments in one of the replies to
start another thread that remains linked to the original. Moreover, you can enable
flags, called MBMessageFlag, thereby allowing users to flag content as inappropriate.

In addition, banned users are specified in the entity MBBan, and users' message
boards stats are defined in the entity MBStatsUser. The entity MBDiscussion defined
assets' comments, which were associated with the entity MBThread. This is shown
as follows:

MBBanc

MBStatsUsercMBMailingListcMBcategoryc

MBMessageFlagc

MBMessagecPollsVotecPollsChoicecBookmarksEntryc

BookmarksFolderc PollsQuestionc MBDiscussionc

*

* * * *

*

*

*

MBThreadc *

*

*

*

Models
Message Boards models got specified in the service XML /messageboards/
service.xml. The following table gives an overview of these models, their
wrapper, extension and implementation:

Model
Interface

Extension Wrapper Implementation Model
Constants

MBBan MBBanModel extends
BaseModel<MBBan>,
GroupedModel

MBBan
Wrapper

MBBanImpl
extends
MBBanModel
Impl

none

MBCategory MBCategoryModel
extends BaseModel
<MBCategory>,
GroupedModel

MBCategory
Wrapper

MBCategory
Impl extends
MBCategory
ModelImpl

MBCategory
Constants

MBCategory
Display

none none MBCategory
DisplayImpl

none

MBThread MBThreadModel
extends BaseModel
<MBThread>

MBThread
Wrapper

MBThreadImpl
extends
MBThread
ModelImpl

MBThread
Constants

Chapter 7

[303]

Model
Interface

Extension Wrapper Implementation Model
Constants

MBTree
Walker

Serializable none MBTreeWalker
Impl

none

MBMessage MBMessageModel
extends BaseModel
<MBMessage>,
GroupedModel

MBMessage
Wrapper

MBMessageImpl
extends
MBMessage
ModelImpl

MBMessage
Constants

MBDiscu
ssion

MBDiscussionModel
extends BaseModel
<MBDiscussion>

none MBDiscussion
Impl extends
MBDiscussion
ModelImpl

none

MBMailing
List

MBMailingListModel
extends BaseModel
<MBMailingList>,
GroupedModel

MBMailing
List
Wrapper

MBMailingList
ModelImpl
extends
BaseModelImpl
<MBMailing
List>

none

MBMessage
Flag

MBMessageFlagModel
extends BaseModel
<MBMessageFlag>

MBMessage
Flag
Wrapper

MBMessage
FlagImpl
extends
MBMessage
FlagModelImpl

MBMessage
Flag
Constants

MBStats
User

MBStatsUserModel
extends BaseModel
<MBStatsUser>

MBStatsUser
Wrapper

MBStatsUser
ModelImpl
extends
BaseModelImpl
<MBStatsUser>

none

Services
Based on the previous service XML, the service builder generates a set of services, as
shown in the following table:

Interface Utility Wrapper Main Methods
MBBan(Local)
Service

MBBan(Local)
ServiceUtil

MBBan(Local)
ServiceWrapper

addBan, deleteBan

MBCategory
(Local)Service

MBCategory
(Local)Service

MBCategory(Local)
ServiceWrapper

add*, delete*,
get*, subscribe*,
unsubscribe*,
update*

MBDiscussion
LocalService

MBDiscussion
LocalService
Util

MBDiscussionLocal
ServiceWrapper

add*, create*,
dynamicQuery, get*,
set*, update*

Collaborative and Social API

[304]

Interface Utility Wrapper Main Methods
MBMailingList
LocalService

MBMailingList
LocalService
Util

MBMailingList
LocalService
Wrapper

add*, create*,
dynamicQuery, get*,
set*, update*

MBThreadFlag
LocalServiceI

MBThreadFlag
LocalServiceI
Util

MBThreadFlag
LocalServiceI
Wrapper

add*, create*,
dynamicQuery, get*,
set*, update*

MBMessage
(Local)Service

MBMessage
(Local)
ServiceUtil

MBMessage(Local)
ServiceWrapper

add*, delete*,
get*, subscribe*,
unsubscribe*,
update*

MBStatsUser
LocalService

MBStatsUser
LocalService
Util

MBStatsUser
LocalService
Wrapper

add*, create*,
dynamicQuery, get*,
set*, update*

MBThread
(Local)Service

MBThread
(Local)
ServiceUtil

MBThread(Local)
ServiceWrapper

Delete*, get*,
lock*, move*,
split*, unlock*

Bookmarks
Bookmarks are retrievable names and URLs (that is, web page locations). Their
primary purpose is to catalog and access web pages that users have visited easily
either by name or by URL. The Bookmarks portlet provides the ability for users to
keep track of URLs in the portal. An administrator can use bookmarks to publish
relevant links to a group of users. In addition, bookmarks can be imported or
exported via LAR files.

The portlet Bookmarks defines a set of folders to hold entries. Each folder called
BookmarksFolder can have many sub folders. Thus the folders form a hierarchy.
Each folder can have many entries. Each entry, called BookmarksEntry, can have one
URL, name, description, and priority. More interestingly, entries can be classified
by categories, and entries can have many tags associated—thus end-users can group
entries in their own way. Of course, each bookmark entry can have multiple
custom attributes.

The portal has specified bookmark models in the service XML /bookmarks/
service.xml.

Chapter 7

[305]

The portal has generated a set of services for polls via the service builder. The
following table shows an overview of these services, their wrappers, and their
main method implementations:

Service interface Utility Wrapper Main
methods

BookmarksEntry
(Local)Service

BookmarksEntry
(Local)ServiceUtil

BookmarksEntry
(Local)Service
Wrapper

add*,
delete*,
get*, open*,
update*

BookmarksFolder
(Local)Service

BookmarksFolder
(Local)ServiceUtil

BookmarksFolder
(Local)Service
Wrapper

add*,
delete*,
get*,
update*

As you can see in the previous table, the local service BookmarksEntryLocalService
is the interface for the local service, containing the signature of every method in
BookmarksEntryLocalServiceBaseImpl and BookmarksEntryLocalServiceImpl.
The regular service BookmarksEntryService is the interface for the
permission-checking service, containing the signature of every method in the
BookmarksEntryServiceBaseImpl and BookmarksEntryServiceImpl.

Polls
The Polls portlet allows us to create multiple choice polls that keep track of votes
and display results on a page where a lot of separate polls could be managed, and
it is configurable to display a specific poll's results; while the Polls Display portlet
allows us to vote for a specific poll's question and view the results.

As shown in the previous diagram, polls are made up of questions called
PollsQuestion, that is, polls will have many questions associated with them. Each
question must have two or more choices, called PollsChoice. In turn, each choice
may have many votes called PollsVote associated with it. Note that a given user on
a specific question can have, at the most, one vote.

The polls models got defined in the service XML /polls/service.xml.

Collaborative and Social API

[306]

The portal has generated a set of services for polls via the service builder. You
can leverage these services in your custom plugins. The following table shows
an overview of these services:

Service Interface Utility Wrapper Main methods
PollsQuestion
(Local)Service

PollsQuestion
(Local)ServiceUtil

PollsQuestion
(Local)
ServiceWrapper

add*, delete*,
get*, update*

PollsChoice
LocalService

PollsChoiceLocal
ServiceUtil

PollsChoiceLocal
ServiceWrapper

add*, create*,
dynamicQuery,
get*, set*,
update*

PollsVote
(Local)Service

PollsVote(Local)
ServiceUtil

PollsVote(Local)
ServiceWrapper

addVote

Asset management
The portal has a set of built-in assets, called portal core assets. And the portal also
provides a framework in which custom assets can be plugged through plugins easily.
We have introduced a set of core assets like polls, bookmarks, message boards,
announcements, shared calendar, blogs, wiki, in the previous section. In this section,
we are going to introduce more portal core assets and typical custom assets.

Software Catalog
The Software Catalog portlet allows building a catalog of software products and
making them available to the visitors of the site. The software catalog covers a set
of features like license management, framework management, ratings, tagging,
screenshots, ability to specify a direct download link or a download page, allowing
users to register their products, tracking of product versions, export of liferay-
plugin-repository.xml for the whole repository, integration with permission
system, and so on.

As shown in the following diagram, the software catalog defines a few entities,
namely, SCFrameworkVersion, SCProductVersion, SCLicense, SCProductEntry,
and SCProductScreenshot. Each product version may have many framework
versions associated, and each product entry may have many product versions,
licenses, and screenshots associated with it:

Chapter 7

[307]

SCFrameworkVersion SCLicense SCProductEntry SCProductScreenshot

SCProductVersionMicroblogsEntryUserThread

c c c c

c c c

* * * *

*

*

These entities get defined in the service XML /softwarecatalog/service.xml.

Similarly, the portal generates a set of services—utilities,
wrappers, and implementation: SCProductEntry(Local)Service,
SCProductScreenshotLocalService, SCProductVersion(Local)Service,
SCLicense(Local)Service, and SCFrameworkVersion(Local)Service. The
common methods include add*, delete*, get*, update*, where*, and the present
model's name, such as, FrameworkVersion, License, ProductEntry, ProductVersion,
and ProductScreenshot.

Private messaging
A private message, often shortened to PM, is like an e-mail sent from one user to
another user on Message Boards. Private messages are forums and the like, where
users don't personally know the other users and might not be comfortable with
giving out their personal e-mail address.

The private message got defined via the entity UserThread as follows:

<!-- see details in /privatemessage/service.xml-->
<column name="read" type="boolean" />
<column name="deleted" type="boolean" />

As shown in the previous code, the private message has columns, such as
mbThreadId and topMBMessageId associated with the Message Boards, using
Message Boards backend, and the columns read and deleted to indicate its status.

Microblogs
Microblogging is a broadcast medium in the form of blogging. Microblog content
is typically smaller in both actual and aggregate file size. The fact is the differences
between microblog entries and normal blog entries are insignificant. Microblogs are,
well, micro. They are shorter, real-time, and addressable.

Collaborative and Social API

[308]

The microblogs portlet allows users to broadcast short messages to other users of the
service, and microposts can be made public and/or distributed to a private group of
subscribers, called followers.

The microblogs got specified through the entity MicroblogsEntry as follows:

<!-- see details in /microblogs/service.xml -->
<column name="receiverMicroblogsEntryId" type="long" />
<column name="socialRelationType" type="int" />

As shown in the previous code, each MicroblogsEntry has defined columns,
content, and type to present blog's content and types, and columns such as
receiverUserId, receiverMicroblogsEntryId, and socialRelationType
for the present receiver user, receiver microblogs entry, and social relation type,
respectively. Of course, you can use this service XML as a basis and add your own
custom fields. Once your service XML is ready, you can go further and generate
models and services, using the service builder in the plugins.

Shopping cart
Shopping portlet provides all you need to have an online store with a shopping
cart. As shown in the following diagram, the shopping cart got defined within
a set of entities like ShoppingCart, ShoppingCategory, ShoppingCoupon,
ShoppingItem, ShoppingItemField, ShoppingItemPrice, ShoppingOrder, and
ShoppingOrderItem, shown as follows:

ShoppingCart ShoppingCoupon ShoppingOrder ShoppingCategory ShoppingItem ShoppingItemField

CalenderBooking CalenderEvent CalenderResource TMS-TasksEntry ShoppingOrderItem ShoppingItemPrice

c c c c c c

c c c c c c

*

*

*

*

*
*

*

*

Chapter 7

[309]

Shopping cart entities get specified in the service XML /shopping/service.xml.
The following table shows a summary of these entities:

Entity name Extension Wrapper Implementation
ShoppingCart ShoppingCartModel

extends
BaseModel<Shopping
Cart>, GroupedModel

ShoppingCart
Wrapper

ShoppingCart
Impl extends
ShoppingCart
ModelImpl

Shopping
CartItem

Comparable<Shopping
CartItem>,
Serializable

none ShoppingCart
ItemImpl

Shopping
Category

ShoppingCategory
Model extends
BaseModel<Shopping
Category>,
GroupedModel

Shopping
Category
Wrapper

ShoppingCategory
Impl extends
ShoppingCategory
ModelImpl

Shopping
Coupon

ShoppingCoupon
Model extends
BaseModel<Shopping
Coupon>, GroupedModel

Shopping
CouponWrapper

ShoppingCoupon
Impl extends
ShoppingCoupon
ModelImpl

ShoppingItem ShoppingItemModel
extends
BaseModel<Shopping
Item>, GroupedModel

Shopping
ItemWrapper

ShoppingItem
Impl extends
ShoppingItem
ModelImpl

Shopping
ItemField

ShoppingItemField
Model extends
BaseModel<Shopping
ItemField>

ShoppingItem
FieldWrapper

ShoppingItem
FieldImpl extends
ShoppingItem
FieldModelImpl

Shopping
ItemPrice

ShoppingItemPrice
Model extends
BaseModel<Shopping
ItemPrice>

ShoppingItem
PriceWrapper

ShoppingItem
PriceImpl extends
ShoppingItem
PriceModelImpl

ShoppingOrder ShoppingOrder
Model extends
BaseModel<Shopping
Order>, GroupedModel

Shopping
OrderWrapper

ShoppingOrder
Impl extends
ShoppingOrder
ModelImpl

Shopping
OrderItem

ShoppingOrderItem
Model extends
BaseModel<Shopping
OrderItem>

ShoppingOrder
ItemWrapper

ShoppingOrder
ItemImpl extends
ShoppingOrder
ItemModelImpl

Based on this service XML, the portal generates a set of services—utilities,
wrappers, and implementation for the shopping cart. You can leverage the
same in your plugins.

Collaborative and Social API

[310]

Advanced calendar
As mentioned earlier, the portal has provided a shared calendar within the entity
called CalEvent. Obviously, you can define an advanced calendar in the plugin. Let's
see a sample of an advanced calendar. Of course, you can use this advanced calendar
as reference and thereby develop your own customized advanced calendar.

The advanced calendar is made of three entities: Calendar Booking, Calendar
Event, and Calendar Resource. Each calendar booking can have one, and only one,
calendar event and calendar resource associated, as shown in the following code:

<!—see details in /advanced-calendar/service.xml -->
<column name="classNameId" type="long" />
<column name="classPK" type="long" />
<column name="location" type="String" />

The previous code shows that each calendar booking can have one, and only one,
calendar event via the name calendarEventId and calendar resource via the name
calendarResourceId associated. Each calendar booking can have columns such as
title, description, location, and so on. Most importantly, each calendar booking has
included the pattern classNameId-classPK. Therefore, each calendar booking can
be associated with any content type and content.

Tasks management
Task management is the process of managing a task or a task portfolio through its
life cycle. It can either help individuals achieve goals, or help groups of individuals
collaborate and share knowledge for the accomplishment of collective goals. An
effective task management supposes being able to manage all aspects of a task,
including its status, priority, time, human and financial resources assignments,
recurrences, notifications, and so on. The portal framework can reach the same
and the tasks could be defined in the plugins via the entity TasksEntry:

<!-- Audit fields see details in /tasks/service.xml --><column
name="dueDate" type="Date" />
<column name="finishDate" type="Date" />
<column name="status" type="int" />

The previous code shows that each task entry will have columns such as title and
priority—high, lower, and normal—to identify tasks or task portfolios. The columns
assigneeUserId and resolverUserId indicate the assignee and resolver; while the
columns dueDate, finishDate, and status indicate the task due-date, finish-date,
and current status—all, open, *%-percent-complete, reopen, and resolved.

Chapter 7

[311]

Online chat and mail
The Chat portlet is an AJAX Enterprise Instant Messaging client that allows users
to automatically chat with other logged-in portal users. Chat sessions are persisted
across portal pages and are as secure as other portal functionalities. It allows you
to enter chat rooms and converse with other online users. In addition, chat portlet
integrates Jabber servers (like OpenFire, http://www.igniterealtime.org/
projects/openfire/) in nature. As shown in the following diagram, chat is defined
by the entities Chat-Entry and Chat-Status. Both of them are associated with the
portal core asset User, which is shown as follows:

c

*
Chat-Entry User Chat-Status AMS-Asset

AMS-CheckoutMail-MessageMail-FolderMail-Attachment

c AMS-Definition

AMS-Typec c c c c

c c c

Mail-Accountc
* * *

*
*

*

*
*

The Mail portlet is a full AJAX-based webmail client that can be configured to
interface with many popular IMAP e-mail servers. It allows users to send and check
their e-mail directly through the portal, and it also allows them to visualize all
e-mails of a given account from several e-mail accounts. As shown in the previous
diagram, the mail got specified within the entities Mail-Attachment, Mail-Account,
Mail-Folder, and Mail-Message.

Chat
Chat entities get specified in the service XML. The following table shows the chat
models, its extension, wrapper, and implementation:

Model interface Extension Wrapper and Clp Implementation
Entry EntryModel

extends
BaseModel<Entry>

EntryWrapper

EntryClp

EntryImpl extends
EntryModelImpl

Status StatusModel
extends
BaseModel<Status>

StatusWrapper

StatusClp

StatusImpl extends
StatusModelImpl

Collaborative and Social API

[312]

There are a set of chat services generated by the service builder (service XML /chat/
service.xml). The following table shows these services, their wrappers, utilities,
and implementations:

Interface Utility Wrapper Clp Main methods
EntryLocal
Service

EntryLocal
ServiceUtil

EntryLocal
ServiceWrapper

EntryLocal
ServiceClp

add*, create*,
delete*,
dynamicQuery,
get*, set*,
update*

StatusLocal
Service

StatusLocal
ServiceUtil

StatusLocal
ServiceWrapper

StatusLocal
ServiceClp

add*, create*,
delete*,
dynamicQuery,
get*, set*,
update*

Mail
Mail-related entities got specified in the service XML. As shown in the following
table, the mail models, its extension, wrapper, clp (Class Loader Proxy), and
implementation get generated by the service builder:

Model
Interface

Extension Wrapper and Clp Implementation

Account AccountModel
extends
AuditedModel,
BaseModel<Account>

AccountWrapper

AccountClp

AccountImpl
extends
AccountModelImpl

Attachment AttachmentModel
extends BaseModel
<Attachment>

AttachmentWrapper

AttachmentClp

AttachmentImpl
extends
Attachment
ModelImpl

Folder FolderModel extends
AuditedModel,
BaseModel<Folder>

FolderWrapper

FolderClp

FolderImpl
extends
FolderModelImpl

MailFile none none none

Message MessageModel
extends
AuditedModel,
BaseModel<Message>

MessageWrapper

MessageClp

MessageImpl
extends
MessageModelImpl

Message
Display

Messages
Display

none none none

Chapter 7

[313]

The mail services could be summarized as shown in the following table (service XML
/mail/service.xml):

Interface Utility Wrapper and Clp Main methods
AccountLocal
Service

AccountLocal
ServiceUtil

AccountLocal
ServiceWrapper

AccountLocal
ServiceClp

add*, create*,
delete*,
dynamicQuery,
get*, set*,
update*

Attachment
LocalService

Attachment
LocalServiceUtil

AttachmentLocal
ServiceWrapper

AttachmentLocal
ServiceClp

add*, create*,
delete*,
dynamicQuery,
get*, set*,
update*

FolderLocal
Service

FolderLocal
ServiceUtil

FolderLocal
ServiceWrapper

FolderLocal
ServiceClp

add*, create*,
delete*,
dynamicQuery,
fetch*, get*,
set*, update*

MessageLocal
Service

MessageLocal
ServiceUtil

MessageLocal
ServiceWrapper

MessageLocal
ServiceClp

add*, create*,
delete*,
dynamicQuery,
get*, set*,
update*,
populate*

In addition, the mail portlet has defined a set of service utilities for mailbox and
IMAP connection. The following table shows a summary of these services:

Service Interface Extension/Utility Description
Connection
Listener

javax.mail.
event.
Connection
Listener

none Mail connection
listener

IMAPAccessor none none IMAP accessor
IMAPAttachment
Handler

Attachment
Handler

DefaultAttach
mentHandler

HtmlContentUtil

IMAP attachment
handler

IMAPConnection none none IMAP connection
IMAPMailbox Mailbox BaseMailbox IMAP mail box

Collaborative and Social API

[314]

Service Interface Extension/Utility Description
PasswordRe
triever

none PasswordUtil Mail password
retriever

AccountLock none none Mail account lock

Asset management system
Assets would be expensive to purchase and maintain. Asset management system
(AMS) features include online asset inventory, helping you track your items in
real-time; organization of data based on asset type, asset definition, and checkout;
automatic contract expiration notifications; utilization tracking and auditing, so that
you know what is being used, and more.

How can you model the asset management system? As shown in the previous
diagram, AMS can be modeled via the entities Asset, Definition, Type, and Checkout.
Each type could have many definitions, and each definition could have many assets.
Each asset will have many checkouts.

These entities are summarized in the following table (service XML /ams/service.
xml):

Model Extension Wrapper/Clp Implementation Description
Asset AssetModel

extends
AuditedModel,
BaseModel<Asset>

AssetWrapper

AssetClp

AssetImpl
extends
AssetModelImpl

AMS Asset
model

Checkout CheckoutModel
extends
AuditedModel,
BaseModel
<Checkout>

Checkout
Wrapper

CheckoutClp

CheckoutImpl
extends
CheckoutModel
Impl

AMS
Checkout
model

Definition DefinitionModel
extends
AuditedModel,
BaseModel
<Definition>

Definition
Wrapper

DefinitionClp

DefinitionImpl
extends
Definition
ModelImpl

AMS
Definition
model

Type TypeModel
extends
AuditedModel,
BaseModel<Type>

TypeWrapper

TypeClp

TypeImpl
extends
TypeModelImpl

AMS Type
model

Chapter 7

[315]

Human resource management
Human resource management (HR) is the management of an organization's
employees, including employment and arbitration in accord with the law, and with
a company's directives. Its features include organizational management, personnel
administration, manpower management, and industrial management.

Based on the portal framework, HR can be built within management organization
chart, asset, billing, expense, and timesheet (in the service XML /hr/service.xml).

Marketplace
Marketplace is a hub for sharing, browsing, and downloading Liferay-compatible
applications. The marketplace is defined as a plugin called marketplace-portlet
by the entities (in the service XML /marketplace/service.xml) App and Module,
while the entity App is specified with the main columns, remoteAppId and version;
the entity Module is specified with main columns, appId and contextName.

Assets collaboration
We have discussed collaboration capabilities with the portal core assets and custom
assets to enable productive discussion around all your collective knowledge. This
section will address assets collaboration.

In the previous chapter, we had introduced custom attributes, DDL and DDM—to
add custom document types and custom fields easily into any entities. It has also
applied asset views, tags, and categories on any entities. Thus, most viewed and
most related content could be identified in nature in the portal framework. In this
section, we're going to introduce more asset collaborative capabilities, like rating,
comment, flagging, subscribing, and so on. The following diagram depicts an
overview on the viewpoint of modeling:

RatingsEntry RatingsStats Website

Subscription Ticket

ListType

Phone

Address Country

EmailAddress Region

c

*

c

c c

c

c c c

c c c

Collaborative and Social API

[316]

For example, the entities RatingsEntry and RattingsStats present asset ratings;
the entity Subscription presents subscription capability. Other entities like Ticket,
Website, Phone, Address, and EmailAddress can be applied on as many assets
as you want. The entity ListType provides dynamic selection list type, while the
entities Country and Region provide the ability to present all countries and their
regions around the world.

Asset ratings
Ranking a page or portlet or asset would be very useful in order to find its
popularity. The portal provides rating capability, so that a user can add a ranking
on any asset, like a page, portlet, asset, and so on. For a specific user, he/she would
have only one chance to rank a specific page, or portlet, or asset. Of course, he/she
should have a chance to update his/her rankings at any time.

Asset ratings entities are defined in the service XML, /ratings/service.xml.

The following table shows the services of the entities RatingsEntry and
RatingsStats for asset ratings:

Service Interface Utility Wrapper Main
methods

RatingsEntry
(Local)Service

RatingsEntry(Local)
ServiceUtil

RatingsEntry(Local)
ServiceWrapper

RatingsStats
LocalService

RatingsStatsLocal
ServiceUtil

RatingsStatsLocal
ServiceWrapper

In order to use the ratings entities and services in plugins, you should add the ratings
reference in the service XML service.xml as follows:

<reference package-path="com.liferay.portlet.ratings"
entity="RatingsStats" />

UI taglib liferay-ui:ratings
Ranking a page or a portlet or an asset could be used to measure popularity.
Adding ranking to any assets can be done within the tag liferay-ui:ratings,
since the portal provides a way to extend a page or a portlet or asset's capabilities
via UI tags simply:

<liferay-ui:ratings-score score="<%= score %>" />
<liferay-ui:ratings
 className="<%= KBArticle.class.getName() %>"
 classPK="<%= kbArticle.getResourcePrimKey() %>"
/>

Chapter 7

[317]

The tag liferay-ui:ratings-score can have only one required attribute, score,
while the tag liferay-ui:ratings can have required attributes, such as className
and classPK, which are used to present any asset, like a Knowledge Base article, and
optional attributes like numberOfStars, ratingsEntry, ratingsStars, type, and
url. The value of type can be thumbs or stars. For the type stars, you can specify
the number of stars, such as 5 or 10.

Asset comments
Adding comments on a page or a portlet or an asset could be useful, too. The portal
provides asset comments capability, so that a user can add many comments on any
asset, such as, page, portlet, assets, and so on. A user can have a chance to update
one or many comments on a specific page, or portlet, or asset. Obviously, the user
should have a chance to update his/her comments at any time.

Model
The entity MBDiscussion has been defined within the following columns:
discussionId, classNameId, classPK, and threadId. The pattern classNameId-
classPK can be used to represent any asset:

<column name="classNameId" type="long" />
<column name="classPK" type="long" />
<column name="threadId" type="long" />

The model MBDiscussion extends the model MBDiscussionModel and
MBDiscussionModel extends AttachedModel and BaseModel<MBDiscussion>.

Service
Asset comments services are defined in the message boards such as
MBMessageLocalService and MBMessageLocalServiceUtil. For example, in the
UI taglib JSP /taglib/ui/discussion/page.jsp, you can find the following code
consuming service MBMessageLocalService:

MBMessageDisplay messageDisplay = MBMessageLocalServiceUtil.getDi
scussionMessageDisplay(userId, scopeGroupId, className, classPK,
WorkflowConstants.STATUS_ANY, threadView);

Collaborative and Social API

[318]

UI taglib liferay-ui:discussion
Actually, adding comments to a portlet or any asset can be done with the tag
liferay-ui:discussion by extending portlet capabilities via UI tags. The
attributes className and classPK are used to represent these assets, as shown
in the following snippet:

<liferay-ui:discussion
 className="<%= BlogsEntry.class.getName() %>"
 classPK="<%= entry.getEntryId() %>"
 // see details in UI taglibs
 userId="<%= entry.getUserId() %>"
/>

The tag liferay-ui:discussion should have the required attributes, such as
className, classPK, formAction, subject, and userId, and optional attributes
such as formName, permissionClassName, permissionClassPK, ratingsEnabled,
and redirect. Here the attributes className and classPK are used to represent any
asset generated by service builder in the portal core or custom plugins. Refer to the
book Liferay User Interface Development for details about UI taglibs.

Asset flags
Asset flags allow the end user to flag the contents available on that page, as a way
to allow end users to flag the user as inappropriate. They are a form of AJAX-based
flagging that avoids a full page reload. They send an e-mail to the administrators, so
that they can take the appropriate action.

The entity FlagsEntry got defined in the service XML /flags/service.xml. The
following table shows asset flags' model and service:

Name Wrapper Utility Description
FlagsRequest None none Flags request
FlagsEntry
Service

FlagsEntry
ServiceWrapper

FlagsEntry
ServiceUtil

Use MessageBusUtil.
sendMessage
(DestinationNames.
FLAGS, flagsRequest);

For example, in the UI taglib JSP page, /html/taglib/ui/flags/page.jsp, it
consumes the previous service as follows:

popup.plug(
 A.Plugin.IO,
{

Chapter 7

[319]

 data:
{
 className: '<%= className %>',
 classPK: '<%= classPK %>',
 //see details in UI taglibs
});

UI taglib liferay-ui:flags
You may flag the content from either portal core portlet or custom plugins portlet as
inappropriate via the tag liferay-ui:flags as follows:

<liferay-ui:flags
className="<%= assetEntry.getClassName() %>"
classPK="<%= assetEntry.getClassPK() %>"
// see details in UI taglibs
/>

As shown in the previous code, the tag liferay-ui:flags required attributes such
as className, classPK, and contentTitle, and optional attributes such as message
and reportedUserId.

Assets subscription
The portal has defined an entity called Subscription (a service that can be paid
periodically rather than all at once) in the service XML service.xml. As shown
in the following code, the table Subscription has defined the following columns
classNameId, classPK, and frequency:

<column name="classNameId" type="long" />
<column name="classPK" type="long" />
<column name="frequency" type="String" />

As shown in the previous code, the model Subscription can be applied on any
asset, since the pattern classNameId-classPK represents any asset type via
classNameId and the asset primary key via classPK.

The interface Subscription extends SubscriptionModel, and the
interface SubscriptionModel extends AttachedModel, AuditedModel, and
BaseModel<Subscription>. The wrapper class SubscriptionLocalServiceWrapper
implements the service SubscriptionLocalService.

Collaborative and Social API

[320]

The utility SubscriptionLocalServiceUtil specifies the following methods for the
Subscription local service:

public Subscription addSubscription(long userId,
 long groupId, String className, long classPK);
public Subscription getSubscription(long companyId,
 long userId, String className, long classPK);

In order to use the Subscription entity and services in plugins, you should add the
Subscription reference in the portal service XML service.xml as follows:

<reference package-path="com.liferay.portal" entity="Subscription" />

E-mail notification
Once an event happens, the portal may be required to send an e-mail notification.
The e-mail notification in the settings of the Control Panel covers the tabs Sender,
Account Created Notifications, and Password Changed Notifications.
The following table shows the e-mail account models interface, mail message, and
mail service:

Model/Service Extension/Util Example Description
IMAPAccount Account

implements
Serializable

IMAPAccount(protocol,
secure, port);

IMAP account

POPAccount Account
implements
Serializable

POPAccount(protocol,
secure, port);

POP account

SMTPAccount Account
implements
Serializable

SMTPAccount(protocol,
secure, port);

SMTP account

MailMessage implements
Serializable

MailMessage(from, to,
processedSubject,
processedBody,
htmlFormat);

Mail message
model

MailService MailService
Util

MailServiceUtil.
sendEmail(mailMessage);

Mail service to
send e-mail

For example, in the method sendEmail(InternetAddress to, Locale locale)
of the class com.liferay.portal.util.SubscriptionSender, it specifies the
following code:

// see details in SubscriptionSender.java
MailServiceUtil.sendEmail(mailMessage);

Chapter 7

[321]

The previous code first initiates the object MailMessage. Then it processes the object
MailMessage. Finally, it calls the method MailServiceUtil.sendEmail to send
subscription e-mail notification.

RSS feeds
RSS (Really Simple Syndication) is a family of web feed formats used to publish
frequently updated works—such as blog entries, news headlines, audio, and
video—in a standardized format. A web feed (or news feed) is a data format used
for providing users with frequently-updated content. Content distributors syndicate
a web feed, thereby allowing users to subscribe to it.

The portal first provides secure RSS feeds. All secure RSS feeds transparently
support BASIC Authentication. Liferay portlet supports RSS feed type, that is,
ATOM 1.0, RSS 1.0, and RSS 2.0.

The portal includes the Rome API by default. In addition to being fluent in the many
flavors of RSS, the Rome API is easy to use and intuitive to understand. Rome is an
open source Java API for reading and publishing RSS feeds in a relatively format-
neutral way. The following table shows the usage of Rome API:

Interface Implementation Sample code Description
SyndEnclosure SyndEnclosure

Impl
enclosure.setLength(image.
getSize());

enclosure.setUrl(portalURL
+ url);

Syndication
enclosure

SyndLink SyndLinkImpl link.setHref(portalURL +
url);

link.setLength(image.
getSize());

Syndication
link

SyndFeed SyndFeedImpl syndFeed.setTitle(feed.
getName());

syndFeed.setLink(feedURL.
toString());

Syndication
feed

SyndEntry SyndEntryImpl syndEntry.
setAuthor(author);

syndEntry.setLink(link);

Syndication
entry

SyndContent SyndContent
Impl

syndContent.
setType(RSSUtil.DEFAULT_
ENTRY_TYPE);

syndContent.
setValue(value);

Syndication
content

Collaborative and Social API

[322]

By the way, you can check for more details in the utilities com.liferay.portlet.
journal.util.JournalRSSUtil.java and com.liferay.portlet.journal.
action.RSSAction.java.

Attached model
The portal has added getModelClassName() and getModelClass() to the
BaseModel, through the model interface AttachedModel; since all the classes
have that data anyway, just expose it as a friendly method. The model interface
AttachedModel defines the following methods:

public String getClassName();
public long getClassNameId();
public long getClassPK();

For example, MBMessage.getModelClassName() will return the model com.
liferay.portlet.messageboards.model.MBMessage. The following table
shows a set of portal core models, which extend the attached model:

Model
Name

Extension Wrapper Implementation Description

Ticket TicketModel
extends
AttachedModel,
BaseModel<Ticket>

Ticket
Wrapper

TicketImpl
extends
TicketModel
Impl

Ticket Model

Address AddressModel
extends
AttachedModel,
AuditedModel,
BaseModel<Address>

Address
Wrapper

AddressImpl
extends
AddressModel
Impl

Address model

Email
Address

EmailAddressModel
extends
AttachedModel,
AuditedModel,
BaseModel<Email
Address>

EmailAddress
Wrapper

EmailAddress
Impl extends
EmailAddress
ModelImpl

E-mail address
model

Phone PhoneModel extends
AttachedModel,
AuditedModel,
BaseModel<Phone>

PhoneWrapper PhoneImpl
extends
PhoneModel
Impl

Phone model

Website WebsiteModel
extends
AttachedModel,
AuditedModel,
BaseModel<Website>

Website
Wrapper

WebsiteImpl
extends
WebsiteModel
Impl

Website model

Chapter 7

[323]

The portal also provides the AuditedModel interface. Most of the base models
have companyId, createDate/modifiedDate, and userId/userName. If a model
has those fields, then it will also implement the AuditedModel interface. Similarly,
if a base model is an AuditedModel, and also has a groupId, then it is also a
GroupedModel – meaning that its data can be grouped into sites/communities.

Social identity repository
The portal supports social networking—you can easily manage your Facebook,
MySpace, Twitter, and other social network accounts. In addition, you can manage
your instant messenger accounts, such as AIM, ICQ, Jabber, MSN, Skype, and
YM, smoothly.

Social office gives us a social collaboration suite on top of the portal—a full virtual
workspace that streamlines communication and builds up group cohesion. All
components in social office are tied together seamlessly, getting everyone on the
same page by sharing the same look and feel. Social office isn't another separate
portal, but a specific instance of the portal.

Social networking
The following figure depicts entities and their relationships among social
networking, social coding, and social office. As you can see, the social
networking plugin defines the entities MeetupsEntry for meet-ups entries,
MeetupsRegistration for meet-ups registration, and WallEntry for wall entries.
The social coding plugin defines entities such as SVNRevison, SVNRepository,
JIRAAction, JIRAChangeGroup, JIRAChangeItem, and JIRAIssue:

MeetupsEntry MeetupsRegistration WallEntry SVNRevision MemberRequest

JIRAAction JIRAChangeGroup JIRAChangeItem JIRAIssue SVNRepositoryc

c c c c c

c ProjectsEntrycccc

*

*

*
*

Collaborative and Social API

[324]

Models
As mentioned earlier, social networking plugin defines three entities, such as,
MeetupsEntry, MeetupsRegistration, and WallEntry. The following table
shows these entities, model extension, wrapper, clp (class loader proxy), and
gives a description:

Model
Interface

Extension Wrapper/Clp Implementation Description

Meetups
Entry

MeetupsEntryModel
extends
AuditedModel,
BaseModel<Meetups
Entry>

MeetupsEntry
Wrapper

MeetupsEntry
Clp

MeetupsEntry
Impl extends
MeetupsEntry
ModelImpl

Meet-ups
entry model

Meetups
Registr
ation

MeetupsRegistration
Model extends
AuditedModel,
BaseModel<Meetups
Registration>

MeetupsRegi
stration
Wrapper

MeetupsRegi
strationClp

MeetupsRegist
rationImpl
extends
MeetupsRegi
strationModel
Impl

Meet-ups
registration
model

WallEntry WallEntryModel
extends
BaseModel<Wall
Entry>, GroupedModel

WallEntry
Wrapper

WallEntryClp

WallEntryImpl
extends
WallEntry
ModelImpl

Wall entry
model

Services
The social networking plugin showcases how to build a social network by leveraging
social networking services. The following table shows a list of the portlets (service
XML /socialnetworking/service.xml):

Portlet Related services Service Utility Related UI Taglib example
Friends UserLocalService UserLocal

ServiceUtil
<liferay-
ui:user-display
userId="<%=friend.
getUserId() %>"
userName="<%= friend.
getFullName() %>" />

Friends
activities

SocialActivity
LocalService

SocialActivity
LocalService
Util

<liferay-ui:social-
activities
activities="<%=
activities %>"
feedEnabled="<%= true
%>" />

Chapter 7

[325]

Portlet Related services Service Utility Related UI Taglib example
map Google maps MessageBusUtil

IPGeocoderUtil

<aui:script> google.
load("maps", "2.x",
{"language" : "ja_
JP"}); google.setOnLo
adCallback(<portlet:n
amespace />initMap);
</aui:script>

meetups MeetupsRegistration
LocalService

MeetupsEntry
LocalService

MeetupsRegi
stration
LocalService
Util

MeetupsEntry
LocalService
Util

none

members UserLocalService UserLocal
ServiceUtil

<liferay-ui:user-
display userId="<%=
member.getUserId()
%>" userName="<%=
member.getFullName()
%>" />

Members
activities

SocialActivity
LocalService

SocialActivity
LocalService
Util

<liferay-ui:social-
activities
activities="<%=
activities %>"
feedEnabled="<%= true
%>" />

Summary SocialRequest
LocalService

UserLocalService

SocialRequest
LocalService
Util

UserLocal
ServiceUtil

<liferay-ui:icon />

Wall WallEntryLocal
Service

UserLocalService

WallEntryLocal
ServiceUtil

UserLocal
ServiceUtil

<liferay-ui:input-
field model="<%=
WallEntry.class %>"
bean="<%= null %>"
field="comments" />

Social coding
Social coding is a plugin containing two collaborative applications: integration with
SVN (Apache Subversion) and JIRA (a proprietary issue tracking system).When
these applications get displayed in a user's personal page, they will display all the
information about the development activity of that user in different projects.

Collaborative and Social API

[326]

The following table shows these applications' models, their extensions, wrappers,
clp (Class Loader Proxy), and implementation (service XML /socialcoding/
service.xml):

Interface Extension Wrapper/Clp Implementation Description
JIRAAction JIRAActionModel

extends
BaseModel<JIRA
Action>

JIRAAction
Wrapper

JIRAActionClp

JIRAActionImpl
extends
JIRAAction
ModelImpl

JIRA Action
model

JIRAChange
Group

JIRAChangeGroup
Model extends
BaseModel<JIRA
ChangeGroup>

JIRAChange
GroupWrapper

JIRAChange
GroupClp

JIRAChange
GroupImpl
extends
JIRAChange
GroupModel
Impl

JIRA Change
Group
model

JIRAChange
Item

JIRAChangeItem
Model extends
BaseModel
<JIRAChangeItem>

JIRAChange
ItemWrapper

JIRAChange
ItemClp

JIRAChange
ItemImpl
extends
JIRAChange
ItemModel
Impl

JIRA Change
Item model

JIRAIssue JIRAIssueModel
extends
BaseModel<JIRA
Issue>

JIRAIssue
Wrapper

JIRAIssueClp

JIRAIssue
Impl extends
JIRAIssue
ModelImpl

JIRA Issue
model

SVNRepo
sitory

SVNRepository
Model extends
BaseModel
<SVNRepository>

SVNRepository
Wrapper

SVNRepository
Clp

SVNRepository
ModelImpl
extends
BaseModelImpl
<SVNReposi
tory>

SVN
Repository
model

SVNRevision SVNRevisionModel
extends
BaseModel
<SVNRevision>

SVNRevision
Wrapper

SVNRevision
Clp

SVNRevision
ModelImpl
extends
BaseModelImpl
<SVNRevision>

SVN
Revision
model

Social office
Social office is a social collaboration solution for the enterprise. It allows people to
collaborate effectively and efficiently. One of the handy features of social office is its
usage of Microsoft Office integration. In general, all of the features of social office are
available in the portal as well. In fact, the portal is the framework and social office is
a customization of this framework.

Chapter 7

[327]

Models
The social office plugin (so-portlet) defines a few entities in the service XML:
MemberRequest and ProjectsEntry. The following table shows these entities,
their extension, wrapper, clp (class loader proxy), and implementation:

Model Extension Wrapper/Clp Implementation Description
Member
Request

MemberRequest
Model extends
BaseModel<Member
Request>,
GroupedModel

MemberRequest
Wrapper

MemberRequest
Clp

MemberRequest
Impl extends
MemberRequest
ModelImpl

Member
request
model

Projects
Entry

ProjectsEntry
Model extends
AuditedModel,
BaseModel
<ProjectsEntry>

ProjectsEntry
Wrapper

ProjectsEntry
Clp

ProjectsEntry
Impl extends
ProjectsEntry
ModelImpl

Project entry
model

Services
The social office plugin (so-portlet) defines a set of portlets: activities, contacts,
expertise, invite-members, notifications, and sites. The following table depicts these
portlets, their related services, utilities, and the involved models (service XML
/socialoffice/service.xml):

Portlet Related services Related service utility Involved model
Activities SocialActivity

InterpreterLocal
Service

SocialActivity
InterpreterLocal
ServiceUtil

SocialActivity

Contacts ProjectsEntry
LocalService

ProjectsEntry
LocalServiceUtil

ProjectsEntry

Expertise ProjectsEntry
LocalService

ProjectsEntry
LocalServiceUtil

ProjectsEntry

Invite_
members

UserLocalService

GroupLocalService

RoleLocalService

UserLocalService
Util

GroupLocalService
Util

RoleLocalService
Util

User

Group

Role

Collaborative and Social API

[328]

Portlet Related services Related service utility Involved model
Notifications SocialRequest

LocalService

SocialRequest
Interpreter
LocalService

UserLocal
Service

MemberRequest
LocalService

GroupLocal
Service

SocialRequest
LocalServiceUtil

SocialRequest
Interpreter
LocalServiceUtil

UserLocalServiceUtil

MemberRequestLocal
ServiceUtil

GroupLocalService
Util

SocialRequest

User

MemberRequest

Group

Sites GroupLocal
Service

LayoutSet
PrototypeService

LayoutLocalServic

GroupLocalService
Util

LayoutSetPrototype
ServiceUtil

LayoutLocalService
Util

Group

LayoutSet
Prototype

Layout

As you can see, the contacts information of social office is accessible via the
contacts portlet.

Hooks
The plugin so-portlet specifies portal properties hooks. First, the portal properties
hook got defined in liferay-hook.xml as follows:

<portal-properties>portal.properties</portal-properties>

In the portal.properties, it specifies the following properties and their values:

users.form.my.account.identification=expertise
users.form.update.identification=expertise

As you can see, the default values of these properties are addresses, phone numbers,
additional e-mail addresses, websites, instant messenger, social network, SMS,
OpenID. Now, they are overwritten as expertise.

Chapter 7

[329]

The plugin so-portlet indeed specifies JSP hooks. The following table shows a
summary of these JSP hooks:

Name Type Relative path Root path Description
social_office.
png

icons html/icons /META-INF/
custom_jsps

Overwrites icons

expertise.jsp portlet html/portlet/
enterprise_
admin/user

/META-INF/
custom_jsps

Overwrites the JSP
file

login.jsp portlet html/portlet/
login

/META-INF/
custom_jsps

Overwrites the JSP
file

page_site_
name.jsp

taglib html/taglib/
ui/my_places

/META-INF/
custom_jsps

Overwrites ui taglib

The plugin so-portlet leveraged indexer-post-processor hook—allowing hooks
to add an IndexerPostProcessor to modify user's search summaries, queries, and
indexes. It implements a post processing system on top of the existing indexer to
allow the plugin hook to modify the search summaries, indexes, and queries. In
liferay-hook.xml, the plugin so-portlet adds the following hook definition:

<indexer-post-processor>
 <indexer-class-name>com.liferay.portal.model.User</indexer-class-
name>
 <indexer-post-processor-impl>com.liferay.so.hook.indexer.
UserIndexerPostProcessor</indexer-post-processor-impl>
</indexer-post-processor>

indexer-model-name is the name of the model whose indexer you wish to change
and indexer-post-processor-impl is the name of your post processor class that
implements com.liferay.portal.kernel.search.IndexerPostProcessor.

The plugin so-portlet also leverages the struts-action hook—allowing the
overriding of struts actions from hook plugins. The struts-action hook added
a new action element struts-action into liferay-hook.xml, defining com.
liferay.portal.kernel.struts.StrutsAction and com.liferay.portal.
kernel.struts.StrutsPortletAction interfaces.

Collaborative and Social API

[330]

The following table shows these struts-action hooks defined in the so-portlet
plugin:

Name Model Path Implementation Service Utility
Enterprise
admin

User Projects
Entry

/enterprise_
admin/edit_
user

com.liferay.
so.hook.action.
EditUserAction

ProjectsEntry
LocalService
Util

Enterprise
admin
users

User Projects
Entry

/enterprise_
admin_users/
edit_user

com.liferay.
so.hook.action.
EditUserAction

ProjectsEntry
LocalService
Util

My
account

User Projects
Entry

/my_account/
edit_user

com.liferay.
so.hook.action.
EditUserAction

ProjectsEntry
LocalService
Util

Contacts
The Contacts plugin (contacts-portlet) enables users to manage customers and
friends, including phone numbers, addresses, birthdays, companies, e-mails, and
so on. The contact list shows all the people on various sites, as well as friends, and
provides a quick way to message them and to find their information. Contacts Centre
helps in following a user to receive updates about their activity; managing friends
and friend requests and improving the way a user can locate people within
the system.

As shown in the following table, the Contacts plugin defines a set of portlets: Chat,
Contacts Centre, Profile, My Contacts, and Members:

Portlet Related service Related service
utility

Related models

Chat Liferay.Chat.Manager.
registerBuddyService

PortletLocalService

PortletLocal
ServiceUtil

User

Portlet

Contacts
Center

UserLocalService

SocialRequestLocalService

PhoneService

EmailAddressService

UserLocal
ServiceUtil

SocialRequest
LocalService
Util

PhoneService
Util

EmailAddress
ServiceUtil

User

SocialRequest

Phone

EmailAddress

Chapter 7

[331]

Portlet Related service Related service
utility

Related models

Members UserLocalService UserLocal
ServiceUtil

User

My
Contacts

UserLocalService UserLocal
ServiceUtil

User

Profile UserLocalService UserLocal
ServiceUtil

User

Most interestingly, user's Contact Center Profiles are accessible via the Chat portlet.
To do so, deploy both the Chat portlet and Contacts portlet. As you can see, your
buddies should have a contact index, when hovering over them in the buddy list.
How does it work? The following would be the simple answer:

1. First, the Chat portlet defines the utility class ChatExtensionsUtil—an
extension system for the Chat portlet that allows us to add in buttons to the
buddy list to extend interaction with the buddy with their own portlet. The
extension system allows other plugins to register changes to the Chat portlet.

2. Second, register the Chat extension when deploying the plugin. The
following code sample shows how to do this:

protected void registerChatExtension() throws Exception {
 PortletClassInvoker.invoke(
 false, "1_WAR_chatportlet", _registerMethodKey,
 "contacts-portlet", "/chat/view.jsp"); }
// see details in HotDeployMessageListener.java
private MethodKey _registerMethodKey = new MethodKey(
 "com.liferay.chat.util.ChatExtensionsUtil", "register",
 String.class, String.class);

Similarly, the contact's information of social office is accessible via the
contacts-portlet. An extension system for the contacts-portlet allows us to
add contacts information of social office (or any plugin) to contacts-portlet. In
fact, the contacts-portlet defines a utility class ContactsExtensionsUtil.

Social activity
The portal provides the capability to track social activity. Recorded social activities
will appear in the Activities portlet. Entities of SocialActivity include
SocialActivity, SocialRelation, and SocialRequest. Social equity gets
specified via the entities SocialActivityAchievement, SocialActivityCounter,
SocialActivityLimit, and SocialActivitySetting.

Collaborative and Social API

[332]

In addition, in the OpenSocial plugin, it defines the entities Gadget, OAuthConsumer,
and OAuthToken. In this section, we're going to introduce the SocialActivity
first. Social equity and OpenSocial will get addressed in the coming sections. The
following diagram shows the structure of social activity:

SocialActivity SocialRelation SocialRequest SocialEquityUser SocialEquitySetting OAuthToken

SocialEquityAssetEntry SocialEquityGroupSetting SocialEquityHistory SocialEquityLog Gadget OAuthCustomer

c

*

c c c c c

c c c c c c

*

*

Models
The following table shows the SocialActivity models, their extension, wrapper,
and implementation:

Model Interface Extension Wrapper Implementation
SocialActivity SocialActivity

Model extends
AttachedModel,
BaseModel<Social
Activity>

SocialActivi
tyWrapper

SocialActivity
Impl extends
SocialActivity
ModelImpl

SocialActivity
Interpreter

SocialActivity
FeedEntry

none BaseSocialActivity
Interpreter

SocialRequest
Interpreter

SocialActivity
FeedEntry

none BaseSocialRequest
Interpreter

SocialRelation SocialRelation
Model extends
BaseModel<Social
Relation>

SocialRelat
ionWrapper

SocialRelationImpl
extends
SocialRelation
ModelImpl

SocialRequest SocialRequest
Model extends
AttachedModel,
BaseModel<Social
Request>

SocialRequest
Wrapper

SocialRequestImpl
extends
SocialRequest
ModelImpl

Chapter 7

[333]

Services
The following table shows the SocialActivity services, their utilities, wrapper, and
main methods implementation:

Service Interface Utility Wrapper Main methods
SocialActivity
InterpreterLocal
Service

SocialActivity
InterpreterLocal
ServiceUtil

SocialActivity
InterpreterLocal
ServiceWrapper

add*, delete*,
get*, interpret,
set*

SocialActivity
LocalService

SocialActivity
LocalServiceUtil

SocialActivity
LocalService
Wrapper

add*, create*,
delete*,
dynamicQuery,
get*, set*,
update*

SocialRelation
LocalService

SocialRelation
LocalServiceUtil

SocialRelation
LocalService
Wrapper

add*, create*,
delete*,
dynamicQuery,
get*, has*, is*,
set*, update*

SocialRequest
InterpreterLocal
Service

SocialRequest
InterpreterLocal
ServiceUtil

SocialRequest
InterpreterLocal
ServiceWrapper

add*, delete*,
get*, interpret,
process*, set*

SocialRequest
LocalService

SocialRequest
LocalServiceUtil

SocialRequest
LocalService
Wrapper

add*, create*,
delete*,
dynamicQuery,
get*, set*,
update*

UI taglib liferay-ui:social-activities
Social activities could be displayed through the tag liferay-ui:social-
activities as follows. Refer to the book, Liferay User Interface Development, for more
details on UI taglibs:

<liferay-ui:social-activities
 activities="<%= activities %>"
 // see details in UI taglibs
/>

As shown in the previous code, the tag liferay-ui:social-activities can
have optional attributes such as activities, className, classPK, feedEnabled,
feedLink, feelLinkMessage, and feedTitle.

Collaborative and Social API

[334]

Adding social activity tracking
How do we add social activity tracking on a portlet? Let's use a Knowledge Base
article as an example to show the steps to add social activity tracking to any portlets:

1. First, add the social activity reference in the plugin service XML service.
xml as follows:
<reference package-path="com.liferay.portlet.social"
entity="SocialActivity" />

2. Second, create the activity interpreter com.liferay.knowledgebase.
admin.social.AdminActivityInterpreter that extends
BaseSocialActivityInterpreter. The activity interpreter class needs a
getClassNames() method that returns an array of class names. It includes
a doInterpret(SocialActivity, ThemeDisplay) method that returns a
SocialActivityFeedEntry. It also parses the SocialActivity argument to
create the SocialActivityFeedEntry. In particular, it covers a link, a title,
and a body as follows:
// see details in AdminActivityInterpreter.java
return new SocialActivityFeedEntry(link, title, body);

3. Third, add the following lines in liferay-portlet.xml to register social
activity in a portlet:

<social-activity-interpreter-class>
com.liferay.knowledgebase.admin.social.AdminActivityInterpreter
</social-activity-interpreter-class>

As you have noticed, the portal provides the tag social-activity-interpreter-
class value (it must be a class that implements com.liferay.portlet.social.
model.SocialActivityInterpreter), and it is called to interpret activities into
friendly messages that are easily understandable by a human being. The tag
social-activity-interpreter-class adds social activity tracking to a portlet.

Requests and activities
The portlet Requests allows us to register social friendship requests for either
confirmation or rejection, referring to the JSP file /html/portlet/requests/view.
jsp, while the portlet Activities exposes social activities, referring to the JSP file
/html/portlet/activities/view.jsp. The following table shows a summary of
these portlets:

Chapter 7

[335]

Portlet Related service Related service
utility

Related
model

UI taglib

Activities GroupLocal
Service

SocialActivity
LocalService

GroupLocal
Service
Util

SocialActivity
LocalService
Util

Group

Social
Activity

<liferay-
ui:social-
activities />

Requests SocialRequest
InterpreterLocal
Service

SocialRequest
InterpreterLocal
Service

SocialRequest
Interpreter
Local
ServiceUtil

SocialRequest
Interpreter
LocalService
Util

Social
Request

Social
Request
FeedEntry

<liferay-
ui:user-
display />

<liferay-
ui:icon-list
/>

<liferay-
ui:icon />

<liferay-
ui:message />

Social bookmarks
Social bookmarking links (such as Twitter, Facebook, and Google + 1) can be added
in any page via the tags liferay-ui:social-bookmarks and liferay-ui:social-
bookmark. The details are specified in the JSP files twitter.jsp, facebook.jsp, and
plusone.jsp , respectively, at the folder /html/taglib/ui/social_bookmark. The
following is the sample code to add the social bookmarks into any pages:

<liferay-ui:social-bookmarks
 displayStyle="<%= socialBookmarksDisplayStyle %>"
 target="_blank"
 title="<%= entry.getTitle() %>"
 url="<%= bookmarkURL.toString() %>"
/>

The previous code shows that the tag liferay-ui:social-bookmarks requires the
attributes, title, and url, and optional attributes such as target and types. By the
way, you can use the tag liferay-ui:social-bookmarks to add social bookmarks
in your pages, too. The tag liferay-ui:social-bookmark can have the required
attributes, such as title, type, and url, and the optional attribute target.

Collaborative and Social API

[336]

Social equity
The portal provides a social equity framework to build a dynamic social capital
system by measuring the contribution and participation of a user, and the
information value of an asset. Social equity can be used to measure the contribution
and participation of a user and the information value of an asset. The activities that
award equities include adding contributions, rating, commenting, viewing content,
searching, and tagging. The social equity will cover the following aspects:

•	 Logically, the social equity framework is assets-agnostic.
•	 It operates on assets directly and uses action keys defined in the

resource-actions XML.
•	 Thus liferay-social activity service calls need to be configured for the

respective services such as Web Content, Knowledge Base, and so on.

Models
As mentioned earlier, social equity got specified via the entities
SocialActivityAchievement, SocialActivityCounter, SocialActivityLimit,
and SocialActivitySetting. The following table displays these entities, their
extension, wrapper, and implementation:

Model Interface Extension Wrapper Implementation
SocialActivity
Achievement

SocialActivity
AchievementModel
extends
BaseModel<Social
Activity
Achievement>

SocialActivity
Achievement
Wrapper

SocialActivity
AchievementImpl
extends
SocialActivity
AchievementModel
Impl

SocialActivity
Counter

SocialActivity
CounterModel
extends BaseModel
<SocialActivityCo
unter>

SocialActivity
CounterWrapper

SocialActivity
CounterImpl
extends
SocialActivity
CounterModelImpl

SocialActivity
Limit

SocialActivity
LimitModel extends
BaseModel<Social
ActivityLimit>

SocialActivity
LimitWrapper

SocialActivity
LimitImpl extends
SocialActivity
LimitModelImpl

SocialActivity
Setting

SocialActivity
SettingModel
extends BaseModel
<SocialActivitySe
tting>

SocialActivity
SettingWrapper

SocialActivity
SettingImpl
extends
SocialActivity
SettingModelImpl

Chapter 7

[337]

Services
The following table displays social equity services, their utility, wrapper, and main
methods implementation:

Service interface Utility Wrapper Main methods
SocialActivity
CounterLocal
Service

SocialActivity
CounterLocal
ServiceUtil

SocialActivity
CounterLocal
ServiceWrapper

add*, create*,
delete*,
dynamicQuery,
get*, is*,
update*

SocialActivity
LimitLocal
Service

SocialActivity
LimitLocal
ServiceUtil

SocialActivity
LimitLocal
ServiceWrapper

add*, create*,
delete*,
dynamicQuery,
get*, is*,
update*

SocialActivity
SettingLocal
Service

SocialActivity
SettingLocal
ServiceUtil

SocialActivity
SettingLocal
ServiceWrapper

add*, create*,
delete*,
dynamicQuery,
get*, set*,
update*

SocialActivity
Achievement
LocalService

SocialActivity
AchievementLocal
ServiceUtil

SocialActivity
Achievement
LocalService
Wrapper

add*, clear*,
create*, delete*,
dynamicQuery,
get*, set*,
update*

Adding social equity services on custom assets
The portal specifies the social equity definition in a liferay-social DTD
file, referring to svn://svn.liferay.com/repos/public/portal/trunk/
definitions/liferay-social_6_1_0.dtd as follows:

<!ELEMENT liferay-social (activity*)>
<!ELEMENT activity (model-name, activity-type, language-key?, log-
activity?, processor-class?, contribution-value?, contribution-limit?,
contribution-limit-period?, participation-value?, participation-
limit?, participation-limit-period?, counter*, achievement*)>

As shown in the previous element type declarations, the element liferay-
social can have one or more activity. The element activity can have only
one model-name and activity-type, no more than one language-key, log-
activity, processor-class, contribution-value, contribution-limit,
contribution-limit-period, participation-value, participation-limit,
and participation-limit-period, and one or many counter and achievement.

Collaborative and Social API

[338]

The social equity of the portal core assets was specified in a liferay-social.xml
file, referring to svn://svn.liferay.com/repos/public/portal/trunk/portal-
web/docroot/WEB-INF/liferay-social.xml. The social activity model names
include Blogs entry, Message Boards message, and Wiki page.

In general, you can apply social equity via liferay-social.xml on custom assets
like a Knowledge Base article in plugins. For example, the activity type TYPE_VIEW
for the model named Knowledge Base article can be specified in the XML file
/docroot/WEB-INF/liferay-social.xml as follows:

<liferay-social>
 <!-- see details in the liferay-social.xml -->
 <activity>
 <model-name>com.liferay.knowledgebase.model.KBArticle</model-name>
 <activity-type>${com.liferay.portlet.social.model.
SocialActivityConstants.TYPE_VIEW}</activity-type>
 <language-key>VIEW</language-key>
 <log-activity>false</log-activity>
 <participation-value>1</participation-value>
 </activity>
</liferay-social>

Social activity statistics and top users
There are a few portlets related to social equity: SocialActivity, user statistics,
and group statistics. The following table shows a summary of these portlets, related
services, utilities, models, and UI taglib:

Portlet Related service Related service
utility

Related model UI taglib

Social
activity

SocialActivity
CounterLocal
Service,

SocialActivity

SocialConfi
gurationUtil

SocialActivity
Definition

<aui:script
use="liferay-
social-
activity-
admin">

User
statistics

SocialActivity
CounterLocal
Service

SocialActivity
CounterLocal
ServiceUtil

SocialActivity
Counter

<liferay-
ui:user-
display />

Group
statistics

SocialActivity
CounterLocal
Service

SocialActivity
CounterLocal
ServiceUtil,
AssetTagLocal
ServiceUtil

SocialActivity
Counter

<liferay-
ui:panel>

Chapter 7

[339]

OpenSocial
OpenSocial is a set of common APIs for web-based social networking applications.
Based on HTML and JavaScript, OpenSocial includes four APIs for social software
applications to access data and core functions on participating social networks. Each
API addresses a different aspect; there is one for the general JavaScript API, one for
people and friends, one for activities, and one for persistence.

The portal features an OpenSocial container based on Shindig. OpenSocial Gadgets
present as first-class citizens, just like portlets. Apache Shindig is an OpenSocial
container and helps you to start hosting OpenSocial apps quickly by providing the
code to render gadgets, proxy requests, and handle REST and RPC requests. For
more information, refer to http://shindig.apache.org/.

Gadget models
As mentioned earlier, in the OpenSocial plugins, it defines entities such as Gadget,
OAuthConsumer, and OAuthToken. As you can see, OAuth (Open Authorization)
is supported by default in the portal. The following table shows these entities, their
extension, wrapper, and implementation:

Model Interface Extension Wrapper/Clp Implementation
Gadget GadgetModel extends

BaseModel<Gadget>
GadgetWrapper

GadgetClp

GadgetImpl
extends
GadgetModel
Impl

OAuthConsumer OAuthConsumerModel
extends
BaseModel<OAuth
Consumer>

OAuthConsumer
Wrapper

OAuthConsumer
Clp

OAuthConsumer
ModelImpl
extends
BaseModelImpl
<OAuthConsumer>

OAuthToken OAuthTokenModel
extends AuditedModel,
BaseModel<OAuthToken>

OAuthToken
Wrapper

OAuthToken
Wrapper

OAuthTokenModel
Impl extends
BaseModelImpl
<OAuthToken>

Collaborative and Social API

[340]

Gadget services
As shown in the following table, gadgets services got displayed with the service
interface, its utilities, wrappers, and main methods implementation:

Service interface Utility Wrapper Main methods
Gadget(Local)
Service

Gadget(Local)
ServiceUtil

Gadget(Local)
ServiceWrapper

addGadget,
deleteGadget

OAuthConsumer
LocalService

OAuthConsumer
LocalServiceUtil

OAuthConsumer
LocalService
Wrapper

add*, create*,
dynamicQuery,
fetch*, get*, set*,
update*

OAuthToken
Local

OAuthTokenLocal
Util

OAuthToken
LocalWrapper

add*, create*,
dynamicQuery,
fetch*, get*, set*,
update*

Shindig services extension
Based on the Shindig, the plugin OpenSocial features an OpenSocial container. The
following table shows Shindig services extensions:

Name Type Shindig Extension Main
methods

SerializerUtil;
ShindigUtil

Utility none copy*,
get*, is*,
has*,
update*

ShindigFilter Servlet InjectedFilter Destroy,
doFilter

LiferayJsonContainer
Config

Configuration JsonContainerConfig get*

LiferayModule Module AbstractModule configure

LiferayOAuthModule;
LiferayOAuthStore;
LiferayOAuthStore
Provider

OAuth AbstractModule;
OAuthStore;
Provider<OAuthStore>

configure,
set*, get*,
remove*

LiferayActivityService;
LiferayAlbumService;
LiferayAppDataService;
LiferayMediaItemService;
LiferayPersonService

Service ActivityService;
AlbumService;
AppDataService;
MediaItemService;
PersonService

create*,
delete*,
get*, do*,
update*

Chapter 7

[341]

Gadget portlets
The plugin OpenSocial defines a set of portlets, namely, adhoc_gadget, admin,
editor, and gadget. The following table shows a summary of these portlets:

Portlet Related service Related service utility Related
model

UI taglib

adhoc_
gadget

none none Gadget <liferay-
ui:icon />

admin GadgetLocalService;
OAuthConsumerLocal
Service

GadgetLocalService
Util

OAuthConsumerLocal
ServiceUtil

Gadget

OAuth
Consumer

<liferay-
ui:header
/>
<liferay-
ui:search-
container>

editor Liferay.OpenSocial.
Editor; Liferay.
Util.getOpener().
Liferay.fire

ShindigUtil Gadget none

gadget Liferay.
OpenSocial.Gadget;
ExpandoValueService

ShindigUtil;
ExpandoValueService
Util

Gadget

JSONObject

none

Summary
In this chapter, we first introduced how to use collaborative tools—wiki, blogs,
calendar event, message boards, polls, bookmarks. Then we addressed how to
manage more collaborative assets—both core assets and custom assets, and how to
collaborate assets—both core assets and custom assets. Afterwards, we introduced
how to use social networking, social coding, and social office. Finally, we addressed
social activity, social equity capabilities, and the OpenSocial API.

In Chapter 8, Staging, Scheduling, Publishing, and Cache Clustering, we're going to
introduce staging, scheduling, publishing, caching, and clustering.

Staging, Scheduling,
Publishing, and Cache

Clustering
Websites or WAP sites often need the capability to assemble, review, and approve
new versions before going into production. Scheduling is the process of deciding
how to commit resources between various possible tasks. Ehcache can scale from
an in-process cache on one or more nodes through to a mixed in-process capable
of terabyte-sized caches. Hibernate offers both a first-level cache and a second-
level cache. In general, the portal provides the capabilities for staging, scheduling,
publishing locally or remotely, caching, and clustering.

This chapter will first introduce the pattern Portal-Group-Page-Content. Then we
will introduce LAR export and import mechanisms. Based on this, we will address
the local staging and publishing processes. Then, we will discuss remote staging and
publishing, either by scheduling or non-scheduling event. Finally, we will address
caching and clustering mechanisms.

By the end of this chapter. you will have learned:

•	 The pattern: Portal-Group-Page-Content (PGPC)
•	 LAR exporting and importing
•	 Local staging and publishing
•	 Remote staging and publishing
•	 Scheduling and messaging
•	 Caching and clustering

Staging, Scheduling, Publishing, and Cache Clustering

[344]

The pattern: Portal-Group-Page-Content
According to the pattern Portal-Group-Page-Content, we have addressed a lot about
the content in the previous chapters. This section will focus on the other concepts
that is, portal, group, and page. As you can see, the portal is implemented by portal
instances. A portal can manage multiple portal instances in one installation. Of
course, you can install multiple portal instances in multiple installations, separately.

As shown in the following diagram, each portal instance, represented as an entity
called Company, can have many groups. Each group, represented as an entity called
Group, is implemented as an organization, a site, a user group, a page, or a user.

More specifically, organizations are presented as an entity called Organization.
Each organization can have one and only one parent organization associated, and
vice versa. It may have many associated child organizations. An organization which
doesn't have a child organization is called Location; otherwise, it is called a Regular
Organization. Similarly, each user group, represented as an entity UserGroup,
can have one and only one parent user group associated. That is, a user group
can have many child user groups associated with it, since it has a column called
parentUserGroupId.

Moreover, each user presented as an entity called User, has a group associated with
it—that is, there is one and only one user in that group. In a group, a set of users
can be grouped into a team, presented as an entity Team. The notion of a team is
somewhat similar to a role, but a role is a portal-wide entry while a team is restricted
to a particular group-like site or organization.

Organization UserGroup User Team LayoutSetBranch

Layout LayoutSetGroup LayoutSetPrototypeCompany * * *
* *

c c c c c

c c c c c

*
*

*
*

You may be interested in the entire portal service's specification. Eventually,
you could find service definition details in the portal core XML file /portal/
service.xml.

Chapter 8

[345]

Portal
The interface Portal defines the portal with constants and a set of functions (such as
getCDHost, getBaseModel, getCompany, getPortalURL, getCurrentURL, getUser,
and so on), implemented by the class PortalImpl. The constants cover a friendly
URL separator, path image, path main, path portal layout, and portal realm.

The default standard portlet XML filename is defined as portlet.xml, while the
default custom XML filename is defined as portlet-custom.xml. This is the reason
why you will find portlet-custom.xml only at the folder $PORTAL_SRC_HOME/
portal-web/docroot/WEB-INF, while portlet.xml gets in use as the default
portlet definitions when being used as plugins.

Base models
The portal defines the base model interface, such as BaseModel<T>, AuditedModel,
AttachedModel, ClassedModel, ResourcedModel, WorkflowedModel,
PersistedModel, and GroupedModel. This interface BaseModel should never be
used directly. By the way, the base model implementation BaseModelImpl<T>
is used for all model classes as shown in the following diagram, using the entity
KBArticle as an example. According to the same rule, this class should never be
used directly. Instead, you can modify the implementation class KBArticleImpl.

KBArticleImpl KBArticleModelImpl

“KBArticle” is a
specific entity
name. It can
be any name
of an entity. PersistedModel KBArticle KBArticleModel

GroupedModel
WorkflowedModel

ResourcedModel

KBArticleBaseImplc cextends extends extends

extendsextends

extends

extends

extends

implements implements implements

BaseModel

BaseModelImplc c

Staging, Scheduling, Publishing, and Cache Clustering

[346]

The following table shows an overview of these base models:

Interface Extension Listener/
Implementation

Main functions

BaseModel<T> ClassedModel,
Cloneable,
Comparable<T>,
Serializable

BaseModel
Listener<T
extends
BaseModel<T>>

BaseModel
Impl<T>

isNew,
isCacheModel,is
EscapedModel,
getPrimaryKeyObj,
getExpandoBridge

AttachedModel none none getClassName,
getClassNameId,
getClassPK

AuditedModel none none getCompanyId,
getCreeteDate,
getModifiedDate,
getUserName,
getUserUuid

ClassedModel none none getExpandoBridge,
getModelClass,
getModelClassName,
getPrimaryKeyObj

GroupedModel none none getGroupId

ResourcedModel none none getResourcePrimKey,
isResourceMain

WorkflowedModel none none getStatus,
getStatusByUserId,
getStatusByUserName,
getStatusDate,
isApproved, isDraft,
isExpired, isPending

PersistedModel none none persist

As you can see, the portal adds getModelClassName and getModelClass to
BaseModel by extending ClassedModel. Since all the classes have that data, just
expose it as a friendly method. The portal also adds the AuditedModel interface.
Most of the portal base models have companyId, createDate/modifiedDate,
userId/userName. If a model has those fields, then it will also implement the
AuditedModel interface. Furthermore, if a base model is an AuditedModel, and also
has a groupId, then it also extends a GroupedModel. This means that its data can be
grouped into sites/organizations.

Chapter 8

[347]

In brief, the portal abstracts out the portal core services to the interfaces, so that they
can be called from other web applications; while implementation is still in the portal
there aren't any additional library dependencies.

Model listener
A model listener is a special call-back class, including core portal model or any
model defined in the plugins. It is similar to the term hibernate listener, allowing
writing reaction on any action with the object. In fact, the portal defines the model
listener interface named com.liferay.portal.model.ModelListener with the
following methods:

public void onAfterAddAssociation();
// see details in ModelListener.java
public void onBeforeUpdate(T model);

As you can see, these methods cover the On-After and On-Before methods, such as
adding association, creating a model, removing a model, removing association, and
updating a model.

The interface ModelListener is implemented by the abstract class
BaseModelListener<T extends BaseModel<T>>. Any model listener, either from
portal core or from plugins, must extend the class BaseModelListener<T extends
BaseModel<T>> directly, as shown in the following diagram, using entities named
User and JournalArticle as examples:

c

UserListener

JournalArticleListener

BaseModelListener
extends

implements
ModelListener

c

Entity names “User” and
“JournalArticle” are used as
examples

c

extends

Staging, Scheduling, Publishing, and Cache Clustering

[348]

The following table shows these model-listener implementations.

Model listener Extension Model Overridden methods
ContactListener BaseModel

Listener
<Contact>

Contact onAfterCreate(Contact
obj)

LayoutListener BaseModel
Listener
<Layout>

Layout onAfterCreate(Layout
obj), onAfterRemove(Layout
obj),
onBeforeRemove(Layout
obj), onAfterUpdate(Layout
obj)

LayoutSetListener BaseModel
Listener
<LayoutSet>

LayoutSet onAfterRemove(LayoutSet
obj),
onAfterUpdate(LayoutSet
obj)

PortletPreferences
Listener

BaseModel
Listener
<Portlet
Preferences>

Portlet
Preferences

onAfterRemove(PortletPref
erences obj), onAfterUpdat
e(PortletPreferences obj)

UserGroupListener BaseModel
Listener
<UserGroup>

UserGroup onAfterAddAssociation
(Object o1, String o2,
Object o3)

UserListener BaseModel
Listener
<User>

User onAfterAddAssociation
(Object o1, String
o2, Object o3),
onAfterCreate(User obj)

JournalArticle
Listener

BaseModel
Listener
<Journal
Article>

Journal
Article

onAfterRemove
(JournalArticle obj),
onAfterUpdate
(JournalArticle obj)

JournalTemplate
Listener

BaseModel
Listener
<Journal
Template>

Journal
Template

onAfterRemove
(JournalTemplate obj),
onAfterUpdate
(JournalTemplate obj)

By the way, ModelListener does have the power to stop the current transaction,
since the service class's transaction has been configured to rollback whenever the
SystemException and PortalException exceptions occur. The portal implemented
the same as well. It added an exception thrown from the ModelListener, configured
in the Spring configuration to signal a rollback.

Chapter 8

[349]

Portal instance
The portal instances allow the administrators to run more than one portal instance
on a single server or a single installation, called multitenancy. The data for each
portal instance is kept separately from every other portal instance, either in the same
database or in a different database called sharding. Refer to the book Liferay Portal 6
Enterprise Intranets for the sharding configuration.

The portal instances are defined in the class PortalInstances. The class defines a
set of company IDs, web IDs, and virtual hosts.

Each portal instance is persisted within the following entities: Company, Account,
VirtualHost, and Shard.

The following table shows the service interfaces of the entities: Company, Account,
VirtualHost, and Shard, their utility classes, wrapper classes, and implementation.

Interface Utility Wrapper Main methods JSP
Company
(Local)
Service

CompanyLocal
ServiceUtil

Company(Local)
ServiceWrapper

add*,
deleteLogo,
get*, remove*,
update*

/portlet/
admin/
Instances.
jspf

Account
(Local)
ServiceI

Account(Local)
ServiceIUtil

Account(Local)
ServiceIWrapper

add*, create*,
delete*,
dynamicQuery,
get*, set*,
update*

none

Virtual
HostLocal
Service

VirtualHost
LocalService
Util

VirtualHost
LocalService
Wrapper

add*, create*,
delete*,
dynamicQuery,
fetch*, get*,
set*, update*

none

Shard
Local
Service

ShardLocal
ServiceUtil

ShardLocal
ServiceWrapper

add*, create*,
delete*,
dynamicQuery,
get*, set*,
update*

none

Staging, Scheduling, Publishing, and Cache Clustering

[350]

Group
As mentioned earlier, a portal can have many portal instances based on one
installation. And each portal instance can have many groups: sites, organizations,
user groups, teams, and users. In fact, the entity Group is specified with a set of
columns in the portal core service XML. The following code block shows the main
columns, and the pattern classNameId-classPK is included, obviously.

<column name="classNameId" type="long" />
<column name="classPK" type="long" />
<column name="parentGroupId" type="long" />
<column name="liveGroupId" type="long" />
<column name="name" type="String" />
<column name="type" type="int" />

The column classNameId points to any class name like Group, Organization, User
Group, Team, Layout, Layout Prototype, Layout Set Prototype, and User.

A site can have a type called site type, such as Open, Restricted, Private, or System.
They are explained as follows. The default type value is Open.

•	 Open: Allows the users to join and leave a site whenever they want to.
•	 Restricted: Requires a site administrator or owner to add users to the site or

to remove users from the site. Users cannot join the site themselves, instead
they can request membership. Of course, users can leave the site whenever
they want to.

•	 Private: The process of adding users doesn't show up at all. Neither
do users have the ability to join the site, nor do they have the ability
to request membership.

•	 System: For system usage only, for example, Global group, Control Panel
group, User Personal Site group, User group, Scoped Page group
(defined by the tag <scopeable>), Layout Prototype group, and Layout
Set Prototype group.

Eventually, site type information is defined in the class GroupConstants. The
following code snippet illustrates this:

// see details in GroupConstants.java
public static final int TYPE_SITE_OPEN = 1;
public static final String USER_PERSONAL_SITE_FRIENDLY_URL =
 "/personal_site";

Chapter 8

[351]

As you can see, this class defines four site types—Open, Private, Restricted, and
System. Besides, it also defines a name for user personal site, Control Panel, and
guest. Obviously, the default live group ID and default parent group ID get defined
as well.

Similarly, an organization could be defined as different types, such as Location
or Regular Organization. This type of information gets defined in the class
OrganizationConstants.

Services
Once you have a list of models handy, you could leverage these entity's services
and apply these services on your plugins. The following table shows the services'
interface, utilities, wrappers, and implementation.

Interface Utility Wrapper Main methods
Group(Local)
Service

Group(Local)
ServiceUtil

Group(Local)
ServiceWrapper

add*, delete*, get*,
has*, search*, set*,
unset*, update*

Organization
(Local)
Service

Organization
(Local)
ServiceUtil

Organization(Local)
ServiceWrapper

add*, delete*,
get*, set*, unset*,
update*

UserGroup
(Local)
Service

UserGroup
(Local)
ServiceUtil

UserGroup(Local)
ServiceWrapper

add*, delete*, get*,
unset*, update*

User(Local)
Service

User(Local)
ServiceUtil

User(Local)
ServiceWrapper

add*, delete*, get*,
has*, set*, unset*,
update*

Team(Local)
Service

Team(Local)
ServiceUtil

Team(Local)
ServiceWrapper

add*, delete*, get*,
has*, update*

System groups
There are a few system groups such as a company group called Global group,
Control Panel group, Guest Site group, Scoped Page group, and User Personal Site
group. When the server starts, the portal checks to ensure if all the system groups
exist. Any missing system group will be created by the portal. The following code
snippet illustrates this:

// see details in CompanyLocalServiceImpl.java
roleLocalService.checkSystemRoles(companyId);
groupLocalService.checkSystemGroups(companyId);
groupLocalService.checkCompanyGroup(companyId);
passwordPolicyLocalService.checkDefaultPasswordPolicy(companyId);

Staging, Scheduling, Publishing, and Cache Clustering

[352]

The Global group (called Global Scope) is a place for the data that is common to
all organizations, sites, user groups, and users of the portal instance, that is, same
company ID. The Global group doesn't have associated pages and can only be
accessed from the Control Panel. The content in the Global group can be shared across
organizations and sites. Also, the scope of the portlet (called Scoped group) can be
the default group of the current page or the Global group or the Scoped selected-page
group. The following code snippet shows how to create the Global group:

// see details in GroupLocalServiceImpl.java
public void checkCompanyGroup(long companyId) {
 groupLocalService.addGroup(defaultUserId,
 Company.class.getName(), companyId, null,
 null, 0, null, false, true, null);
}

The following table shows a summary of information of these groups (0 - system,
1 - open, and 3 - private).

Group
name

Type Class name Class PK Name Site Parent
Group ID

Friendly
URL

Company
group—
Global

0 Company companyId company
Id

No 0 /null

Control
Panel

3 Group groupId Control
Panel

Yes 0 /control_
panel

Guest 1 Group groupId Guest Yes 0 /guest

User
Personal
Site

3 User
Personal
Site

default
UserId

User
Personal
Site

No 0 /personal_
site

User 0 User User Id User Id No 0 /${user.
id}

Scoped
page

0 Layout Layout Id Layout Id No ${layout.
group.id}

/${layout.
group.id}

Layout
Prototype

0 Layout
Prototype

Layout
Prototype
Id

Layout
Prototype
Id

No 0 /template-
${Layout
Prototype.
Id}

LayoutSet
Prototype

0 LayoutSet
Prototype

LayoutSet
Prototype
Id

LayoutSet
Prototype
Id

No 0 /template-
${Layout
SetProto
type.Id}

Chapter 8

[353]

As you can see, content can be shared by the shared group and the Global group.
That is, content in the Global group would be visible to the other groups from the
same portal instance. Besides this Global group, content could be shared based on
shared-by-permission, shared-by-organization-hierarchy, shared-by-membership,
and shared-by-subscription. These shared mechanisms could be implemented in the
group level of the same portal instance.

User
Loosely speaking, a user is a person, organization, or other entity that employs the
services provided by a telecommunication system, or by an information-processing
system, for the transfer of information. Or, a user is a person who uses a product. The
portal defines a user as a person who can take any action limited by role-permissions.

When adding a new user or updating an existing user, the portal would take the
following steps:

•	 Create a user ID by calling counterLocalService.increment()
•	 Update the user by calling userPersistence.update
•	 Add the user resource by calling resourceLocalService.addResources()
•	 Create the user contact ID by calling contactPersistence.create(user.

getContactId())

•	 Update the user contact by calling contactPersistence.update()
•	 Add the user's group information by calling groupLocalService.

addGroup()

•	 Add the user's user group by calling groupLocalService.addUserGroups()
•	 Add default groups by calling groupLocalService.

addUserGroups(userId, groupIds)

•	 Update the asset by calling user.setExpandoBridgeAttributes(serviceC
ontext)

•	 Set the custom fields by calling user.setExpandoBridgeAttributes(servi
ceContext)

•	 Index the user object by calling indexer.reindex(user)
•	 Set up the workflow by calling WorkflowHandlerRegistryUtil.

startWorkflowInstance

Of course, you can check all the methods and details in the class
UserLocalServiceImpl. The entities include Contact, UserIdMapper,
UserPersonalSite, and UserNotificationEvent.

Staging, Scheduling, Publishing, and Cache Clustering

[354]

The interface UserPersonalSite, as a place holder, defines fine-grained control
of a user's permission in the user's personal site. Based on the preceding entity's
models, the portal generates a set of services, which you can refer to in your
plugins development as well.

Layout set
Similar to a site, each group will have two different page layout sets: public pages
and private pages. These page layout sets are presented by the entity LayoutSet,
including the logo, theme, CSS, page count, settings—for example, site public pages
or private pages, explained as follows—virtual host settings, JavaScript, and so on.

•	 Private page: A private page is a page on a site that can only be accessed by
users who've logged in and are part of the site. If a user isn't logged in (that
is, the user is a guest) or if a user doesn't belong to your site, then the user
can't access the private pages.

•	 Public page: A public page is a page on a site that can be accessed by
guests. As long as the guest has the appropriate URL, he/she can access
any public page.

A layout set represents a group of layout pages, and thus, a layout set can be thought
of as a website. Since each user has a group associated with them, this allows each
individual user to maintain his/her own custom sites—either public or private sites.
The entity LayoutSet presents the group's public pages and private pages.

The entity LayoutSetPrototype presents layout set templates, that is, site template.
Here, a site template is a hierarchical set of pages and content, used as a template
for creating new sites. For example, you can use site templates to create users,
organizations, and sites, as long as they don't have any existing public page or
private page. The creation form would shows the selected boxes for using a site
template for public pages, private pages, or both. When a site template is applied, a
copy of its pages and its contents is created. In fact, there is a non-existing link to the
original template, so that any change to the site template will not have any side effect
on pages that originated from it.

The entity LayoutSetBranch presents the layout set brand (versioning)
information. In general, a brand can be defined as an identity of a specific product,
service, or business. The entities include LayoutSet, LayoutSetPrototype, and
LayoutSetBranch.

Chapter 8

[355]

Layout
A layout (also called single web page) is an instance of a single page, composed of
one or many portlets arranged inside various columns. Layouts are stored in the
Layout table. As shown in the following diagram, each group can have two sites:
public site and private site. Each site is made up of many page layouts, presented by
the entity Layout. Each layout is a member of the layout set. The theme and color
scheme assigned to a layout can either be set individually for the layout or inherited
from its layout set.

The portal adds the ability to create pages for users based on a page template. A page
template is a page created to be included in other pages. Templates usually contain
repetitive material that might need to show up on any number of pages. The entity
LayoutPrototype presents layout templates, that is, the page template.

c

Group

PortletPreference

Layout

Portlet PortletItem

LayoutTemplate

LayoutRevision

LayoutPrototypec c c c

c c c

*

*

*

*

**

*

*

*

The entity LayoutRevision presents the layout reversion information. Reversion or
reverting is the abandonment of one or more recent changes in favor of a return to a
previous version of the material at hand. The portal adds revision control capability
to the layouts—to manage the changes of the page layouts. The entities include
Layout, LayoutRevision, and LayoutPrototype.

Layout template
Layout template is the way of choosing how the portlets will be arranged on a page.
The portal defines a layout template interface called LayoutTemplate, extending
Comparable<LayoutTemplate>, Plugin, and Serializable.

The layout templates can either be standard (for example, exclusive, max) or custom
(for example,freeform, 1_column), defined in the class LayoutTemplateConstants.

Staging, Scheduling, Publishing, and Cache Clustering

[356]

Portlet
In the previous chapters, we have discussed the terms plugin and portlet. In
this section, we're going to provide an overview of the plugin- and portlet-
related entities. The interfaces or classes cover PluginSettings, Plugin,
Portlet, PortletItem, PortletPreferences, PortletCategory, PortletApp,
PortletFilter, PortletInfo, and PortletURLListener.

Especially, the content of the portlet is scopeable, that is, you are able to change
the scope from the current group to the Global group, or a Page group. Logically,
the content of a portlet can be scoped into any group of current portal instance. To
enable the scope, you can add the following line to the plugin's liferay-portlet.
xml file.

<scopeable>true</scopeable>

The DTD file liferay-portlet-app_6_1_0.dtd has specified the tag scopeable. If
scopeable is set to true, an administrator will be able to configure the scope of the
data of the portlet to the current site (default), global group, the current layout, or the
scope of any other layout of the site that already exists. Portlets that want to support
this, must be programmed to obtain the proper scope group ID according to the
configuration, and scope their data accordingly. The default value is false.

To summarize, groups are the most used in the portal as a resource container for
permission and content scoping purposes. For instance, a site is a group, meaning
that it can contain layouts, web content, wiki entries, and so on. However, a single
layout can also be a group containing its own unique set of resources. An example of
this would be a site that has several distinct wiki on different layouts. Each of these
layouts will have its own group, and all of the nodes in the wiki for a certain layout
would be associated with that layout's group. This allows the users to be given
different permissions on each of the wiki entries, even though they are all within the
same site. In addition to sites and layouts, users and organizations are also groups.

Groups also have a second, partially conflicting purpose in the portal. For legacy
reasons, groups are also the model used to represent sites (known as communities
before v6.1). Confusion may arise from the fact that a site group is both the resource
container and the site itself, whereas a layout or organization would have both a
primary model and an associated group.

LAR export and import
Data export and import generally revolve around the concept of storing data outside
the portal, either permanently or temporarily. The portal does this by handling the
creation and interpretation of the LAR files.

Chapter 8

[357]

LAR is short for Liferay Archive. A LAR is mainly used to export the existing page
data in a portal group for backup and to import data into another portal group. The
following diagram shows the processes of LAR export and import. More specifically,
the portal could export both portal core assets and custom assets associated with an
existing page or all pages of a given site as a LAR file. The portal could also import
from a LAR file, which contains both portal core assets and custom assets associated
with an existing page or all pages of a given site—into a page or site—respectively.

Note that LAR export and import should be used for backup only, and not for
upgrading, since the source (portal instance) and the target (portal instance) must
have exactly the same version.

LAR import and export

LAR import

LAR export

LAR file
portal core

assets

plugins-custom
assets

component

component

component

component
export

import

Portlet data handler
An interface called PortletDataHandler is a special class capable of exporting and
importing portlet-specific data to a Liferay Archive file (LAR) when a site's layouts
are exported or imported. The implementations of the PortletDataHandler class
are defined by placing a portlet-data-handler-class element in the portlet
section of the liferay-portlet.xml file.

Interface
The interface PortletDataHandler defines a set of methods as follows:

public String exportData(
 PortletPreferences obj3);
public PortletPreferences importData(PortletDataContext obj1,
 String obj2, PortletPreferences obj3, String obj4);
// see details in PortletDataHandler.java

Staging, Scheduling, Publishing, and Cache Clustering

[358]

The method deleteData deletes the data created by the portlet. It can optionally
return a modified version of preferences, if it contains reference to data that doesn't
exist anymore. The method exportData returns a string of data to be placed in the
portlet-data section of the LAR file. This data will be passed as the data parameter
of the method importData in String XML format.

The method getExportControls returns an array of the controls defined for
this data handler. These controls enable us to create fine-grained control over
the export behavior. The controls are rendered in the export UI. The method
getImportControls returns an array of the controls defined for this data handler.
These controls enable the developer to create fine-grained control over the import
behavior. The controls are rendered in the import UI.

The method importData handles any special processing of the data when the
portlet is imported into a new layout. It can optionally return a modified version
of preferences to be saved in the new portlet.

The method isAlwaysExportable returns true to allow the user to export
data for this portlet even though it may not belong to any pages. The method
isPublishToLiveByDefault returns whether the data exported by this handler
should be included by default when publishing to live. This should only be true for
data that is meant to be managed in a staging environment, such as CMS content, but
not for data meant to be input by users, such as wiki pages or message board posts.

Portlet data context
The interface PortletDataContext extends the interface Serializable. In addition,
it holds the context information that is used during exporting and importing portlets.
The interface PortletDataContext defines the constants root path groups, layouts,
and portlets.

It also defines a set of methods to add the following items: asset categories, asset
tags, class model, comments, locks, permissions, primary key, ratings entries,
and zip entry.

In addition, the interface PortletDataContext defines the methods
createServiceContext, formXML, getters, import*, setters, has*, and
is*. This interface is implemented by the class PortletDataContextImpl.

Chapter 8

[359]

Portlet data context listener
The interface PortletDataContextListener defines the following methods:

public void onAddZipEntry(String path);
public void onGetZipEntry(String path);

As shown in the preceding code, the listener has added the methods onAddZipEntry
and onGetZipEntry. That is, when adding the zip entry or getting the zip entry,
the portal will take some actions. By the way, this listener is implemented by the
class PortletDataContextListenerImpl. If required, you can override
this implementation.

Services
The portal provides a set of services for the portlet data handler, context, listener,
and strategies. The following table contains an overview of these services:

Service Interface Extension Implementation Description
PortletData
Handler

none BasePortletData
Handler

Portlet data
handler interface

PortletData
Context

Serializable PortletData
ContextImpl

Portlet data
context

PortletData
ContextListener

none PortletData
ContextListener
Impl

Portlet data
content listener

PortletData
HandlerBoolean

PortletData
HandlerControl

none Portlet data
handler Boolean

PortletData
HandlerChoice

PortletData
HandlerControl

none Portlet data
handler Choice

PortletData
HandlerKeys

none none Portlet data
handler keys

UserIdStrategy none AlwaysCurrent
UserIdStrategy

CurrentUser
IdStrategy

User ID strategy

The portlet data handler is implemented in three aspects: layout, permission, and
portlet. For layout, the portlet provides the implementation classes LayoutExporter
and LayoutImporter. Similarly, the implementation classes PermissionExporter
and PermissionImporter are available for the permission import and export, and
the implementation classes PortletExporter and PortletImporter for the portlet
import and export, as well.

Staging, Scheduling, Publishing, and Cache Clustering

[360]

You can find a summary of these implementations in the following table:

Class name Associated services Main functions Description
LayoutCache GroupLocalServiceUtil,

OrganizationLocalServiceUtil,
ResourceLocalServiceUtil,
RoleLocalServiceUtil,
TeamLocalServiceUtil,
UserGroupLocalServiceUtil

getEntity
GroupId,
getEntityMap,
getGroupRoles,
getGroupUsers,
getResource,
getRole,
getUser,
getUserRole

Layout
cache

Layout
Exporter

Layout
Importer

GroupLocalServiceUtil,
ImageLocalServiceUtil,
LayoutLocalServiceUtil,
LayoutSetLocalServiceUtil,
LayoutSetPrototypeLocal
ServiceUtil

export*

import*

Layout
exporter
and
importer

Permission
Exporter

Permission
Importer

GroupLocalServiceUtil,
PermissionLocalServiceUtil,
ResourcePermissionLocal
ServiceUtil,
RoleLocalServiceUtil

export*

import*

Permission
exporter
and
importer

Portlet
Exporter

Portlet
Importer

PortletItemLocalServiceUtil,
PortletLocalServiceUtil,
PortletPreferencesLocal
ServiceUtil

export*

import*

Portlet
exporter
and
importer

Portal core assets
The portal provides the ability to export and import LAR file for most of the portal
core assets, such as document library, DDM, web content, and so on. As shown in
the following table, export/import controls mainly cover assets, categories, tags,
comments, ratings, and so on.

Chapter 8

[361]

Implementation Interface/
Abstract class

Portlet Export controls Import controls

DLDisplayPortlet
DataHandlerImpl

DLPortletData
HandlerImpl

BasePortlet
DataHandler

PortletData
Handler

DL
Display

DL

_foldersAnd
Documents, _
shortcuts, _ranks, _
comments, _ratings,
_tags

_foldersAnd
Documents,
_shortcuts,
_ranks,
_comments, _
ratings, _tags

DDMPortletData
HandlerImpl

BasePortlet
DataHandler

PortletData
Handler

DDM _structures, _
templates

_structures,
_templates

JournalContent
PortletData
HandlerImpl

JournalPortlet
DataHandlerImpl

BasePortlet
DataHandler

PortletData
Handler

Journal
Creation
Strategy

Journal
Content

Journal

_articles, _
structures
TemplatesAndFeeds,
_embeddedAssets,
_images, _comments,
_ratings, _tags

_articles,
_structures
Templates
AndFeeds,
_images,
_comments, _
ratings, _tags

Portlet exporter and importer
As mentioned earlier, export/import controls mainly the cover assets, links,
categories, tags, comments, ratings, custom fields, and so on. As shown in the
following table, we're going to address the details of the portlet exporter and
portlet importer:

Items Model interface Zip entry path Root Description
ROOT none /manifest.xml "root" ROOT
Layouts LayoutExorter,

LayoutImporter,
Portlet,
Permission

/layout.xml "layout" Layout page
exporter and
importer

Portlets Portlet
Preferences,
PortletItems,
Permission

/portlet-
data.xml

/portlet.xml

"portlet" Portlet import
and export

Permissions Permission
Importer,
Permission
Exporter

/portlet-
data-
permissions.
xml

"portlet-data-
permissions"

Import/
export Users,
roles, and
permissions

Staging, Scheduling, Publishing, and Cache Clustering

[362]

Items Model interface Zip entry path Root Description
Asset
Categories

AssetEntry,
AssetCategory,
AssetVocabulary

/categories-
hierarchy.xml

"categories-
hierarchy"

Asset
categories,
vocabulary
import and
export

AssetLinks AssetEntry,
AssetLink

/links.xml "links" Asset links
import and
export

AssetTags AssetEntry,
AssetTag

/tags.xml "tags" Asset tags
import and
export

Comments MBMessage /comments.xml "comments" Comments
import and
export

Expando
Table

ExpandoTable,
ExpandoColumn

/expando-
tables.xml

"expando-
tables"

Custom
attributes
import and
export

Locks Lock /looks.xml "lock" Locks the
importer and
exporter

Ratings
Entries

RatingsEntry /ratings.xml "ratings" Ratings of the
importer and
exporter

By the way, the portal uses XStream (http://xstream.codehaus.org/) to serialize
the objects to XML and back again in the LAR export and import processes.

Setup archive
In general, the portlets can have an associated configuration page, configuring
parameters of the portlet to set up how it will be shown to all the other users. It is
generally used to allow each user to configure their own preferences and not affect
the other users.

Any portlet which has setup capability will be able to customize setup and archive
the setup. For these portlets, you can save these settings, and moreover, revert these
changes later. This feature can be achieved through archive setup.

Chapter 8

[363]

Configuration action
How can we implement a configuration page for a new plugin portlet? Let's use
knowledge base portlet as an example.

1. First, specify the configuration action class, and define it as the value of
the tag configuration-action-class in the liferay-portlet.xml. The
configuration-action-class value is a class that extends com.liferay.
portal.kernel.portlet.DefaultConfigurationAction, implementing
ConfigurationAction. This class is called to allow the users to configure the
portlet at runtime.

2. Then implement the processAction and render methods as defined in the
interface ConfigurationAction.

3. Create the file configuration.jsp containing the form that the page
administrator will edit to set up the portlet. The file configuration.jsp
is defined in the abstract class DefaultConfigurationAction.

As you can see, in a few steps you can add the configuration action to the portlet.

Portlet preferences and portlet item
The portlet configuration is saved in the table PortletPreferences and the setup
archive is saved in the table PortletItem. The following table shows the service
utilities, interfaces, their related models, and the main methods:

Utility Interface Related models Main methods
Portlet
Preferences
FactoryUtil

Portlet
Preferences
Factory

Layout, Portlet,

PortletPre
ferencesIds

fromXML,
getLayoutPortletSetup,
getPortalPreferences,
getPortletPreferences,
getPortletSetup,
getPreferences, toXML

Portlet
Preferences
ServiceUtil

Portlet
Preferences
Service

PortletItem,
Portlet
Preferences

deleteArchivePreferences,
restoreArhcivePreferences,
updateArchivePreferences

Note that this feature is available for the portlets for which the Setup tab is visible
because the portal specifies this function in the portlet configuration file archived_
setup_action.jsp and edit_archived_setups.jsp under the folder /html/
portlet/portlet_configuration. More details and archives are stored in the
portlet preferences of the portal instance. Therefore, you shouldn't use this feature
for backing up the data from one portal instance to another portal instance.

Staging, Scheduling, Publishing, and Cache Clustering

[364]

Local staging and publishing
The portal provides local staging and publishing capabilities. Users can stage their
work—the ability to work on a working copy of the website. For example, as a
content creator, you can manipulate this working copy and preview it as if it were
the website. You should be able to preview a working copy at any time without
disrupting the live pages. The purpose of the staging feature is to deploy a new
version of the website in a fully-functional form, which can be tested and reviewed
by the content producers or the content editors. The content producers or content
editors, who are evaluating the web content changes, are able to navigate to the site
without having to choose which version to see.

Similarly, it would be nice if the users can publish web content smoothly—to push
one or more assets from a staging to a live (or called local production) environment.
Generally speaking, publishing should include the capability to publish to both
the local portal instances and the remote portal instances. From the functional
point of view, publishing should be as simple as a push of a button or it should be
included as a step in a workflow. Most importantly, publishing shouldn't disrupt the
production environment except the published change. The portal provides the ability
to stage and publish web content either locally or remotely.

Local staging and publishing

portal core assets

plugins-custom assets

component

component
live group

activate staging

copy from live

publish to live

portal core assets

plugins-custom assets

component
staging group

component

componentcomponent

component

Activating staging
The portal provides local or remote staging and publishing capabilities through
which the users can select subsets of pages and data (both portal core assets and
custom assets), and transfer them to the live site—that is, local group instance or
remote portal instance. There are two types of staging: local live and remote live.

Chapter 8

[365]

•	 Local live: Within the current portal environment, a clone of the current
site will be created. This clone contains the copies of all existing pages and
the data of portlets. This clone becomes the local staging while the original
becomes the local live.

•	 Remote live: A connection is built between this site and the target existing
in a remote instance. The connection settings cover the persistent network
configuration, which defines how to locate the remote instance when the
publishing event occurs. This site becomes the remote staging while the
remote site becomes the remote live.

In the next section, we will discuss local live staging. Remote live staging will be
addressed in a later section.

Local staging interface
As shown in the preceding diagram, local staging and publishing contain the
following main functions:

•	 Activate staging: Create a new group (called staging group) for a given
group (called live group) and copy the pages (either public pages or
private pages or both) from the live group to the staging group. When
disabling staging, the portal will remove the staging group from the
current portal instance.

•	 Copy from live: Copy the pages from the live group to the staging group.
•	 Publish to live: Publish the selected pages or an entire website from the

staging group to the live group.

Once activating local live staging, you would see the following data or similar data
stored in the field typeSettings of the table Group_.

stagedRemotely=false
branchingPrivate=true
staged=true

As you can see, there is a set of properties for the staging mode Local Live,
such as staged-portlet_*, branchingPublic, and branchingPrivate. Of course,
the property stagedRemotely has false value while the property staged has
true value.

The portal defines an interface called Staging, implemented by the class
StagingImpl. The class ServiceContext is widely used in the class StagingImpl.
Most importantly, the staging and publish functions work well on page-level only,
since the portal defines an interface called LayoutStaging, implemented by the
class LayoutStagingImpl.

Staging, Scheduling, Publishing, and Cache Clustering

[366]

The following table shows main methods and attributes of these classes:

Class name Implements Main methods or attributes Description
StagingImpl Staging copyFromLive,

copyPortlet,
copyRemoteLayouts,
publishLayout,
publishLayouts,
publishToLive

The interface
Staging and its
implementation

Layout
StagingImpl

Layout
Staging

getLayoutRevision,
getLayoutStagingHandler,
isBranchingLayout,
isBranchingLayoutSet

The interface
LayoutStaging
and its
implementation

ServiceContext Cloneable,
Serializable

_addGroupPermissions,
_addGuestPermissions,
_assetCategoryIds

Service context

Local staging services
As mentioned earlier, the portal provides the capabilities of local staging and
publishing , and to copy pages from the live and to publish pages to the live. As shown
in the following table, these functions are implemented in the class StagingImpl:

Function Service utilities Main methods Description
enableLocal
Staging

GroupLocal
ServiceUtil

LayoutLocal
ServiceUtil

addGroup,
updateGroup,

exportLayoutsAsFile,
importLayouts

Create a local staging
group, copy pages
from the live group to
the staging group, and
update the live group
(export and import)

disable
Staging

GroupLocal
ServiceUtil,
LayoutLocal
ServiceUtil

deleteGroup,
updateGroup,
deleteLayout
SetBranches

Delete the staging group
and update the live
group (typeSettings)

copyFrom
Live

GroupLocal
ServiceUtil,
LayoutLocal
ServiceUtil

getGroup,
exportLayoutsAsFile,
importLayouts

Copy pages from the
live group to the staging
group (export and
import)

publish
ToLive

GroupLocal
ServiceUtil,
LayoutLocal
ServiceUtil

getGroup,
exportLayoutsAsFile,
importLayouts

Publish pages from the
staging group to the
live group (export and
import)

Chapter 8

[367]

By the way, the staging Spring beans are defined in the XML file /META-INF/
staging-spring.xml. You may use it as references.

Remote staging and publishing
The portal provides remote staging and publishing capabilities through which the
users can select subsets of pages and data, and transfer them to the live site of the
remote portal instance. By this feature, we can export the selected data to the group
of a remote portal instance or to another group in the same portal instance. The
LAR export and import features are used for remote staging and publishing. These
features are implemented in the PortletDataHandler API. As mentioned earlier,
the intent of this API is to import and export application content to and from the
portal in a database-agnostic fashion for the portal core assets and custom assets.

The following diagram depicts an overview of remote staging and remote
publishing. The staging has a set of portal core assets, custom assets, and groups of
users. First, the portal will export related portal core assets and custom assets based
on the current user's permission as a LAR ZIP file. Then, the portal transfers this LAR
ZIP file to the live site through the tunnel-web HTTP or HTTPS call. The live site will
import the related portal core assets and custom assets, as a LAR ZIP file, based on
the same user's permission.

portal core assets

plugins-custom assets

component
Staging

users

tunnel-web tunnel-web

users

http / https call
component

portal core assets

plugins-custom
assets

component
Live

componentcomponentcomponentcomponent

component

export import

authorization authorization

Local staging and publishing means that we have only one box and only one Liferay
portal instance. For a given group, for example, Book Street, the portal will create
a staging group Book Street (Staging)—a working copy of the Book Street
group— when activating Local Live. Now, users can work only on the staging
group. When they are ready, they can publish the pages of the Book Street
(Staging) staging group to the pages of the Book Street live group. As the staging
and publishing happen in one box, and the Book Street (Staging) staging group
and the Book Street live group belong to the same portal instance, it is called local
staging and publishing. This will be useful when the website is small with less
traffic and a small group of end users.

Staging, Scheduling, Publishing, and Cache Clustering

[368]

However, when the website is huge—high traffic, big groups of end users—we have
to consider the remote staging and publishing feature. As shown in the preceding
figure, there are one or many staging boxes and many production boxes. All of the
boxes have only live groups. For instance, the Book Street live group in the staging
box will be mapped into the Book Street live group in the production boxes. Thus,
the Book Street live group in the staging box could be called as a staging group of
the Book Street live group in the production boxes.

All of the internal content management users are working only in the staging box.
They can use the CMS and WCM tools to manage the portal core assets and custom
assets, for example, building a live website. They can also apply the workflow to
approve or reject the portal core assets and custom assets. That is, the staging box is
used only for the internal content management team. Once the pages are approved,
the content management team can publish these pages to the production boxes.

Activating remote live
Once you activate remote live, you would see the following data or similar data
stored in the field typeSettings of the table Group_:

stagedRemotely=true
remoteAddress=localhost
remoteGroupId=10457
remotePort=8080
staged=true

As you can see, a few additional properties are added for the staging mode
Remote Live only, such as secureConnection, remoteAddress, remoteGroupId,
remoteHost, and remotePort. Of course, the property stagedRemotely has a value
of true.

When the staging is disabled, either local live or remote live, the portal will
remove all the properties from the field typeSettings of the table Group_. How
come? The following code is a snippet from the method disableStaging of the
class StagingImpl:

GroupLocalServiceUtil.updateGroup(
 liveGroup.getGroupId(), typeSettingsProperties.toString());

Chapter 8

[369]

Remote staging services
As mentioned earlier, the portal provides the capabilities of remote staging and
publishing that you can either enable or disable in staging, and publish pages to the
live site. As shown in the following table, these functions are implemented in the
class StagingImpl:

Function Service utilities Main methods Description
enableRemote
Staging

GroupLocalServiceUtil

UnicodeProperties

getGroup,
hasStaging
Group,
updateGroup,

Enable/disable
remote live and
update the live
group

disable
Staging

GroupLocalServiceUtil

LayoutLocalServiceUtil

updateGroup update the
live group
(typeSettings)

publishTo
Remote

GroupLocalServiceUtil,
LayoutLocalServiceUtil

getGroup,
copyRemote
Layouts

Publish pages
from the local
live group to
the remote live
group (export and
import)

copyRemote
Layouts

UserLocalServiceUtil,
GroupServiceHttp,
LayoutLocalServiceUtil,
LayoutServiceHttp

getGroup Export pages
from the local live
group, and import
pages to the
remote live group

Tunnel-web services
Tunneling is a technology that enables one network to send its data via another
network's connections. It works by encapsulating a network protocol within
packets carried by the second network. HTTP Tunneling is a technique by which
communications performed using various network protocols are encapsulated using
the HTTP protocol, belonging to the TCP/IP family of protocols. The HTTP protocol,
therefore, acts as a wrapper for a covert channel that the network protocol being
tunneled uses to communicate.

The portal implements HTTP tunneling via the tunnel-web like remote HTTP
services and web services. This section is going to address remote HTTP services,
while the web services will be addressed in the next chapter.

Staging, Scheduling, Publishing, and Cache Clustering

[370]

The following table shows a summary of tunnel servlet, tunnel utility, and method
handler used in the tunnel web:

Class name Interface/method Related services/interfaces Description
TunnelServlet HttpServlet—

doPost
HttpServletRequest,
HttpServletResponse,
HttpPrincipal,
PrincipalThreadLocal

Servlet
mappings

/liferay/*

/secure/
liferay/*

TunnelUtil invoke, _
getConnection

HttpServletRequest,
HttpURLConnection,
HttpPrincipal,
HostnameVerifier,
HttpsURLConnection,

SSLSession

URL—

/tunnel-web/
liferay/do

/tunnel-
web/secure/
liferay/do

MethodHandler Serializable
—invoke

java.lang.reflect.
Method, java.lang.
reflect.Modifier

Method handler
for the Tunnel
servlet and
utility

Copying remote layouts
As mentioned earlier, the method copyRemoteLayouts is one of the main
signatures of the interface Staging, implemented by the class StagingImpl.
This implementation takes the following main steps:

1. Get the current user information through the class PermissionChecker. The
following is the code snippet:
User user = UserLocalServiceUtil.getUser(
 permissionChecker.getUserId());

2. Build HTTP principal as shown in the following code:
HttpPrincipal httpPrincipal = new HttpPrincipal(
 url, user.getEmailAddress(), user.getPassword(),
 user.getPasswordEncrypted());

3. Ping the remote host and verify that the group exists. As you can see, it
leverages the class GroupServiceHttp:
GroupServiceHttp.getGroup(httpPrincipal, remoteGroupId);

Chapter 8

[371]

4. Export the layouts from the local staging group. The following is the
sample code:
LayoutLocalServiceUtil.exportLayouts(
 sourceGroupId, privateLayout, layoutIds, parameterMap,
 startDate, endDate);

5. Import layouts of the local staging group into the remote live group. As you
can see, it leverages the class LayoutServiceHttp.

HTTP services
As stated previously, two HTTP services GroupServiceHttp and
LayoutServiceHttp are involved in the copyRemoteLayouts process. These classes
provide an HTTP utility for the ${packagePath}.service.${entity.name}
ServiceUtil} service utility. The static methods of these classes call the same
methods of the service utility. However, the signatures are different, since it requires
an additional {com.liferay.portal.security.auth.HttpPrincipal} parameter.

The benefit of using the HTTP utility is that it is fast and allows for tunneling
without the cost of serializing the text. However, the drawback is that it only
works with Java.

The following table shows a summary of the classes GroupServiceHttp and
LayoutServiceHttp:

HTTP service Main methods Related services Description
GroupService
Http

addGroup, addRoleGroups,
deleteGroup, getGroup

MethodKey,
MethodHandler,
TunnelUtil

Group
HTTP
service

LayoutService
Http

addLayout, deleteLayout,
exportLayout,
importLayout, updateLayout

MethodKey,
MethodHandler,
TunnelUtil

Layout
HTTP
service

As you can see, many portal core assets have HTTP services, such as
AccountServiceHttp, AddressServiceHttp, and so on. What's happening?
The service builder is able to generate HTTP services in the following steps:

1. The portal provides a template file called service_http.ftl for HTTP
services in the service-builder; the service_http.ftl has defined the
following code:
public class ${entity.name}ServiceHttp {
 <#assign hasMethods = false>
 <#list methods as method>
/* see details in service_http.ftl */
}

Staging, Scheduling, Publishing, and Cache Clustering

[372]

2. The service builder generates HTTP services in the ServiceBuilder class.

As you can see, if an entity has remote service settings set to true, the service builder
will generate service, implementation, base implementation, factory, utility, clp,
JSON, and SOAP service. In depth, if the remote filename is not null, the service
builder will generate the HTTP service.
Protecting tunnel-web In order to communicate with the remote server, and
moreover, to protect the HTTP connection, we need to set up a tunnel-web in the
portal-ext.properties. This means that we need to add the following lines at the
end of the portal-ext.properties:

tunnel.servlet.hosts.allowed=127.0.0.1,69.198.171.104
tunnel.servlet.https.required=false

The preceding code shows a tunnel.servlet.hosts.allowed property with a list
of allowed hosts, for example, 69.198.171.104. As stated earlier, we used these
hosts as examples only. You can have your own real hosts. Meanwhile, it specifies
the tunnel.servlet.https.required property. By default, it is set to false. You
can set it to true, if you want to use HTTPS.

Securing users' information
Let's take a look at a scenario. There are clustered staging servers and clustered
product servers. By default, there is a dummy user in both staging and product
servers. All editorial users exist in the staging server only. Their daily work is to
create/update press release, and schedule to publish the product. Thus, the use case
is that we need to secure the users' information in the staging server when using the
remote publishing function.

How can we implement this? Here, we provide a simple implementation as follows:

1. First, in the staging server, predefine a dummy user-screen name in portal.
properties. This dummy user will impersonate all the users who have the
permission to handle staging and remote publishing.
tunnel.dummy.user.enabled=false
tunnel.dummy.user.screenname=test

Chapter 8

[373]

2. Then, before calling the remote group, impersonate the current user using
the dummy user. The following is the code snippet:

User user = UserLocalServiceUtil.getUserByScreenName(
 permissionChecker.getCompanyId(),
 _TUNNEL_DUMMY_USER_SCREENNAME);
// see details in StagingImpl.java

Scheduling and messaging
Scheduling refers to the way processes are assigned to run on the available CPUs.
The portal uses the Quartz scheduler as the scheduling service, where you would
see a set of tables in the database, such as QUARTZ_JOB_DETAILS, QUARTZ_JOB_
LISTENERS, QUARTZ_TRIGGERS, and so on. Definitely, you can refer the entire quartz
tables in the the SQL file $PORTAL_SRC_HOME/sql/quartz-tables.sql.

Quartz is a full-featured, open source job-scheduling service that can be integrated
with the smallest standalone application to the largest e-commerce system. The
Quartz scheduler includes many enterprise-class features, such as JTA transactions,
clustering, and so on. Refer to http://www.quartz-scheduler.org/ for
more details.

The portal uses JMS—Java Message Service API—a Java Message Oriented
Middleware (MOM) API for sending messages between two or more clients.
In general, the JMS API supports two models: point-to-point and publish and
subscribe. In the point-to-point model, a sender—who knows the destination of the
message and posts the message directly to the receiver's queue—posts messages
to a specific queue and a receiver reads the messages from the queue. In the
publish/subscribe model, neither the publisher nor the subscriber know each other,
subscribers may register their interest in receiving the messages on a particular
message topic.

Scheduler
The portal has specified the scheduler in portal.properties as follows.

scheduler.enabled=true
scheduler.job.name.max.length=80

Staging, Scheduling, Publishing, and Cache Clustering

[374]

You can set the property scheduler.enabled to false in portal-ext.properties
to disable all the scheduler classes defined in liferay-portlet.xml. The class
QuartzSchedulerEngine checks whether this property is true or false. In addition,
you can set the maximum length of the description, group name, and job name fields.
The interface SchedulerEngine will read these properties for the fields—maximum
length of description, group name, and job name.

Interfaces
The portal provides a set of interfaces for the scheduler. The following table shows a
summary of these interfaces:

Interface Utility Associated classes Implementation
Trigger Trigger

FactoryUtil
TriggerState,
TriggerType

BaseTrigger, CronTrigger,
IntervalTrigger

Scheduler
Engine

Scheduler
EngineUtil

JobState,
StorageType

ClusterSchedulerEngine,
SchedulerEngineProxyBean,
QuartzSchedulerEngine

Scheduler
Entry

none TimeUnit SchedulerEntryImpl

Services
The portal provides a set of service interface implementations. The following table
shows the scheduler services implementation:

Service Interface Related models Description
ClusterScheduler
Engine

IdentifiableBean,
SchedulerEngine,
SchedulerEngine
ClusterManager

SchedulerEngine,
StorageType, Trigger,
TriggerState,
SchedulerResponse

Cluster
scheduler
engine

SchedulerEngine
ProxyBean

BaseProxyBean
implements
SchedulerEngine

SchedulerEngine,
Trigger,
SchedulerResponse

Scheduler
engine
proxy bean

MessageSender org.quartz.Job org.quartz.
JobDataMap,
JobDetail,
JobExecutionContext,
Scheduler, Trigger

Message
sender

ScriptingMessage
Listener

BaseMessage
Listener

Message,
SchedulerEngine,
ScriptingUtil

Scripting
message
listener

Chapter 8

[375]

Service Interface Related models Description
PortalJobStore JobStoreTX org.quartz.impl.

jdbcjobstore.
DB2v8Delegate,
DriverDelegate

Portal job
store

QuartzConnection
Provider

Connection
Provider

Connection,
DataSource

Quartz
connection
provider

QuartzScheduler
Engine

Scheduler
Engine

CronTrigger,
JobDataMap,
JobDetail, Scheduler,
SimpleTrigger,
Trigger,
StdSchedulerFactory

Quartz
scheduler
engine

SybaseDelegate MSSQLDelegate PreparedStatement Particular
Sybase
delegate

The scheduler Spring beans is defined in the XML file /META-INF/scheduler-
spring.xml. The following table shows the details of scheduler Spring beans:

Name Class Method Interface
messagingProxy
Advice

Scheduler
Engine
ProxyBean

Invoker extends
BaseProxyBean
implements
SchedulerEngine

com.liferay.
portal.
scheduler.
ClusterScheduler
EngineService

Cluster
Scheduler
Engine

schedulerEngine/
createCluster
SchedulerEngine

implements
IdentifiableBean,
SchedulerEngine,
SchedulerEngine
ClusterManager

SchedulerEngine
Util

Cluster
Scheduler
EngineService

schedulerEngine none

Staging, Scheduling, Publishing, and Cache Clustering

[376]

Clustering scheduler
The portal has added cluster support for the scheduler. It adds memory scheduler
to handle the non-permanent jobs, including singleton jobs that schedule once in
the whole cluster and non-singleton jobs that schedule in each instance. It also adds
cluster support for the memory scheduler. Also, it migrates the non-permanent jobs
to the memory scheduler, modifies the interfaces to support both memory scheduler
and permanent scheduler.

Especially, the portal added a property to cluster the schedulers in portal.
properties as follows:

memory.cluster.scheduler.lock.cache.enabled=false

In addition, you would see other properties starting with memory.scheduler.org.
quartz.* and persisted.scheduler.org.quartz.* for scheduler memory settings
and scheduler persistence, respectively.

The interfaces SchedulerEngineClusterManager and SchedulingConfigurator
are addressed in the following table:

Interface Implementation Signature Main methods
SchedulerEngine
ClusterManager

Cluster
Scheduler
Engine

Lock updateMemory
SchedulerCluster
Master()

createCluster
SchedulerEngine,
delete,
getScheduledJob,
getScheduledJobs,
pause, resume,
schedule, start

Scheduling
Configurator

Abstract
Scheduling
Configurator,
Default
Scheduling
Configurator,
Plugin
Scheduling
Configurator

destroy, init,
setMessageBus,
setScheduler
Engine,
setScheduler
Entries

ClassLoader
getOperating
Classloader()

Messaging
The portal has defined messaging Spring beans in the XML files /META-INF/
messaging-core-spring.xml and messaging-misc-spring.xml.

Chapter 8

[377]

The portal defined different packages for messaging, such as basis, async, config,
jmx, proxy, and sender. The following table shows the details of these packages:

Type Listener Extension Interface Related models

basis Global
Destination
EventListener,
Bridging
Message
Listener,
DummyMessage
Listener,
Invoker
Message
Listener

BaseDestination
EventListener,
BaseMessage
Listener,
BaseMessage
StatusMessage
Listener

Destination
EventListener,

Message
Listener

Destination,
Message,
MessageBatch,
MessageBus,
MessageStatus

async Async
Message
Listener

BaseMessage
Listener

Message
Listener

Async

config Default
Messaging
Configurator,

Plugin
Messaging
Configurator

Abstract
Messaging
Configurator

Messaging
Configurator

Destination

jmx JMXMessage
Listener

BaseDestination
EventListener

Destination
EventListener

Destination
Manager,
MessageBus
Manager,
Destination
Statistics
Manager

proxy ProxyMessage
Listener

none Message
Listener

ProxyMode,
ProxyRequet,
ProxyResponse

sender Synchronous
Message
Listener

none Message
Listener

MessageSender,
Synchronous
MessageSender

Note that the class MessagingHotDeployListener extends the abstract class
BaseHotDeployListener, which implements the interface HotDeployListener. It
provides the capabilities to invoke, deploy, and undeploy the processes by using the
classes Message and MessageUtil.

Staging, Scheduling, Publishing, and Cache Clustering

[378]

Scheduling layouts publishing
The portal provides the scheduling capability to publish pages. In order to publish
pages either locally or remotely, we should select the scope of publishing—all of
the pages, or the selected pages of a given site (for example, Book Street)—in the
Pages tab first, and then use the Scheduler tab to add an event (that is, a job for
publishing). You can provide Description, Start Date, End Date, and a repeatable
feature. In the class StagingImp, a set of methods are defined.

As you can see, the feature scheduling layouts publishing takes place at the
layout level, either for a page or for a set of pages. In fact, the service interface
LayoutService defines the following scheduling functions:

public void schedulePublishToLive;
public void schedulePublishToRemote;
public void unschedulePublishToLive;
public void unschedulePublishToRemote;

The service interface LayoutService is implemented by the abstract class
LayoutServiceBaseImpl, extended by the class LayoutServiceImpl. Of course,
the service utility class LayoutServiceUtil is available for the preceding functions.

Scheduling portal core assets and custom assets
The portal provides scheduling framework for both portal core assets and plugins'
custom assets. The following table shows the samples of a scheduler in the portal
core assets:

Listener class Extension Interface Description
CheckEquityLog
MessageListener

BaseMessage
Listener

MessageListener Checks equity log
message listener

ExpireBanMessage
Listener,
MailingListMessage
Listener

BaseMessage
Listener

MessageListener Expire ban
message listener,

Mailing list
message listener

CheckArticle
MessageListener

BaseMessage
Listener

MessageListener Checks article's
message listener

AudioProcessor
MessageListener,
VideoProcessor
MessageListener

BaseMessage
Listener

MessageListener Audio processor
and video
processor message
listeners

Chapter 8

[379]

How to leverage the scheduling framework for the plugin's custom assets? Here, we
will use the daily-check-attachments of the knowledge base plugin as an example.
The following steps would help on how to add the scheduler on the custom asset, for
example, KBArticle:

1. First, prepare a method called checkAttachments() in the class
KBArticleLocalServiceImpl.

2. Then prepare the class CheckAttachmentsMessageListener, extending
the abstract class BaseMessageListener, implementing the interface
MessageListener:
protected void doReceive(Message message) throws Exception {
 KBArticleLocalServiceUtil.checkAttachments();
}

3. Finally, configure the scheduler entry in the XML file liferay-portlet.xml
as follows:
<scheduler-entry>
 <scheduler-event-listener-class> com.liferay.knowledgebase.
admin.messaging.CheckAttachmentsMessageListener</scheduler-event-
listener-class>
 <trigger>
 <simple> <simple-trigger-value>1</simple-trigger-
value>
 <time-unit>day</time-unit>
 </simple>
 </trigger>
</scheduler-entry>

As shown in the preceding code, the scheduler-entry element contains the
declarative data of a scheduler. The scheduler-event-listener-class value
must be a class that implements com.liferay.portal.kernel.messaging.
MessageListener. This class will receive a message at a regular interval specified by
the trigger element. The trigger element contains the configuration data to indicate
when to trigger the class specified in scheduler-event-listener-class.

Cache clustering
The portal can be deployed in clusters of multiple instances for availability and
scalability. It leverages Ehcache-distributed or replicated cache. Without a distributed
or replicated cache, the application clusters exhibit a number of undesirable behaviors.

Staging, Scheduling, Publishing, and Cache Clustering

[380]

Portal cache interfaces
The portal has defined a set of cache interfaces, such as portal cache, single VM pool,
multi-VM pool, thread local cache, and so on. The following table shows an overview
of these cache interfaces:

Interface Utility/Implementation Main functions/
Related models

Description

PortalCache BasePortalCache,
Blocking
PortalCache

Destroy, get, put,
registerCache
Listener, remove,
unregister
CacheListener

Portal cache

PortalCache
Manager

none clearAll, getCache,
reconfigureCaches,
removeCache

Portal cache
manager

SingleVMPool SingleVMPoolUtil Clear, get, put,
remove

Simple VM pool

MultiVMPool MultiVMPoolUtil Clear, get, put,
remove

Multiple VM
pool

ThreadLocal
Cache<T>

ThreadLocal
CacheAdvice extends
Annotation
ChainableMethodAdvice

Lifecycle,
ThreadLocal
Cachable,
ThreadLocal

Thread local
cache

ThreadLocal
CacheManager

ThreadLocal
CacheAdvice extends
Annotation
ChainableMethodAdvice

Lifecycle,
ThreadLocalCache,
ThreadLocal

Thread local
cahce manager

Ehcache
Ehcache is an open source, widely used, java-distributed cache for general
purpose caching, such as Java EE and light-weight containers. It features memory
and disk stores, replicates listeners, cache loaders, cache extensions, cache exception
handlers, a GZIP caching servlet filter, RESTful and SOAP APIs, referring to
http://ehcache.org/.

Using Terracotta for Ehcache-distributed caching is the
recommended method of operating Ehcache in a distributed
or scaled-out application environment. It provides the highest
level of performance, availability, and scalability.

Chapter 8

[381]

Replicated cache
In addition to the built-in distributed caching, Ehcache has a pluggable cache
replication scheme, which enables the addition of cache replication mechanisms.
The following additional replicated caching mechanisms are available: RMI, JGroups,
JMS, and cache server. Cache discovery is implemented via multicast or manual
configuration. Updates are delivered either asynchronously or synchronously via
custom RMI connections.

RMI is a point-to-point protocol, which can generate a lot of network traffic. Ehcache
manages this through batching of communications for the asynchronous replicator.
To set up RMI replicated caching, you need to configure the CacheManager
with PeerProvider and CacheManagerPeerListener. Keep in mind that only
Serializable elements are suitable for replication.

Ehcache provides two mechanisms for peer discovery of RMI: manual and
automatic. Automatic peer discovery uses TCP multicast to establish and maintain a
multicast group with minimal configuration and automatic addition to and deletion
of members from the group, while manual peer discovery requires the IP address
and port of each listener to be known. Peers can't be added or removed at runtime.

In order to achieve shared data, all JVMs read to and write from a cache server,
which runs it in its own JVM. To achieve redundancy, the Ehcache inside the cache
server can be set up in its own cluster.

JMS (Java Message Service) provides replication between cache nodes using a
replication topic, pushing of data directly to cache nodes from external topic
publishers, and a JMSCacheLoader, sending cache load requests to a queue. Each
cache node subscribes to a predefined topic, configured as topicBindingName in the
XML file ehcache.xml. Each replicated cache publishes cache elements to that topic.
Replication is configured per cache.

The portal allows the plugins to configure and deploy the Ehcache configuration files
to reconfigure the following types of caches: Single VM (SingleVMPool), Clustered
portal caches (MultiVMPool), and Hibernate caches.

In fact, the portal updates Cluster Link-based replication allows the plugins to
reconfigure the PortalCacheManager caches and the Hibernate caches. The Hibernate
Spring beans are specified in the XML file /META-INF/hibernate-spring.xml.

Staging, Scheduling, Publishing, and Cache Clustering

[382]

The portal integrates Ehcache. The following table shows a summary of
this integration:

Class Interface Involved models Description
EhcachePortal
Cache

BasePortal
Cache implements
PortalCache

net.sf.ehcache.
Ehcache, Element,
event.CacheEvent
Listener, event.
NotificationScope

Ehcache
portal cache

EhcachePortal
CacheManager

PortalCache
Manager

net.sf.ehcache.
Cache, CacheManager,
Ehcache, config.
CacheConfiguration,
config.Configuration

Ehcache
portal cache
manager

Ehcache
Configuration
Util

none CacheConfiguration,
Configuration,
Configuration
Factory

Ehcache
configuration
utility

JGroupsManager CacheManager
PeerProvider

CachePeer

org.jgroups.Address,
JChannel, Message

Custom
JGroups
manager

JGroupsBootstrap
CacheLoader

net.sf.ehcache.
distribution.
jgroups.
JGroupsBootstrap
CacheLoader

Ehcache Custom
JGroups
Bootstrap
cache loader

Modifiable
EhcacheWrapper

net.sf.ehcache.
Ehcache

net.sf.ehcache.
CacheManager, Element,
Statistics, Status

Modifiable
Ehcache
wrapper

PortalCache
CacheEvent
Listener

net.sf.ehcache.
Ehcache

net.sf.ehcache.
CacheManager, Element,
Statistics, Status

Portal
cache event
listener

LiferayCache
EventListener
Factory

CacheEvent
ListenerFactory

net.sf.ehcache.event.
CacheEvent
Listener

Custom cache
event listener
factory

LiferayBootstrap
CacheLoader
Factory

BootstrapCache
LoaderFactory

net.sf.ehcache.
bootstrap.Bootstrap
CacheLoader

Custom
bootstrap
cache loader
factory

The portal provides capacities to turn the cache on/off for all velocity
ResourceLoaders. The portal specifies Journal content cache, Layout cache,
Velocity cache, and FreeMarker cache.

Chapter 8

[383]

Of course, you can apply portal cache on the plugin's custom assets, such as
PortalCache and MultiVMPoolUtil. For example, the Knowledge base plugins
defines a class called KBArticleContentCacheUtil, specifying multi-VM pool for
articles and templates.

Replicated caching with JGroups
There are two different ways to configure the Ehcache cache replication using
JGroups: UDP Multicast and TCP Unicast. JGroups can be used as the underlying
mechanism for the replication operations in Ehcache. It offers a very flexible protocol
stack and a reliable unicast and multicast message transmission. For more details
refer to http://www.jgroups.org/.

In addition, the portal defines the following properties for UDP multicast:

cluster.link.channel.properties.control=UDP(*)
cluster.link.channel.properties.transport.0=UDP(*)
cluster.link.autodetect.address=www.google.com:80

The preceding code sets JGroups properties for each channel. It supports upto 10
transport channels and one single required control channel. Use as few transport
channels as possible for best performance. By default, only one UDP control channel
and one UDP transport channel are enabled. Channels can be configured by XML
files that are located in the class path or by inline properties.

The portal also sets the property cluster.link.autodetect.address to autodetect
the default outgoing IP address so that JGroups can bind to it. The property must
point to an address that is accessible to the portal server, www.google.com or your
local gateway.

By the way, these properties are consumed in the class ClusterExecutorImpl,
which extends the abstract class ClusterBase, implementing the interfaces
ClusterExecutor and PortalPortEventListener.

Clustered caching via Terracotta
In general, Ehcache distributed with TSA (Terracotta Server Array) is different to
the other distribution mechanisms. Of course, you can set up clustered caching via
Terracotta. Cache discovery is automatic and many options exist for tuning the cache
behavior and performance for your use cases.

Staging, Scheduling, Publishing, and Cache Clustering

[384]

Loosely speaking, you can set up clustered caching via Terracotta as follows:

1. Copy all jars in $TERRACOTTA_HOME/ehcache/lib to $TOMCAT_HOME/
webapps/ROOT/WEB-INF/lib, including jars /common/terracotta-
toolkit-1.0-runtime-<version>.jar, /quartz/quartz-terracotta-
<version>.jar, and /quartz/quartz-all-<version>.jar.

2. Create terracotta-ehcache folder (of course, you can have a different
name) to $TOMCAT_HOME/webapps/ROOT/WEB-INF/classes, and create
the XML files hibernate-terracotta.xml and liferay-multi-vm-
terracotta.xml, adjusting terracottaConfig to point to Terracotta
servers, such as <terracottaConfig url="localhost:9510"/>.

3. Configure EhCache, Hibernate second level cache, and Quartz scheduler
as follows.

ehcache.multi.vm.config.location=/terracotta-ehcache/liferay-
multi-vm-terracotta.xml
net.sf.ehcache.configurationResourceName=/terracotta-ehcache/
hibernate-terracotta.xml
org.quartz.jobStore.tcConfigUrl = localhost:9510

In addition, you should set up session replication in the application server, for
example, Tomcat or JBoss.

Memcached
Memcached is a general purpose, distributed memory caching system used to speed
up dynamic database-driven websites by caching data and objects in RAM to reduce
the number of times an external data source (such as a database or API) must be
read. Refer to http://www.memcached.org/ for more details.

The portal adds Memcached support via the Spring beans specification in the XML
file /META-INF/memcached-spring.xml. The following table depicts a summary of
the Memcached integration:

Class Interface Factory Description
MemcachePortal
Cache, PooledMemcache
PortalCache

BasePortal
Cache
implements
PortalCache

PooledMemcached
ClientFactory
implements
MemcachedClient
Factory,

DefaultMemcached
ClientFactory

(Pooled)
Memcache
portal cache

Chapter 8

[385]

Class Interface Factory Description
MemcachePortal
CacheManager,
PooledMemcache
PortalCacheManager

PortalCache
Manager

MemcachedClient
PoolableObjectFactory
implements
PoolableObjectFactory

(Pooled)
Memcache
cache
manager

Cache clustering
Clustering allows us to run portal instances on several parallel servers (called cluster
nodes). The load is distributed across different servers, and even if any of the servers
fail, the portal is still accessible via the other cluster nodes. Clustering is crucial for
scalable portal enterprise, as you can improve the performance by simply adding
more nodes to the cluster.

The following diagram depicts an overview of the clustering of portal instances. A
cluster allows us to distribute the traffic coming into website to several machines, so
that the cluster can allow websites to handle more web traffic at a faster pace than
it would be possible with a single machine. Definitely, the portal works well in a
clustered environment.

In general, the clustering of portal instances involves a few main items: clustered
document repository, clustered database, synced Lucene indexing, clustered
Hibernate, and clustered multi-VM.

component
Node I

virtual machine

hibernate

lucene index

clustered database

clustered link

hibernate-clustered

multi-vm-clustered

document library repository

component
Node II

virtual machine

hibernate

lucene index

Staging, Scheduling, Publishing, and Cache Clustering

[386]

Clustering models and interfaces
The portal provides an entity called ClusterGroup in the service XML /portal/
service.xml.

Class Interface Extension/Utility Description
AddressImpl com.liferay.

portal.kernel.
cluster.Address

none Cluster address

ClusterLinkImpl ClusterLink ClusterBase,
ClusterLink
Util

Cluster link
implementation

ClusterNode,
ClusterEvent,
ClusterRequest,
ClusterNodeResponse

Serializable none Cluster nodes,
events, request, and
node response

ClusterExecutorImpl ClusterExecutor,
PortalPort
EventListener

ClusterBase Cluster executor
implementation

ClusterGroupImpl ClusterGroup ClusterGroup
ModelImpl

ClusterGroup
Model extends
BaseModel
<ClusterGroup>

Clustering settings
The default clustering settings is UDP multicast. Of course, beside the UDP
multicast, you can leverage either TCP unicast or Terracotta. For UDP multicast,
you can add the following lines in portal-ext.properties. By the way, the cluster
Spring beans are specified in the XML file /META-INF/cluster-spring.xml. You
may use the same XML file as references:

net.sf.ehcache.configurationResourceName=/ehcache/hibernate-clustered.
xml
ehcache.multi.vm.config.location=/ehcache/liferay-multi-vm-clustered.
xml
dl.store.file.system.root.dir=/data/document_library
cluster.link.enabled=true
lucene.replicate.write=true

The property cluster.link.enabled is required, if you want to cluster indexing
and other features that depend on the cluster link. Set lucene.replicate.write to
true, if you want the portal to replicate an index write across all the members of the
cluster. This is useful in some clustered environments, where you wish each server
instance to have its own copy of the Lucene search index. This is only relevant when
using the default Lucene indexing engine.

Chapter 8

[387]

Summary
In this chapter, you have learned the Portal-Group-Page-Content (PGPC) pattern,
LAR exporting and importing, local staging and publishing, remote staging and
publishing, scheduling and messaging, and caching and clustering.

In the next chapter, we will introduce indexing, search, and workflow.

Indexing, Search,
and Workflow

Search Engine Optimization (SEO) is the process of improving the volume of
traffic to websites from search engines via natural search results. The portal is
used to build public websites. It provides a wide range of features to help make
SEO-friendly websites showing up at top of search results.

The portal provides indexing-search capabilities to search for web content in any
websites, both organization's and site's. The portlets, such as, Search, OpenSearch,
and Web Content Search, by default, are powered by the Apache Lucene search
engine. As an alternative to Lucene, the portal supports pluggable search engines.

The portal framework is widely open to integrating third-party workflow engines.
And the portal itself provides a workflow engine called the Kaleo workflow,
allowing the users to define any number of simple to complex business processes,
to deploy them, and to manage them through the portal interface. These business
processes have the knowledge of users, groups, and roles without writing a single
line of code. The only required part is creation of a single XML document. Note that
you might get an error when you try to start the portlet with an empty database.

This chapter will first introduce Webs plugins and build Webs plugins using the
cas-web and solr-web plugins as examples. Then, we will address indexing and
search capabilities. The solr-web plugin will be used as an example to integrate the
Solr search engine. Finally, we will discuss workflow integration and the workflow
designer, where the plugin kaleo-web will be used as an example.

By the end of this chapter, you will have learned how to:

•	 Leverage Webs plugins and WAI
•	 Build Webs plugins cas-web and solr-web

Indexing, Search, and Workflow

[390]

•	 Index and search assets—both portal core assets and plugin custom assets
•	 Set up the solr-web plugin
•	 Apply a workflow to any assets
•	 Employ the kaleo-web plugin

Webs plugins
Webs plugins are regular Java EE web modules designed to work with portals,
such as ESB (Enterprise Service Bus), SSO (Single Sign-On), workflow engine,
search engine, and so on. A web plugin provides the ability to integrate third-party
applications, supporting embedding hook definition and service-builder services,
which is different from plain web applications.

Web plugin project
Similar to the project name of a portlet or hook, a web plugin project should have the
name ${web.name}-web, under the folder $PLUGIN_SDK_HOME/webs. For example,
the name ${web.name}-web could be cas-web or solr-web . Since there isn't any
template for web projects, you have to create a web project manually.

The web project is made up of build.xml, an application WAR file (if using web
application WAR directly), and a folder called docroot. For example, the web
plugin cas-web has the following definitions in the file build.xml:

<?xml version="1.0"?>
<!DOCTYPE project>
<project name="cas-web" basedir="." default="deploy">
 <import file="../build-common-web.xml" />
 <property name="original.war.file" value="cas-web.war" />
</project>

As you can see, the property original.war.file points to the real WAR file or real
web application ZIP file.

The folder WEB-INF is included under the folder docroot. Under the folder
WEB-INF, we have web application configuration files, Liferay plugin package
properties, service.xml, liferay-hook.xml, the src folder, and so on.

Chapter 9

[391]

Web deployer and listener
As you can see, the web application WAR file, or the web plugin WAR, will be
deployed automatically when the WAR file is dropped into the folder deploy.
What's happening? In fact, the portal provides deployers, such as WebAutoDeployer
and WebDeployer, and deploy listeners such as WebAutoDeployListener, for the
web plugin WAR deployment.

Web applications integrator
Integrating standalone web applications into the portal isn't an easy task. However,
the portal makes it possible to achieve near-native integration with minimal effort,
via the Web Application Integrator (WAI). In fact, the WAI will automatically
deploy any standard Java servlet application as a portlet within the portal.

In order to use the WAI, you can simply copy an application WAR file into the
autodeploy directory, and then add the portlet to your page. The portal transparently
handles the rest.

The purpose of the WAI is to facilitate the task of integrating existing web
applications into the portal. Initially, it allowed the direct deployment of any existing
web application without modification to achieve a medium-level type of integration.

The deployment process will embed the web application as an iframe inside the
portlet. The WAI will automatically resize the iframe to fit its contents and provide
a bookmark-able link to the current page.

As you can see, the WAI has a few limitations, as follows:

•	 Refreshing your browser will return to the application's home page
•	 Login credentials can't be shared with the embedded application

In addition, the WAI is an iframe-based approach, thus if the user navigates away from
the site, the automatic resizing and permanent link functionality will stop functioning.

What's happening?
The WAI framework involves the following aspects: plugin package, deployment,
and portlet. The plugin package DTD is defined in the file $PORTAL_SRC_HOME/
definitions/liferay-plugin-package_{version}.xml— this is the Liferay
plugins XML file that lists the plugins available in the plugin repository.

Indexing, Search, and Workflow

[392]

The plugin-package element contains the declarative data of a plugin:

<!ELEMENT plugin-package (
 name, module-id, recommended-deployment-context?,
 types, tags?, short-description, long-description?,
 change-log, page-url?, screenshots?, author,
 licenses, liferay-versions, deployment-settings?)>

As shown in the preceding code, the name element contains the name of the plugin
package that will be shown to the users. The module-id element contains the full
identifier of the plugin using the Maven-based syntax groupId/artifactId/
version/file-type. The deployment-settings element contains a list of
parameters that specifies how the package should be deployed.

<!ELEMENT deployment-settings (setting)+>

As shown in the preceding code, the setting element specifies a name-value pair
that provides information on how the package should be deployed.

The portal defines an interface PluginPackage, a class deployer WAIAutoDeployer
and its dependencies, a class request WAIHttpServletRequest, and a class portlet
WAIPortlet.

Indexing and search
Search engine indexing collects, parses, and stores the data to facilitate fast and
accurate information retrieval. A search index could be considered as a searchable
database of words that points to the documents containing that word. The popular
engines focus on the full-text indexing of online, documents. Media types, such as,
video, audio, and graphics are also searchable. The portal-integrated search engine
Lucene, which indexes full-text of online, documents, records, and media types, such
as, video, audio, and graphics. And the portal is framework-ready to integrate other
search engines, such as, Apache Solr, FAST, GSA, Coveo, and so on.

Overview
As shown in the following diagram, the portal supports the following:

•	 Autogeneration of database tables and indexes
•	 Hibernate first-level cache and second-level cache settings
•	 Ehcache settings
•	 Portal cache and portal indexer

Chapter 9

[393]

component
Portal cache

depends

Hibernate
component

First-level Cache Second-level Cache

component
Ehcache

depends

component
Portal Indexer

Database
component

tables

depends depends

index

The service builder generates the database to create tables and indexes using SQL.
A database index is a data structure that improves the speed of data retrieval
operations on a database table. Remember to add a database index for plugins'
database tables whenever in need. The following is service-builder generated code to
create an index for the table AssetCategory:

create index IX_E639E2F6 on AssetCategory (groupId);
create index IX_2008FACB on AssetCategory (groupId, vocabularyId);

Hibernate uses two different caches for objects: first-level cache and second-level
cache. The first-level cache always associates with the Session object. Hibernate uses
this cache by default. The second-level cache always associates with the Session
Factory object.

Ehcache (Easy Hibernate Cache) supports read-only and read/write caching, and
memory-based and disk-based caching. As mentioned in the previous chapter,
the portal supports different cache classes/interfaces, such as, MultiVMPool,
SingleVMPool, PortalCache, and ThreadLocalCache. Leverage these cache
classes in your plugins whenever required. We will address the portal Indexer
in the next section.

Indexer
The purpose of using an index is to optimize speed and performance in finding
relevant documents for a search query. The portal provides an indexer framework
that almost any asset can index. This section is going to address the interface
Indexer and its implementation in the portal.

Indexing, Search, and Workflow

[394]

Interface
The portal provides an indexer interface called com.liferay.portal.kernel.
search.Indexer. The following is a snippet of the interface Indexer:

public interface Indexer {
 public void delete(Object object) throws SearchException;
 public Document getDocument(Object object);
 public Summary getSummary();
 // see details in Indexer.java
}

As shown in the preceding code, the interface Indexer specifies a set of signatures,
such as, delete, getClassNames, getDocument, getIndexerPostProcessors,
getSearchEngineId, getSortField, getSummary, hasPermission,
isFilterSearch, isStagingAware, postProcesssContextQuery,
postprocessSearchQuery, registerIndexerPostProcessor, index, search, and
unregisterIndexerPostProcessor.

More related interfaces include IndexerPostProcessor, IndexerRegistry,
IndexSearcher, and IndexWriter. The following table shows an overview of
these interfaces:

Interface Implementation Wrapper / Utility Description
Indexer BaseIndexer IndexerWrapper Interface Indexer
Indexer
PostProcessor

BaseIndexer
PostProcessor

none Interface Indexer
Post processor

IndexerRegistry Indexer
RegistryImpl

Indexer
RegistryUtil

Interface Index
registry

IndexSearcher IndexSearcher
ProxyBean

LuceneIndex
SearcherImpl

none Interface Indexer
searcher

IndexWriter IndexWriter
ProxyBean

LuceneIndex
WriterImpl

none Interface Index
writer

Chapter 9

[395]

As you can see, the abstract class BaseIndexer implements the interface Indexer.
First of all, the class BaseIndexer implements most of the signatures of the interface
Indexer. Meanwhile, it keeps some signatures as abstract, that is, these signatures
need to be implemented in the final classes, such as, doDelete, doGetDocument,
doGetSummary, doIndex, and getPortletId. In addition, the class BaseIndexer adds
a few methods, such as, addLocalizedSearchTerm, addSearchAssetCategoryIds,
addSearchAssetTagNames, addSearchEntryClassNames, addSearchExpando,
addSearchGroupId, addSearchKeywords, addSearchTerm,
addStagingGroupKeyword, and createFullQuery.

Indexing core assets
The most portal core assets are indexed properly in the portal. For example, the
class DLIndexer extends the abstract class BaseIndexer, implementing the interface
Indexer. By default, this class DLIndexer is registered through the tag indexer-
class, which is in the XML file $PORTAL_SRC_HOME/portal-web/docroot/WEB-
INF/liferay-portlet.xml.

In addition, an indexer implementation class could be registered in different
ways. The following code shows how to register the indexer implementation class
DLStoreIndexer in the construction of the class DLIndexer:

public DLIndexer() {
 IndexerRegistryUtil.register(new DLStoreIndexer());
}

As shown in the following table, the portal provides a set of indexer implementations
for core assets, such as BlogEntry, BookmarksEntry, CalEvent, and so on.

Indexer class Extension Override Model/Portlet
ID

Description

Blogs
Indexer

BaseIndexer
implements
Indexer

postProcess
ContextQuery,
doDelete,
doGetDocument,
doGetSummary,
doReindex,
getPortletId

BlogEntry

PortletKeys.
BLOGS

Blogs portlet

Bookmarks
Indexer

BaseIndexer
implements
Indexer

postProcess
ContextQuery,
doDelete,
doGetDocument,
doGetSummary,
doReindex,
getPortletId

Bookmarks
Entry

PortletKeys.
BOOKMARKS

Bookmarks
portlet

Indexing, Search, and Workflow

[396]

Indexer class Extension Override Model/Portlet
ID

Description

CalIndexer BaseIndexer
implements
Indexer

doDelete,
doGetDocument,
doGetSummary,
doReindex,
getPortletId

CalEvent

PortletKeys.
CALENDAR

Calendar
portlet

DLStore
Indexer

BaseIndexer
implements
Indexer

doDelete,
doGetDocument,
doGetSummary,
doReindex,
getPortletId

FileModel Document
Library
store

DLIndexer BaseIndexer
implements
Indexer

hasPermission,
isFilterSearch,
postProcess
ContextQuery,
postProcess
SearchQuery,
doDelete,
doGetDocument,
doGetSummary,
doReindex,
getPortletId

DLFileEntry

PortletKeys.
DOCUMENT_
LIBRARY

Document
Library
portlet

Journal
Indexer

BaseIndexer
implements
Indexer

postProcess
ContextQuery,
postProcess
SearchQuery,
doDelete,
doGetDocument,
doGetSummary,
doReindex,
getPortletId

Journal
Article

PortletKeys.
JOURNAL

Journal
(Web
Content)
portlet

MBIndexer BaseIndexer
implements
Indexer

hasPermission,
isFilterSearch,
postProcess
ContextQuery,
doDelete,
doGetDocument,
doGetSummary,
doReindex,
getPortletId

MBMessage

PortletKeys.
MESSAGE_
BOARDS

Message
boards
portlet

Chapter 9

[397]

Indexer class Extension Override Model/Portlet
ID

Description

SCIndexer BaseIndexer
implements
Indexer

doDelete,
doGetDocument,
doGetSummary,
doReindex,
getPortletId

SCProduct
Entry

PortletKeys.
SOFTWARE_
CATALOG

Software
catalog
portlet

Wiki
Indexer

BaseIndexer
implements
Indexer

postProcess
ContextQuery,
doDelete,
doGetDocument,
doGetSummary,
doReindex,
getPortletId

WikiPage

PortletKeys.
WIKI

Wiki portlet

Registering custom asset indexers in plugins
The portal provides a framework in order to provide plugin search capabilities. For
example, the knowledge base portlet defines a class called AdminIndexer, extending
the abstract class BaseIndexer directly, implementing the interface Indexer
indirectly. The indexing model is the interface KBArticle, and portlet ID has the
value PortletKeys.KNOWLEDGE_BASE_ADMIN.

Loosely speaking, the class AdminIndexer got registered through the tag
indexer-class (which is in the XML file /docroot/WEB-INF/liferay-portlet.
xml), as follows.

<indexer-class>
com.liferay.knowledgebase.admin.util.AdminIndexer
</indexer-class>

As you can see, the indexer-class value must be a class that implements com.
liferay.portal.kernel.search.Indexer, either directly or indirectly, and it
is called to create or update a search index for the portlet.

In brief, the class AdminIndexer overrides a set of methods, such as
postProcessSearchQuery, search, doDelete, doGetDocument, doGetSummary,
doReindex, and so on. In real use cases, you would be able to override the same
set of methods in plugins, according to your own requirements.

Indexing, Search, and Workflow

[398]

In the following two steps, you would be able to add search capabilities to a
custom portlet.

1. Prepare an indexer implementation class, and, furthermore, override a
set of abstract methods, such as, doDelete, doGetDocument, doReindex,
doGetSummary, and so on.

2. Specify this class as a value of the tag indexer-class in the XML file
liferay-portlet.xml.

In general, the class AdminIndexer provides index for following main fields of the
Knowledge Base article. Of course, you can add your own custom fields, such as
title as text columns and/or keyword columns. Here, for text columns, the search
is based on the string-containing process; while for keyword columns, the search is
based on the string-equal process.

KBArticle kbArticle = (KBArticle)obj;
Document document =
 getBaseModelDocument(PORTLET_ID, kbArticle);
document.addText(Field.CONTENT,
 HtmlUtil.extractText(kbArticle.getContent()));
return document;

In fact, you can refer to the method getBaseModelDocument from the abstract class
BaseIndexer, for detailed information. The following table shows an overview of
these fields:

Column
name

Field name Data type Description

addUID Field.UID Long—Portlet ID,
classPK

Unique identifier of the
document

addText Field.CONTENT String Content, description
addFile Field.CONTENT String (for binary

files, such as, .doc
PDF, and so on)

using addText and
FileUtil.extractText

addKeyword Field.ASSET_
CATEGORY_IDS

Long array Asset category IDs
keyword

addKeyword Field.ASSET_
CATEGORY_NAMES

String array Asset category names
keyword

addKeyword Field.ASSET_
TAG_NAMES

String array Asset tag names keyword

Chapter 9

[399]

Column
name

Field name Data type Description

addkeyword Field.ENTRY_
CLASS_NAME

String Class name keyword

addKeyword Field.ENTRY_
CLASS_PK

Long Class PK keyword

addKeyword Field.PORTLET_
ID

Long Portlet ID keyword

addKeyword Field.ROOT_
ENTRY_CLASS_PK

Long Resource Primary Key

addKeyword Field.CLASS_
NAME_ID

Field.CLASS_PK

Long Attached model—class
name ID and class PK

addKeyword

addDate

Field.COMPANY_
ID, Field.
USER_ID, Field.
USER_NAME

Field.CREATE_
DATE, Field.
MODIFIED_DATE

Long, String

Date

Audited model: company
ID, user ID, username,
create-date, and modified
date

addKeyword Field.GROUP_ID

Field.SCOPE_
GROUP_ID

Long Grouped model—parent
group ID and scoped
group ID

addKeyword Field.STATUS Integer workflow status
Custom
Attributes

Custom
Attributes

ExpandoBridge
IndexerUtil.
addAttributes

Custom attributes

Lucene
The portal integrates the Apache Lucene search engine as default. In general, the
Lucene search engine has many useful features, such as ranked searching—best
results are returned first. This includes many powerful query types—phrase queries,
wildcard queries, proximity queries, range queries, and more.

It also allows fielded searching (for example, title, author, contents, and so on),
date-range searching, sorting by any field, multiple-index searching with merged
results, and simultaneous update and searching. Refer to http://lucene.apache.
org/, for more details.

Indexing, Search, and Workflow

[400]

The portal provides the following properties to configure the index settings in the
portal.properties. Using these properties, you would be able to change the index
engine default behavior. Of course, you can override the same set of properties in
portal-ext.properties.

index.search.highlight.enabled=true
index.date.format.pattern=yyyyMMddHHmmss
index.dump.compression.enabled=true

As shown in the preceding code, you can enable highlighting of search results via the
property index.search.highlight.enabled. Set the fragment size returned from
the search-result highlighter and from the number of lines for the snippet returned
by search engine; set the limit for results used when performing index searches.

You can enable scoring of results via the property index.search.scoring.enabled;
set the limit for results used when performing index searches that are subsequently
filtered by permissions. You can also set the property index.read.only to true, if
you want to avoid any writes to the index. This is useful in clustering environments
where there is a shared index and only one node of the cluster updates it.

You can set the property index.on.startup to true, if you want to index your
entire library of files at startup. This property is available so that the portal will
index all at startup. Note that you should not set this property to true on production
systems or else your index will be indexed at each startup. In case the index is stored
in the database, it is acceptable to have more than one node to update the index.

The portal provides the following properties to configure the Lucene search engine
in portal.properties. Obviously, you can override these properties in portal-
ext.properties.

lucene.store.type=file
lucene.dir=${liferay.home}/data/lucene/
lucene.optimize.interval=100
lucene.replicate.write=false

The preceding code shows that the property lucene.store.type designates
whether Lucene stores indexes in a database via JDBC, file system, or in RAM. The
type file would be used as the best practice. You can also set the directory where
Lucene indexes are stored, via the property lucene.dir. This is referenced only if
Lucene stores indexes in the file system.

You can set the property lucene.replicate.write to true, if you want the portal
to replicate an index-write across all members of the cluster. This is useful in some
clustered environments, where you wish each server instance to have its own copy
of the Lucene search index. This is only relevant when using the default Lucene
index engine.

Chapter 9

[401]

What's happening on these properties? The portal provides a set of interfaces
and their implementations for the Lucene search engine, reading these properties
in runtime. The following table shows a summary of these interfaces, under the
package com.liferay.portal.search.lucene:

Implementation Interface Utility/models Description
Boolean
ClauseImpl

BooleanClause BooleanClause
OccurTranslator

Boolean clause
implementation

BooleanQuery
FactoryImpl

BooleanQuery
Factory

BooleanQuery Boolean
query factory
implementation

Boolean
QueryImpl

BaseBoolean
QueryImpl
extends
BaseQueryImpl
implements
BooleanQuery

BooleanClause,
BooleanClause
Occur, Query

Boolean query
implementation

Lucene
HelperImpl

LuceneHelper Lucene
HelperUtil

Lucene helper
implementation

LuceneSearch
EngineImpl

SearchEngine IndexAccessor,
FieldWeightSim
ilarity,PerFiel
dAnalyzerWrapp
er, LuceneFields,
LuceneFile
Extractor,
LuceneHelper,
LuceneHelperUtil,
LuceneIndexer

Lucene
search engine
implementation

LuceneIndex
SearcherImpl

Index
Searcher

Document, Field,
Hits, Query,
SearchContext,
Sort, Facet

Lucene
index search
implementation

LuceneIndex
WriterImpl

IndexWriter Document, Field Lucene
index writer
implementation

LuceneQueryImpl BaseQueryImpl Query Lucene query
implementation

Indexing, Search, and Workflow

[402]

Furthermore, the portal specifies a set of services for the Lucene search engine dump,
cluster, and messaging. The following table displays a summary of these services:

Package Classes Interfaces Involved models
com.liferay.
portal.search.
lucene.cluster

Lucene
ClusterUtil

none Address,
LuceneHelper

com.liferay.
portal.search.
lucene.dump

DumpIndex
DeletionPolicy

IndexCommit
SerializationUtil

IndexDeletion
Policy

indexCommit
MetaInfo

IndexCommit,
IndexDeletion
Policy,
IndexWriter

IndexCommit,
Directory,
IndexInpit,
IndexOutput

com.liferay.
portal.
search.lucene.
messaging

CleanUpMessage
Listener

SearchEngine
DestinationEvent
Listener

BaseMessage
Listener

BaseDestination
EventListener

Message
Listener

Destination
EventListener

Solr
The portal is open to integrating the Apache Solr search engine or other search engines,
instead of the embedded Apache Lucene search engine. The following diagram depicts
this integration. As you can see, the portal first provides the service interface index
to index both core assets and custom assets against the search engine. Then the portal
provides the service interface search, to search both core assets and custom assets
against the search engine.

component
Solr

component
Other search engines

indexing

component
Lucene

search engine

component
Portal Instance

search

search

search
search

index indexing

indexing

Chapter 9

[403]

In addition, you can use a Tika and Solr combo to index various documents. Apache
Tika detects and extracts metadata and structured text content from various
documents (for example, Word, PDF, and so on) in a format that can be fed into the
Solr or Lucene search engine combo. For more detailed information, refer to Apache
Tika at http://tika.apache.org/.

Solr is the enterprise search platform with major features, including powerful full-
text search, hit highlighting, faceted search, dynamic clustering, database integration,
rich document (for example, Word, PDF, and so on) handling, and geospatial search.
It is highly scalable, providing distributed search and index replication. Refer to
http://lucene.apache.org/solr/.

In addition, Solr uses the Lucene Java search library at its core for full-text indexing
and search, and has REST-like HTTP/XML and JSON APIs that make it easy to use
from virtually any programming language.

Before using the Solr search engine in the portal, you need to install the Solr instance
as the $SOLR_HOME variable first. Then, you should configure the solr-web plugin
as well. As shown in the following table, you should update the domain name, port
number, and schema XML:

XML files Folder name Parent folder Configuration
schema.xml conf /WEB-INF Copy the XML file to $SOLR_

HOME/example/solr/conf

messaging-
spring.xml,

solr-spring.xml

META-INF /src Update the domain name and
port number in the XML file
solr-spring.xml

As configured in the XML files messaging-spring.xml and solr-spring.xml, the
plugin solr-web provides a set of index and search implementations, shown in the
following table:

Implementation Interface Involved models Description
SolrIndex
SearcherImpl

IndexSearcher Document, Field,
Hits, Query,
SearchContext,
Sort, Facet

Solr index searcher
implementation

SolrIndex
WriterImpl

IndexWriter Document, Field Solr index writer
implementation

SolrSearch
EngineImpl

SearchEngine IndexSearcher,
IndexWriter

Solr search engine
implementation

Indexing, Search, and Workflow

[404]

Implementation Interface Involved models Description
SolrFacet
FieldCollector

SolrFacet
QueryCollector

SolrTerm
Collector

FacetCollector

TermCollector

none Solr facet

BasicAuthSolr
Server,
BroadcastWriter
SolrServer,
LoadBalancer
SolrServer

SolrServer SolrRequest,
UpdateRequest

Solr server

Search engine
The portal provides interfaces against search engines, such as com.liferay.portal.
kernel.search.SearchEngine, PortalSearchEngine, and so on. The following is
the code snippet of the interface SearchEngine:

public String getName();
public IndexSearcher getSearcher();
public IndexWriter getWriter();

The preceding code shows index writer IndexWriter, index searcher
IndexSearcher, and the name in the interface SearchEngine.

public boolean isIndexReadOnly();
public void setIndexReadOnly(boolean indexReadOnly);

The preceding code is the code snippet of the interface PortalSearchEngine. As you
can see, the interface PortalSearchEngine defines whether it is index-read-only or
not. In fact, it provides the signatures isIndexReadOnly and setIndexReadOnly.

The main function search is specified in the abstract class com.liferay.portal.
kernel.search.BaseIndexer. The following code snippet illustrates this:

searchContext.setSearchEngineId(getSearchEngineId());
// see details in BaseIndexer.java
Hits hits = SearchEngineUtil.search(
 searchContext, fullQuery);
if (isFilterSearch() && (permissionChecker != null)) {
 hits = filterSearch(
 hits, permissionChecker, searchContext);
}
return hits;

Chapter 9

[405]

As shown in the preceding code, the function search requires the following steps:

1. Set the search engine ID in the search context.
2. Create a Boolean query and add asset categories, asset tags, entry class

names, and group ID into the search content.
3. Set the query configuration.
4. Get permission checker, start number, and end number in the search context.
5. Call the search function from the class SearchEngineUtil.
6. Filter the search results with permission checker—filtering through the

VIEW permission.

Interfaces
As shown in the following table, the portal has provided a set of search interfaces,
such as, document and field, query, sort, string query, term query, wildcard query,
and so on:

Interfaces Implementation Utility / Comparator Description
Search
Engine

Search
EngineImpl

LuceneSearch
EngineImple

Search
EngineUtil

Search engine
interface

PortalSearch
Engine

PortalSearch
EngineImpl

Search
EngineUtil

Portal search
engine interface

BooleanClause Boolean
ClauseImpl

BooleanClause
FactoryUtil

Boolean clause

BooleanClause
Occur

Boolean
ClauseOccur
Impl

none Boolean clause
occur

BooleanQuery
extends Query

BaseBoolean
QueryImpl

BooleanQuery
FactoryUtil

Boolean query

Document DocumentImpl

Field

DocumentComparator,
DocumentComparator
OrderBy

Document
interface

Hits HitsImpl none Search results
hits

Indexing, Search, and Workflow

[406]

Interfaces Implementation Utility / Comparator Description
Query,
QueryTerm,
Query
Translator,
StringQuery
Factory

BaseQueryImpl,
QueryConfig,
QueryTermImpl,
QueryTranslator
Impl,
StringQueryImpl

QueryTranslator
Util, StringQuery
FactoryUtil

Query, query
terms, query
translator, and
string query

SortFactory Sort

SortFactory
Impl

SortFactory
Util

Sort and sort
factory

TermQuery

TermRange
Query

TermQuery
Factory

TermRange
QueryFactory

TermQueryImpl,
TermRange
QueryImpl,

TermQuery
FactoryImpl,
TermRange
Query
FactoryImpl

TermQuery
FactoryUtil

TermRangeQuery
FactoryUtil

Term query
and term range
query

Wildcard
Query

Wildcard
QueryImpl

node Wildcard query

Search
Permission
Checker

Search
Permission
CheckerImpl

none Search
permission
checker and its
implementation

As you can see, there are a few options to add the fields of both portal core assets
and custom assets, such as, keywords, text, date, UID, and so on. These methods
are defined in the interface com.liferay.portal.kernel.search.Document,
implemented by the class DocumentImpl. The following table shows the details
of these fields:

Name Field name Data type Description
add none Field Adds any field into the

document
addUID Field.UID String, Long Adds UID (portlet ID,

String field, and Long
field) into the document

addNumber any Double, Float,
Integer, Long,
String, Array

Adds a number into the
document

Chapter 9

[407]

Name Field name Data type Description
addText any String, String

array
Adds text into the document

addKeyword any Boolean, Double,
Float, Integer,
Long, String,
Array

Adds a keyword into the
document

addLocalized
Text

any Map of Local and
String

Adds localized text into the
document

addLocalized
Keyword

any Map of Local and
String

Adds a localized keyword
into the document

addDate any Date Adds a formatted date into
the document

addFile any byte[], File,
InputStream

Adds a file into the
document

Search context
The class com.liferay.portal.kernel.search.SearchContext provides search
context, such as, facet, asset categories, asset tags, attributes, company Id,
start number, end number, folder ids, group Ids, keywords, node ids, locale,
query configuration, portlet ids, owner user ids, search engine id, sorts,
time zone, user id, and-search, and more.

In general, there are three steps to initiate the search process. They are, as follows:

1. Configure the search context, say, start, end, keywords, and so on.
2. Get the indexer via the specific model interface.
3. Use the indexer search method with the preceding search context.

For instance, you would be able to find the following sample code at /knowledge-
base-portlet/docroot/search/search.jsp:

SearchContext searchContext =
 SearchContextFactory.getInstance(request);
Indexer indexer =
 IndexerRegistryUtil.getIndexer(KBArticle.class);
Hits hits = indexer.search(searchContext);

Indexing, Search, and Workflow

[408]

Faceted search
Loosely speaking, faceted search (also called faceted navigation or faceted browsing)
allows the users to explore by filtering the available information, while a faceted
classification system allows the assignment of multiple classifications to an object,
enabling the classifications to be ordered in multiple ways, rather than in a single,
predetermined, taxonomic order. The portal provides faceted search capabilities,
for example, the faceted search portlet provides full-text search with the faceted
classification based on the portal categories. This section will address them in detail.

In fact, the portal defines a class called com.liferay.portal.kernel.search.
FacetedSearcher, extending the abstract class BaseIndexer, which implements the
interface Indexer. The detailed implementation is displayed in the following table:

Method Override Returned data type Description
getInstance No Indexer Returns Faceted

search instance
getClassNames No String array Faceted search class

names
getIndexer
PostProcessors

Yes Indexer
PostProcessor

Indexer post
processor

search Yes Hits Faceted search
unregisterIndexer
PostProcessor

Yes void Unregister indexer
post processor

addSearch
ExpandoKeywords

No void Add search custom
attribute keywords

createFullQuery Yes BooleanQuery Create full query
doDelete Yes Object Delete document
doGetDocument Yes Object, Doucment Get document
doGetSummary Yes Object, Summary Get summary
doReindex Yes String, Long Reindex
getPortletId Yes SearchContext Get portlet ID
isFilterSearch No Boolean,

SearchContext
Check whether it is a
filter search or not

Chapter 9

[409]

More specifically, the portal provides the interface Facet, facet collector, facet
configuration, facet validator, and so on. The following table shows an overview
of these interfaces and their implementations.

Interface Extension /
Implementation

Utility Description

Facet BaseFacet,
MultiValuefacet,
RangeFacet,
SimpleFacet,
AssetEntriesFacet,
ScopeFacet

None Facet interface,
its extension, and
implementation

FacetCollector BoboFacet
Collector

None Facet collector

TermCollector Boboterm
Collector

None Facet collector

Facet
Configuration

None Facet
Configuration
Util

Facet
configuration

FacetValue
Validator

BaseFacet
ValueValidator

FacetFactory
Util,
RangeParser
Util

Facet value
validator

Query parser syntax
Although Lucene provides the ability to create custom queries through its API, it
also provides a rich query language through the query parser, a lexer that interprets
a string into a Lucene query. The following table shows a summary of the Lucene
query parser syntax:

Name Sample Description
Terms "knowledge" Or "base"

Or "knowledge base"
A query is broken up into terms and
operators. There are two types of terms:
single terms and phrases. A single term
is a single word. A phrase is a group of
words surrounded by double quotes.

Fields Title: "knowledge base" Fielded data. When performing a search,
you can either specify a field or use the
default field.

Term modifiers None Modifying the query terms to provide a
wide range of searching options.

Indexing, Search, and Workflow

[410]

Name Sample Description
Wildcard ba?e

or

ba*

Single and multiple character wildcard
searches within single terms (not within
phrase queries). To perform a single
character wildcard search use the ?
symbol. To perform a multiple character
wildcard search use the * symbol.

Fuzzy know~

or

know~0.7

Fuzzy searches are based on the
Levenshtein Distance or Edit Distance
algorithm. To do a fuzzy search, use the
tilde symbol (~) at the end of a single
word term. The default that is used, if the
parameter is not given, is 0.5.

Proximity "knowledge base"~12 Finding words within a specific distance.
To do a proximity search use the tilde
symbol (~) at the end of a phrase.

Range displayDate:[20110601
TO 2011101]

or

title:{Base TO
Knowledge}

Range queries allow one to match the
documents whose field(s) values are
between the lower and upper bound
specified by the Range query. Range
queries can be inclusive or exclusive of
the upper and lower bounds.

Boosting a term knowledge^4 base

or

"knowledge base"^5
"liferay portal"

Lucene provides the relevance level of
matching the documents based on the
terms found. To boost a term use the
caret symbol (^) with a boost factor (a
number) at the end of the term you are
searching for.

Boolean
Operators

"knowledge" OR "base"

"knowledge" AND "base"

"knowledge" NOT "base"

Boolean operators allow the terms to be
combined through logic operators, AND,
+, OR, NOT, and -, as Boolean operators.

Grouping {knowledge OR base}
AND portal

Parentheses to group clauses to form sub
queries.

Field Grouping title:(+portal
+"knowledge base")

Use parentheses to group multiple
clauses to a single field.

Special
Characters

+ - && || ! () { } [] ^ " ~
* ? : \

Escaping special characters is a part of
the query syntax.

In the search input box of the search portlet, you would be able to leverage the
preceding query syntax.

Chapter 9

[411]

Look-ahead typing—auto complete
Look-ahead is a tool in algorithms for looking ahead a few more input items
before making a cost-effective decision at one stage of the algorithm. In artificial
intelligence, look-ahead is an important component of the combinatorial search
that specifies, roughly, how deeply the graph representing the problem is explored.
Look-ahead is also an important concept in parsers in compilers and establishes the
maximum number of incoming input tokens the parser can look at to decide which
rule it should use.

Look-ahead typing is very useful for searching assets by keywords. Moreover, it is
nice that the system should remember the keywords that users input for the search.
When users start typing, suggested keywords should be available.

For example, suppose that the users input a set of keywords to search the Knowledge
Base article, such as, liferay, life, live, look, and like, and now they want to use
these keywords in their keyword search. When a user types l, the system should list
suggested keywords, such as, liferay, life, live, look, and like; when a user types li,
the system should list the suggested keywords, such as, liferay, life, live and like.

The look-ahead typing should be everywhere in the portal. How to implement
the same? In the following steps, you could build the look-ahead type feature
everywhere in the portal and plugins:

1. Define the service XML and generate the related models and services via the
service builder.

2. When a user enters a new keyword for search, if the search result is not
empty, that keyword will be saved into the database. If the keyword exists
(company-wise, group-wise, or asset-type-wise, through classNameId) in
the database, then update the keyword modified date.

3. The suggested keywords will be retrieved from this table, ordered in
descending order by the modified date. A number of keywords, such as
500 (configurable), will be retrieved.

Models and services
The service XML of the search keyword SearchKeyword could be defined as follows:

<!-- PK fields -->
 <column name="keywordId" type="long" primary="true" />
 <!-- Group instance -->
 <!-- Audit fields -->
 <!-- Other fields -->

Indexing, Search, and Workflow

[412]

 <column name="classNameId" type="long" />
 <column name="keyword" type="String" />
 <!-- Order -->
 <!-- Finder methods -->

The preceding code first defines a keyword ID, keywordId, for column as a
primary key field. Then, it specifies a group instance by adding a column called
groupId. Audited fields are added with a set of columns, such as companyId,
userId, userName, createDate, and modifiedDate. Other fields include columns
classNameId and keyword.

As you can see, the keywords can have different scopes: company-wise via the
column companyId, group-wise via the column groupId, and asset-type-wise via the
column classNameId, as shown in the following services:

public boolean updatekeyword(long companyId,
 long groupId, long classNameId, String keyword);
public List<String> getkeywords(long companyId,
 long groupId, long classNameId);

As shown in the preceding code, the keyword is saved by the primary key
keywordId and a composed-key set (companyId, groupId, and classNameId).
The keywords are retrieved by the composed-key set (companyId, groupId, and
classNameId). If it was company-wise, ignore the inputs groupId and classNameId.
If it was group-wise, ignore the input classNameId. Otherwise, it would be
considered as asset-type-wise keywords.

In addition, it would be better to add the following properties to portal.properties:

look.ahead.typing.max.keywords=500
look.ahead.typing.scope.type=company

The property look.ahead.typing.max.keywords specifies the maximum number of
look-ahead typing keywords, while the property look.ahead.typing.scope.type
designates whether the look-ahead typing keyword scope type could be company,
group, or asset-type.

AutoComplete
AutoComplete is effective when it is easy to predict the word being typed, based on
those already typed, speeding up the human-computer interactions in environments
to which it is well suited. The UI part will leverage the auto complete feature to
implement the look-ahead typing function.

Chapter 9

[413]

AUI (Alloy UI) provides a base class for AutoComplete, as follows: by widget
lifecycle (for example, initializer, renderUI, bindUI, syncUI, and destructor),
by presenting users' choices based on their input, by separating the selected items,
and via keyboard interaction for the selected items.

var instance = new A.AutoComplete({
 dataSource: [
 ['liferay'],
 ['like']
],
 schema: {
 resultFields: ['key']
 },
 matchKey: 'key',
 delimChar: ',',
 typeAhead: true,
 contentBox: '#myAutoComplete'
}).render();

jQuery empowers AutoComplete as widgets, providing suggestions while you
type into the field. AutoComplete, when added to an input field, enables the users
to quickly find and select from a pre-populated list of values, such as dataSource,
as they type, leveraging searching and filtering. dataSource is a simple JavaScript
array, provided to the widget using the source option. Note that AutoComplete
on jQuery is a part of the jQuery UI. dataSource is not limited to only JavaScript
array, but it's possible to use the AJAX call resultset as dataSource. The
following is some sample code:

$(function() {
 var dataSource = [
 "liferay",
 "like"
];
 $(#myAutoComplete").autocomplete({
 source: dataSource
 });
});

Indexing, Search, and Workflow

[414]

OpenSearch
OpenSearch is a collection of simple formats for the sharing of search results.
The OpenSearch description document format can be used to describe a search
engine, while the OpenSearch response elements can be used to extend the existing
syndication formats, such as RSS and Atom, with the extra metadata needed to
return the search results. Refer to http://www.opensearch.org, for more detailed
information.

In brief, OpenSearch allows publishing the search results in a format suitable for
syndication and aggregation. Federated search is a simultaneous search of multiple
online databases or web resources, and it is an emerging feature of automated,
web-based libraries and information retrieval systems. The portal implements
federated search, based on the OpenSearch standard.

Interface and services
The portal provides the OpenSearch interface called com.liferay.portal.
kernel.search.OpenSearch. The following are the methods defined in the
interface OpenSearch:

public boolean isEnabled();
public String search(HttpServletRequest request,
 long groupId, long userId, String keywords,
 int startPage, int itemsPerPage, String format)
 throws SearchException;

The preceding code shows the interface OpenSearch. First, it specifies a method
isEnabled to either enable or disable the OpenSearch capability. Then, it specifies
three search methods with different parameters. Thus, we could use the search
method either by the parameter URL or by parameters keywords, startPage,
itemsPage, and format, based on different requirements.

As shown in the following table, the abstract class BaseOpenSearchImpl implements
the interface OpenSearch, extended by the abstract class HitsOpenSearchImpl.
The class DirectoryOpenSearchImpl goes further to extend the abstract class
HitsOpenSearchImpl. For this reason, the Search portlet will include the search
results from the portlet Directory.

Chapter 9

[415]

Interface/
abstract class

Implementation/extension Utility Description

OpenSearch BaseOpen
SearchImpl

OpenSearch
Util

Interface
OpenSearch and
its implementation

BaseOpen
SearchImpl

PortalOpen
SearchImpl; HitsOpen
SearchImpl

none Abstract class
BaseOpen
SearchImpl

HitsOpen
SearchImpl

BlogsOpen
SearchImpl,
BookmarksOpen
SearchImpl,
CalendarOpen
SearchImpl,
DirectoryOpen
SearchImpl, DLOpe
nSearchImpl,Journ
alOpenSearchImpl,
MBOpenSearchImpl,
WikiOpenSearchImpl

none Abstract class
HitsOpen
SearchImpl and
its implementations:
Blogs, Bookmarks,
Calendar,
Directory, DL,
Journal, MB, Wiki,
and so on

Configuration
The portal provides many portlets to support the OpenSearch framework, such as,
message boards, blogs, wikis, directory entries and document library documents,
users, organizations, and so on. In addition, plugins such as the Knowledge Base
portlet also support the OpenSearch framework. Normally, these portlets have the
following OpenSearch framework configuration.

<open-search-class>class-name</open-search-class>

The Search portlet obtains an OpenSearch instance from each portlet that has the tag
definition <open-search-class>. For example, the portlet Directory (portlet ID 11)
allows users to search for other users, organizations, or user groups. The OpenSearch
capability has been specified for the portlet Directory in the XML file $PORTAL_
SRC_HOME/portal-web/docroot/WEB-INF/liferay-portlet.xml, as follows:

<open-search-class>
com.liferay.portlet.directory.util.DirectoryOpenSearchImpl
</open-search-class>

Indexing, Search, and Workflow

[416]

As shown in the preceding code, the open-search-class value must be a class
that implements OpenSearch, which is called to get the search results in the
OpenSearch standard.

As mentioned previously, OpenSearch in the search portlet covers out-of-the-box
portlets, such as, Blogs, Calendar, Bookmarks, Document Library, Message Boards,
Wiki, Web Content, Directory, and so on. Fortunately, the portal adds the ability
to remove these portlets from the list of portlets searched by the portlet Search,
as follows:

com.liferay.portlet.blogs.util.BlogsOpenSearchImpl=true
See details in portal.properties
com.liferay.portlet.wiki.util.WikiOpenSearchImpl=true

As shown in the preceding code, you can set any of the preceding properties
to false to disable the portlet from being searched by the search portlet in
portal-ext.properties.

What's happening?
In fact, the abstract class BaseOpenSearchImpl specifies the following code to read
the properties, as mentioned previously. If the property is set to false, the portal
will disable that portlet from being searched by the Search portlet.

// see details in BaseOpenSearchImpl.java
private boolean _enabled = GetterUtil.getBoolean(
 PropsUtil.get(getClass().getName()), true);

The Search portlet provides a federated search against both portal core portlets
and custom plugins portlets. As shown in the following table, you will have the
ability to specify the scope of search results, whether Everything or This site.
Everything means search results will come from any groups in the current portal
instance. This site means search results will come from the current group in the
current portal instance.

Value Group ID UI Taglib JSP sample
Everything 0 <liferay-

ui:search />
view.jsp,
search.jsp

This site Current group ID <liferay-
ui:search />

view.jsp,
search.jsp

Chapter 9

[417]

Applying OpenSearch on plugin portlets
In general, the portal provides the OpenSearch framework, so that a user can create
an OpenSearch implementation in the plugin environment. The portal will try to
call this OpenSearch implementation when you hit the Search portlet. The Search
portlet goes through all registered implementations and tries to create an instance.

For example, you could search for content in the Knowledge Base articles as well as
the portal core portlets such as Blogs, Bookmarks, Calendar, Directory, and so on,
via the OpenSearch framework in the portlet Search. How does it work? Eventually,
you can apply OpenSearch on plugin portlets, as follows:

1. Create a class called AdminOpenSearchImpl, which extends the abstract class
HitsOpenSearchImpl, and implements the interface OpenSearch indirectly:
public Indexer getIndexer() {
 return IndexerRegistryUtil.getIndexer(KBArticle.class);
// see details in AdminOpenSearchImpl.java
}

2. The preceding code is the snippet for the class AdminOpenSearchImpl. It
defines constants such as SEARCH_PATH and TITLE, and a set of methods,
such as, getIndexer, getURL, and so on.

3. Register OpenSearch implementation AdminOpenSearchImpl via the tag
open-search-class in the file /WEB-INF/liferay-portlet.xml.

<open-search-class>
com.liferay.knowledgebase.admin.util.AdminOpenSearchImpl
</open-search-class>

As shown in the preceding code, the open-search-class value
AdminOpenSearchImpl is a class that implements OpenSearch indirectly,
called to get search results in the OpenSearch standard.

Workflow
A workflow consists of a sequence of connected steps. It is a depiction of a sequence
of operations, declared as the work of a person, a group of persons, an organization
of staff, or one or more simple or complex mechanisms. A workflow is a model to
represent real work for further assessment, for example, for describing a reliably
repeatable sequence of operations. More abstractly, a workflow is a pattern of activity
enabled by a systematic organization of resources, defined roles and mass, energy and
information flows, into a work process that can be documented and learned. Refer to
Wikipedia for more details: http://en.wikipedia.org/wiki/Workflow.

Indexing, Search, and Workflow

[418]

While Business Process Model and Notation (BPMN), developed by the Object
Management Group (OMG), provides a notation that is readily understandable
by all business users, from the business analysts that create the initial drafts of the
processes to the technical developers responsible for implementing the technology
that will perform those processes, and finally, to the business people who will
manage and monitor those processes. Thus, BPMN creates a standardized bridge for
the gap between the business process design and process implementation. Refer to
BPMN 2.0 at http://www.omg.org/spec/BPMN/2.0/.

The portal is able to integrate the workflow engines, such as jBPM, Kaleo, Activiti,
Intalio (BPM) and to apply workflow on any assets. By this feature, users are able
to manage the content creation process with a workflow. This feature especially
helps the content creators collaborate and go through the necessary steps in order to
produce better and more accurate content, say assets. Within a workflow, any type of
asset, such as, document library documents, wiki entries, web content, blog entries,
comments, and message board messages, can go through review-approval processes.

Liferay eats its own dog food. It uses its own products, such as hooks, webs, and
services builder, to build the workflow engine Kaleo. Workflow-related portlets are
My Submissions (portlet ID 158), My Workflow Tasks (portlet ID 153), Workflow
Configuration (portlet ID 152), and Workflow Portlet (portlet ID 151). The workflow
engine Kaleo is defined in the plugin kaleo-web.

Kaleo-web models
The portal has defined a set of entities in the plugin kaleo-web. These entities
cover KaleoAction, KaleoCondition, KaleoDefinition, KaleoInstance,
KaleoInstanceToken, KaleoLog, KaleoNode, KaleoNotification,
KaleoNotificationRecipient, KaleoTask, KaleoTaskAssignment,
KaleoTaskAssignmentInstance, KaleoTaskInstanceToken, KaleoTimer,
KaleoTimerInstanceToken, and KaleoTransition. The following diagram
depicts an overview of the workflow Kaleo models:

*
c KaleoAction KaleoConditionc KaleoDefinitionc KaleoInstancec c c

KaleoLogc KaleoNodec KaleoTransitionc KaleoTaskInstanceTokenc cKaleoTimerInstanceTokenc

KaleoNotificationRecipientc KaleoNotificationc KaleoTimerc c

*

* *

*

**

*

*

*
*

* *

*

*

*

KaleoInstanceToken KaleoTaskAssignment

KaleoTaskAssignmentInstance

KaleoTask

Chapter 9

[419]

Obviously, these entities are defined in the XML file svn://svn.liferay.com/
repos/public/plugins/trunk/webs/kaleo-web/docroot/WEB-INF/service.xml.

After using the service builder, a set of models and their implementations are
generated. The following table shows these models and their implementations.
The cache model class, implementing CacheModel<Kaleo*>, represents Kaleo*
in entity cache.

Interface Extension Implementation Wrapper/Clp/Soap
KaleoAction KaleoActionModel,

PersistedModel
KaleoAction
BaseImpl extends
KaleoAction
ModelImpl
KaleoAction
CacheModel

KaleoActionWrapper,
KaleoActionClp,
KaleoActionSoap

Kaleo
Condition

KaleoCondition
Model,
PersistedModel

KaleoCondition
BaseImpl extends
KaleoCondition
ModelImpl
KaleoCondition
CacheModel

KaleoCondition
Wrapper,
KaleoConditionClp,
KaleoConditionSoap

Kaleo
Definition

KaleoDefinition
Model,
PersistedModel

KaleoDefinition
BaseImpl extends
KaleoDefinition
ModelImpl,
KaleoDefinition
CacheModel

KaleoDefinition
Wrapper,
KaleoDefinitionClp,
KaleoDefinitionSoap

Kaleo
Instance

KaleoInstance
Model,
PersistedModel

KaleoInstance
BaseImpl extends
KaleoInstance
ModelImpl,
KaleoInstance
CacheModel

KaleoInstance
Wrapper,
KaleoInstanceClp,
KaleoInstanceSoap

KaleoLog KaleoLogModel,
PersistedModel

KaleoLog
BaseImpl extends
KaleoLog
ModelImpl,
KaleoLog
CacheModel

KaleoLogWrapper,
KaleoLogClp,
KaleoLogSoap

KaleoNode KaleoNodeModel,
PersistedModel

KaleoNode
BaseImpl extends
KaleoNode
ModelImpl,
KaleoNode
CacheModel

KaleoNodeWrapper,
KaleoNodeClp,
KaleoNodeSoap

Indexing, Search, and Workflow

[420]

Interface Extension Implementation Wrapper/Clp/Soap
Kaleo
Notification

Kaleo
Notification
Model,
PersistedModel

KaleoNotification
BaseImpl extends
KaleoNotification
ModelImpl,
KaleoNotification
CacheModel

KaleoNotification
Wrapper, Kaleo
NotificationClp,
Kaleo
NotificationSoap

KaleoTask KaleoTaskModel,
PersistedModel

KaleoTask
BaseImpl extends
KaleoTask
ModelImpl,
KaleoTask
CacheModel

KaleoTask
Wrapper,
KaleoTaskClp,
KaleoTaskSoap

KaleoTimer KaleoTimerModel,
PersistedModel

KaleoTimer
BaseImpl extends
KaleoTimer
ModelImpl,
KaleoTimer
CacheModel

KaleoTimer
Wrapper,
KaleoTimerClp,
KaleoTimerSoap

Kaleo
Transition

KaleoTransition
Model,
PersistedModel

KaleoTransition
BaseImpl extends
KaleoTransition
ModelImpl,
KaleoTransition
CacheModel

KaleoTransition
Wrapper,
KaleoTransition
Clp, KaleoTransition
Sopap

The portal adds a persist-related auditing interface class called com.liferay.
portal.model.PersistedModel. The interface defines the following line, throwing
SystemException, if a system exception occurrs:

public void persist() throws SystemException;

As shown in the preceding code, you should update this model instance in the
database or add the same, if it doesn't yet exist. Also, you should notify the
appropriate model listeners.

Kaleo-web services
The plugin kaleo-web uses Kaleo as the workflow engine. It provides the workflow
services implementation, including deployer, comparators, parsers, and runtime
services implementation.

The following table lists deployer, comparators, and parsers services, and their
implementations:

Chapter 9

[421]

Implementation Interface/Abstract
class

Involved models Description

DefaultWorkflow
Deployer

Workflow
Deployer

Condition,
definition, Node,
Task, Transition,
KaleoDefinition,
KaleoNode

Default
workflow
deployer

Workflow
Comparator
FactoryImpl

Workflow
Comparator
Factory

OrderByComparator
Workflow
Comparator
FactoryUtil

Workflow
comparator

Workflow
Definition
NameComparator

BaseWorkflow
DefinitionName
Comparator

Comparator Workflow
definition
name
comparator

Workflow
Instance
EndDate(State)
Comparator

BaseWorkflow
InstanceEndDate
(State)Comparator

Comparator Workflow
Instance
End Date
(or State)
comparator

WorkflowLog
CreateDate
(UserId)
Comparator

BaseWorkflow
LogCreateDate
(UserId)
Comparator

Comparator Workflow
Log create
date (or
User ID)
comparator

WorkflowTask
ompletionDate
(CreateDate,
DueDate,
Name, UserId)
Comparator

BaseWorkflow
TaskCompletion
Date(CreateDate,
DueDate, Name,
UserId)Comparator

Comparator Workflow
task (Create
Date, Due
Date, Name,
User ID)
comparator

DefaultWorkflow
Validator

Workflow
Validator

Definition Workflow
validator

XMLWorkflow
ModelParser

Workflow
ModelParser

Document, Element,
Action, Condition,
Definition, Fork,
Join, Node, State,
task, timer, and so
on.

Workflow
model parser

Indexing, Search, and Workflow

[422]

The plugin kaleo-web also provides a workflow runtime implementation, as shown
in the following table:

Class Interface Involved model Description
DefaultWorkflow
EngineImpl

Workflow
Engine

Workflow
Definition;
Workflow
Instance;

Workflow
engine
implementation

Default
KaleoSignaler

Kaleo
Signaler

KaleoNode Kaleo workflow
signaler

DefaultTask
ManagerImpl

TaskManager WorkflowTask Workflow task
manager

DRLActionExecutor
ScriptAction
Executor Action
ExecutorUtil

Action
Executor

Fact, KaleoAction,
Execution
Context

DRL and Script
action executor

BaseTask
AssignmentSelector,
CompositeTask
AssignmentSelector,
DefaultTask
AssignmentSelector,
GroupAwareRole
TaskAssignment
Selector,
MultiLanguageTask
AssignmentSelector,
TaskAssignerUtil

Task
Assignment
Selector

KaleoTask
Assignment;
KaleoTask
InstanceToken;
ExecutionContext;

Workflow
assignment
selector

DefaultDueDate
Calculator

DueDate
Calculator

DelayDuration Workflow due-
date calculator

DRLCondition
Evaluator Multi
LanguageCondition
Evaluator Scripting
ConditionEvaluator

Condition
Evaluator

KaleoCondition;
Execution
Context

Workflow
condition
evaluator

DefaultGraphWalker GraphWalker Kaleo, Execution
Context

Workflow
graph walker

PathElement
MessageListener

Message
Listener

Message,
GraphWalker,
PathElement

Workflow
path element
message
listener

Chapter 9

[423]

Class Interface Involved model Description
BaseNodeExecutor,
ConditionNode
Executor,
ForkNodeExecutor,
JoinNodeExecutor,
StateNodeExecutor,
TaskNodeExecutor

Node
Executor

KaleoNode,
Execution
Context,
PathElement

Workflow
node executor,
including
Condition,
Fork, Join,
State, and
Task

FreeMarker
Notification
MessageGenerator,
TextNotification
MessageGenerator,
VelocityNotification
MessageGenerator

Notification
Message
Generator

Execution
Context

Workflow
notification
message
generator

EmailNotification
Sender, IMNotification
Sender,
PrivateNotification
Sender,
NotificationUtil

Notification
Sender

Kaleo
Notification
Recipient;
ExecutionContext

E-mail, IM,
and private
notification
sender

TimerMessage
Listener

Message
Listener

Message,
KaleoNode,
Workflow engine

Workflow
timer message
listener

Custom SQL
The portal specifies the following custom SQL configurations in portal.
properties:

custom.sql.configs=custom-sql/default.xml

As shown in the preceding code, you can provide a list of comma-delimited custom
SQL configurations, in portal-ext.properties, as input.

The custom SQL scripts are provided at /WEB-INF/src/custom-sql/default.xml.
Both service builder and service.xml will take care of the most basic needs in
querying the database. The custom queries separate queries from the code—easy-to-
find and easy-to-edit.

Obviously, you could override this XML file and add your own custom SQL to the
plugins as well.

Indexing, Search, and Workflow

[424]

Hooks
The plugin kaleo-web defines two kinds of hooks—portal properties hook and
service wrapper hook—in the XML file/WEB-INF/liferay-hook.xml:

<portal-properties>portal.properties</portal-properties>
<service>
 <service-type>
 com.liferay.portal.service.CompanyLocalService
 </service-type>
 <service-impl>
com.liferay.portal.workflow.kaleo.hook.service.impl.
CompanyLocalServiceImpl
 </service-impl>
</service>

As shown in the preceding code, the portal properties hook is specified with the
tag portal-properties, and the service wrapper hook is defined with the tags
service, service-type, and service-impl.

The portal properties hook overrides properties, such as, release info, upgrade
process, and value object model, as shown in the following lines of code:

release.info.build.number=100
value.object.listener.com.liferay.portal.model.Company=com.liferay.
portal.workflow.kaleo.hook.listeners.CompanyModelListener

The following table shows a summary of these hooks:

Name Interface / Abstract class Implementation Hook type
Service wrapper Company

LocalService
CompanyLocal
ServiceImpl

Service wrapper

Release info None 100, 0 Portal properties
Upgrade Upgrade

Process
Upgrade
Process_1_x_0

Portal properties

Value object
model

BaseMode
lListener
<Company>

CompanyModel
Listener

Portal properties

Chapter 9

[425]

Web
As a special web application, the plugin kaleo-web defines the portal context
configuration in web.xml. To wire the XML files in a plugin from the portal's Spring,
use portalContextConfigLocation as parameter name, while XML files kaleo-
spring.xml and messaging-spring.xml are active as parameter value:

<context-param>
 <param-name>portalContextConfigLocation</param-name>
 <param-value>
 /WEB-INF/classes/META-INF/kaleo-spring.xml,
 /WEB-INF/classes/META-INF/messaging-spring.xml
 </param-value>
</context-param>

Spring beans and messaging
The following table displays a summary of Spring beans and messaging configuration.
As you can see, there are a lot of general configuration files, such as base-spring.xml,
cluster-spring.xml, and more. The plugin kaleo-web especially adds the special
configuration files kaleo-spring.xml and messaging-spring.xml:

XML file Folder Sample bean Description
base-spring.xml /src/META-

INF
ServiceMonitor
Advice AsyncAdvice

Base Spring
beans

cluster-spring.
xml

/src/META-
INF

ChainableMethod
AdviceInjector

Cluster Spring
beans

dynamic-data-
source-spring.
xml

/src/META-
INF

DynamicDataSource
TransactionInterceptor

Dynamic data
source Spring
beans

ext-spring.xml /src/META-
INF

bean(*TaskManager) ||
bean(*WorkflowEngine)

Extension of
Spring beans

hibernate-
spring.xml

/src/META-
INF

PortletHibernate
Configuration

Hibernate Spring
beans

infrastructure-
spring.xml

/src/META-
INF

InfrastructureUtil Infrastructure
Spring beans

kaleo-spring.xml /src/META-
INF

WorkflowComparator
FactoryUtil

Kaleo Sping
beans

Indexing, Search, and Workflow

[426]

XML file Folder Sample bean Description
messaging-
spring.xml

/src/META-
INF

ParallelDestination Messaging
Spring beans

portlet-hbm.xml /src/META-
INF

KaleoActionImpl Portlet hibernate
HBM file

portlet-model-
hints.xml

/src/META-
INF

KaleoAction Portlet model
hints

portlet-orm.xml /src/META-
INF

KaleoAction
ModelImpl

Portlet ORM

portlet-spring.
xml

/src/META-
INF

KaleoActionLocal
ServiceImpl,
KaleoAction
LocalServiceUtil

Portlet Spring
beans

shard-data-
source-spring.
xml

/src/META-
INF

ShardAdvice,
ShardPersistence
Advice

Sharding data
source Spring
beans

Portal workflow services
The portal itself is a workflow system, providing a set of workflow-related models
and services. Furthermore, the workflow should work on an asset-permission basis.
Therefore, the portal provides the workflow permission service in order to check
workflow-related permissions.

Global models
The portal adds a workflow-related auditing interface class called com.liferay.
portal.model.WorkflowedModel:

public int getStatus();
// see details in WorkflowedModel.java
public void setStatusDate(Date statusDate);

As you can see, the interface WorkflowedModel defines methods to get status, such
as getStatus, isApproved, isDraft, isExpired, and isPending.

In fact, the workflow status could be any, approved, denied, draft, expired,
inactive, incomplete, or pending, as shown in the constants class com.liferay.
portal.kernel.workflow.WorkflowConstants:

public static final int STATUS_ANY = -1;
public static final int STATUS_APPROVED = 0;
// see details in WorkflowConstants.java
public static final int STATUS_PENDING = 1;

Chapter 9

[427]

In addition, the portal defines models, such as WorkflowDefinitionLink and
WorkflowInstanceLink. The following table shows an overview of these models:

Interface Extension Implementation Wrapper/Soap
Workflow
Definition
Link

Workflow
Instance
LinkModel extends
AttachedModel,
BaseModel<Work
flowInstanceLi
nk>, GroupedModel,
PersistedModel

WorkflowInstance
LinkImpl extends
WorkflowInstance
LinkBaseImpl

Workflow
Definition
LinkWrapper,
Workflow
Definition
LinkSoap

Workflow
InstanceLink

Workflow
Definition
LinkModel extends
AttachedModel, Ba
seModel<Workflo
wDefinitionLink
>, GroupedModel,
PersistedModel

WorkflowDefinition
LinkImpl extends
WorkflowDefinition
LinkBaseImpl

Workflow
Instance
LinkWrapper,
Workflow
Instance
LinkSoap

Global services
The portal provides a set of workflow-related services. The following table shows the
workflow-related interface, their extensions and implementation, and utility classes:

Interface Extension/Implementation Utility Description
Workflow
Handler,
Workflow
Handler
Registry

BaseWorkflow
Handler, Workflow
Handler
RegistryImpl

Workflow
Handler
Registry
Util

Interface
Workflow
handler and
registry

Workflow
Definition
Workflow
Definition
Manager

DefaultWorkflow
Definition, Workflow
DefinitionManager
ProxyBean

Workflow
Definition
ManagerUtil

Workflow
definition and
manager

Workflow
Instance
Workflow
Instance
Manager

Default
Workflow
Instance, Workflow
InstanceManager
ProxyBean

Workflow
Instance
ManagerUtil

Workflow
instance and
manager

Indexing, Search, and Workflow

[428]

Interface Extension/Implementation Utility Description
WorkflowLog
Workflow
LogManager

Default
WorkflowLog,
WorkflowLog
ManagerProxyBean

WorkflowLog
ManagerUtil

Workflow Log
and manager

WorkflowTask
Workflow
TaskManager

DefaultWorkflow
Task, WorkflowTask
Manager
ProxyBean, Workflow
TaskAssignee

WorkflowTask
ManagerUtil

Workflow Task
and manager

Workflow
EngineManager

Workflow
EngineManager
ProxyBean

WorkflowEngine
ManagerUtil

Workflow
engine manager

Workflow
StatusManager

WorkflowStatus
ManagerImpl
WorkflowStatus
ManagerProxyBean

WorkflowStatus
ManagerUtil

Workflow
status manager

The portal especially defines a class related to ThreadLocal, called
WorkflowThreadLocal, in the package com.liferay.portal.
kernel.workflow. Besides this class, the portal defines a set of
comparators (for example, BaseWorkflowDefinitionNameComparator,
BaseWorkflowInstanceEndDateComparator, and so on) and listeners
(for example, DefaultWorkflowDestinationEventListener, extending
BaseDestinationEventListener, and implementing DestinationEventListener).
These comparators are defined in a centralized way, in the package com.liferay.
portal.kernel.workflow.comparator, while the listener is defined in the package
com.liferay.portal.kernel.workflow.messaging.

Workflow permissions
The workflow permissions checker is defined in an interface called
WorkflowPermission. As shown in the following code, the interface defines
a method called hasPermission, with parameters PermissionChecker, Long
groupId, String className, Long classPK, and String actionId:

public Boolean hasPermission(
 PermissionChecker permissionChecker, long groupId,
 String className, long classPK, String actionId);

Chapter 9

[429]

The interface WorkflowPermission is implemented in the class
WorkflowPermissionImpl, where you will be able to find out the detailed
implementation. The utility class WorkflowPermissionUtil is available for end
users to call services. For example, in order to check the workflow permission,
you can call the following service:

Boolean hasPermission =
 WorkflowPermissionUtil.hasPermission(
 permissionChecker, groupId,
 className, classPK, actionId);

Workflow definition
The portal creates an XML schema (named liferay-workflow-definition_6_1_0.
xsd) for the internal workflow engine. For more details on this XML schema, you
can refer to the workflow definition XSD at /definitions/liferay-workflow-
definition_6_1_0.xsd.

Workflow definition XSD
The XML schema XSD defines a set of complex types, elements, groups, and simple
types. The following table shows an overview of these types, elements, and groups.
It doesn't display the full list of all types, elements, and groups; instead, it tries to
show the main items of the workflow XSD definition:

Name Values Type Description
abstract-timer-
complex-type

Name, description,
delay, and recurrence

complexType Abstract timer
complex type

abstract-
workflow-node-
complex-type

Name and description complexType Abstract
workflow node
complex type

action-complex-
type

Name, description,
script, script-
language, and priority

complexType Action complex
type

condition, fork,
join, state, task

abstract-
workflow-node-
complex-type

element Elements
condition, fork,
join, state,
and task

actions-group Action and
notification

group Group actions

Indexing, Search, and Workflow

[430]

Name Values Type Description
assignments-
group

Resource-actions,
roles, scribed-
assignment, and user

group Group
assignments

nodes-group condition, fork,
join, state, task

group Group nodes

execution-type onEntry, onExit String,
Enumeration

Execution type

notification-
transport-type

email, im, private-
message

String,
Enumeration

Notification
transport type

role-type regular,
organization,
site

String,
Enumeration

Role type

script-language-
type

beanshell,
drl, groovy,
javascript,
python, ruby

String,
Enumeration

Script language
type

task-execution-
type

onAssignement,
onEntry, onExit

String,
Enumeration

Task execution
type

template-
language-type

fremarker, text,
velocity

String Template
language type

timer-execution-
type

onTimer String Timer execution
type

time-scale-type second, minute,
hour, day, week,
month, year

String,
Enumeration

Type scale type

Kaleo workflow definition
The plugin kaleo-web defines a set of classes and interfaces to implement the
workflow schema XSD. The following table shows the details of these classes
and interfaces, where you would see how the plugin kaleo-web implements the
workflow XSD definition:

Class Interface/Extension Type Description
Action ActionAware none Model Action
AddressRecipient,
RoleRecipient,
UserRecipient

Recipient RecipientType Model Recipient
of address, role,
and user

Chapter 9

[431]

Class Interface/Extension Type Description
Resource
Assignment,
RoleAssignment,
ScriptAssignment,
UserAssignment

Assignment AssignmentType,
ScriptLanguage

Model
Assignment and
its extensions

Condition,
Definition, Fork,
Join, State, Task

Node
implements
ActionAware,
Notification
Aware

NodeType Model Node and
its extensions

DelayDuration none DurationScale Model delay
duration

Notification Notification
Aware

ExecutionType,
TemplateLanguage

Model notification

Timer ActionAware,
Notification
Aware

none Model Timer

Sample workflow
The plugin kaleo-web provides a few sample workflows, for example, Category
Specific Approval, Legal and Marketing Approval, Scripted Single
Approver, and Single Approver, as shown in the following table. Of course, you
should be able to specify your own workflow, based on the preceding workflow
definition.

Name Tasks Conditions Description
Category-Specific
Approval

update, content
review, legal review,
approve, and reject

Determine-branch,
script language
groovy, e-mail
notification

A single approver
can approve the
workflow content.
category-
specific-
definitions.
xml

Legal and
Marketing
Approval

update, marketing
review, legal review,
and approve

Script language
JavaScript, e-mail
notification

Workflow assets
must be approved
first by Marketing
and then by
Legal. legal-
marketing-
definitions.
xml

Indexing, Search, and Workflow

[432]

Name Tasks Conditions Description
Scripted Single
Approver

update and review,
approve and reject

Script language
groovy, e-mail
notification

A single approver
can approve
the workflow
content. single-
approver-
definition-
scripted-
assignment.xml

Single Approver update, review,
approve, and reject

E-mail notification A single approver
can approve
the workflow
content. single-
approver-
definition.xml

You can find more workflow samples at /WEB-INF/src/META-INF/definitions.

BPMN 2
Business Process Model and Notation (BPMN) is a graphical representation for
specifying the business processes in a business process model. BPMN 2.0 contains
several additional elements and new types of diagrams, especially for the improved
modeling of processes that span several independent organizations. The workflow
engine Kaleo should support BPMN 2.0.

In brief, BPMN provides businesses with the ability to understand their internal
business procedures in a graphical notation, giving organizations the ability to
communicate these procedures in a standard manner. Refer to its definition XML
schema at http://www.omg.org/spec/BPMN/2.0/PDF/ and http://issues.
liferay.com/browse/LPS-18980.

Workflow designers
To facilitate use of the workflow engine Kaleo by non-developers, the portal must
provide an easy-to-use graphical designer. The designer tool will enable the users
to drag-and-drop the workflow components to form a process definition.

Workflow designer should leverage throughout the portal as the common UI
for designing workflows support assets, such as, WCM content creation, approval
and publishing, document workflows, workflow forms, and more. In general,
the workflow designer, intended for a business user audience, should support
drag-and-drop for workflow components.

Chapter 9

[433]

This section will introduce a set of available workflow designers. Based on these
workflow designers, the portal workflow designer should be able to provide support
for BPMN 2.0. Currently, the Kaleo Workflow Designer is yet to be developed (refer
to http://issues.liferay.com/browse/LPS-13509).

BPMN2 Visual Editor for Eclipse
BPMN2 Visual Editor for Eclipse is built on top of the Graphiti modeling framework
and uses the BPMN2 EMF metamodel, behind the scenes. Refer to https://github.
com/imeikas/BPMN2-Editor-for-Eclipse.

jBPM and Drools
Drools 5 has introduced the business logic integration platform, which provides a
unified and integrated platform for rules, workflow, and event processing. Refer to
http://www.jboss.org/drools.

jBPM 5, the de facto Java standard for workflows, is a flexible Business Process
Management (BPM) suite, making the bridge between business analysts and
developers. A business process allows us to model our business goals by describing
the steps that need to be executed to achieve that goal and the order, using a flow
chart. The core of jBPM 5 is a light-weight, extensible workflow engine, allowing us
to execute business processes using the BPMN 2 specification. Refer to http://www.
jboss.org/jbpm, for more details.

jBMP provides an Eclipse-based, and web-based, editor (that is, workflow designer)
to support the graphical creation of business processes (such as drag-and-drop).

Activiti
Activiti is a light-weight workflow and BPM platform targeted at business people,
developers, and system administrators. Its core is a super-fast and rock-solid BPMN
2 process engine for Java. Activiti runs on any Java application, on a server, on a
cluster, or in the cloud. Refer to http://www.activiti.org/, for more details.

The Activiti Modeler is a web-based process editor that can be used to author the
BPMN 2.0 process graphically in web browsers. The process files are stored by the
server, a file system, so that they are easily accessible and can be imported without
hassles into any Java IDE, while the Activiti Eclipse Designer can be used to
graphically model, test, and deploy BPMN 2.0 processes.

Indexing, Search, and Workflow

[434]

Applying workflow to assets
The out-of-the-box workflow capability is applied, by default, to the portal core
assets: blogs entries, comments, users, document library documents, layout revisions,
DDL (Dynamic Data Lists) records, message board messages, web content, and
wiki pages. Furthermore, the workflow is available for any custom assets such as
Knowledge Base articles.

Portal core assets
The following table displays the out-of-the-box workflow capability of the portal
core assets:

Workflow handler Model Interface/
Abstract class

Status
columns

JSP files

LayoutRevision
Workflow
Handler

Layout
Revision

BaseWorkflow
Handler
implements
Workflow
Handler

Status, by
UserId, by
UserName,
Date

Not applicable

BlogsEntry
Workflow
Handler

Blogs
Entry

BaseWorkflow
Handler
implements
Workflow
Handler

Status, by
UserId, by
UserName,
Date

/blogs/view.
jsp, edit_
entry.jsp

User Workflow
Handler

User BaseWorkflow
Handler
implements
Workflow
Handler

Status, by
UserId, by
UserName,
Date

/users_admin/
view.jsp, edit_
user.jsp

DLFileEntry
Workflow
Handler

DLFile
Entry

BaseWorkflow
Handler
implements
Workflow

Handler

Status, by
UserId, by
UserName,
Date

/document_
library/view_
file_entry.
jsp, edit_file_
entry.jsp

DDLRecord
Workflow
Handler

DDLRecord BaseWorkflow
Handler
implements
Workflow
Handler

Status, by
UserId, by
UserName,
Date

/dynamic_
data_lists/
view_record.
jsp, edit_
record.jsp

Chapter 9

[435]

Workflow handler Model Interface/
Abstract class

Status
columns

JSP files

JournalArticle
Workflow
Handler

Journal
Article

BaseWorkflow
Handler
implements
Workflow
Handler

Status, by
UserId, by
UserName,
Date

/journal/view_
article.jsp,
edit_article.
jsp, /article/
content.jsp

MBMessage
Workflow
Handler

MBMessage BaseWorkflow
Handler
implements
Workflow
Handler

Status, by
UserId, by
UserName,
Date

/message_
boards/
view.jsp,
edit_message.
jsp, edit_
discussion.
jsp

WikiPage
Workflow
Handler

WikiPage BaseWorkflow
Handler
implements
Workflow
Handler

Status, by
UserId, by
UserName,
Date

/wiki/Edit_
page.jsp, View_
draft_page.
jsp

Plugin custom assets
This section will introduce how to add the workflow capability to any custom assets
in plugins. Note that this can only be done for plugins using the service builder.
Knowledge Base articles will be used as an example, one of the custom assets. The
workflow can be added to custom assets in the following steps:

1. First of all, you should add the workflow instance link and its related
columns and finder to service.xml (for example, knowledge base service
XML /knowledge-base-portlet/docroot/WEB-INF/service.xml), as
follows:
<column name="status" type="int" />
<column name="statusByUserId" type="long" />
<column name="statusByUserName" type="String" />
<column name="statusDate" type="Date" />
<reference package-path="com.liferay.portal"
 entity="WorkflowInstanceLink" />

Indexing, Search, and Workflow

[436]

As shown in the preceding code, the column element represents a
column in the database; here, the four columns status, statusByUserId,
statusByUserName, and statusDate, are required for the Knowledge Base
workflow. The finder element represents a generated finder method; here,
the method finder R_S is defined as Collection for return type with two
columns, resourcePrimkey and status, where the reference element allows
you to inject services from another service.xml within the same class loader.
For example, if you inject the WorkflowInstanceLink entity, then you'll
be able to reference the WorkflowInstanceLink service, from your service
implementation, via the methods getWorkflowInstanceLinkLocalService
and get WorkflowInstanceLinkService. You'll also be able to
reference the WorkflowInstanceLink service, via the variables
workflowInstanceLinkLocalService and workflowInstanceLinkService.

2. Add the workflow handler implementation.
The portal provides pluggable workflow implementations, where developers
can register their own workflow handler implementation for any entity they
build. It will appear automatically in the workflow admin portlet so users
can associate workflow entities with available permissions.
To make this happen, we need to add a workflow handler to $PLUGIN_SDK_
HOME/knowledge-base-portlet/docroot/WEB-INF/liferay-portlet.
xml, as follows:
<workflow-handler>
com.liferay.knowledgebase.admin.workflow.ArticleWorkflowHandler
</workflow-handler>

As shown in the preceding code, the workflow-handler value must be a class
that implements com.liferay.portal.kernel.workflow.BaseWorkflow-
Handler, and it is called when the workflow is run. Of course, you need to
specify ArticleWorkflowHandler under the package com.liferay.knowl-
edgebase.admin.workflow. The following is the snippet:
public class ArticleWorkflowHandler
 extends BaseWorkflowHandler {
 public Article updateStatus(int status,
 Map<String, Serializable> workflowContext)
 {/* ignore details */};
}

As you can see, ArticleWorkflowHandler extends BaseWorkflowHandler
and overrides the methods getClassName, getType, updateStatus, and
getIconPath.

Chapter 9

[437]

3. Add the method updateStatus.
As mentioned previously, we have added the method updateStatus in
ArticleWorkflowHandler. It is time to provide implementation of the
method updateStatus in the implementation class ArticleLocalService-
Impl. The following is the sample code:
public Article updateStatus(long userId, long resourcePrimKey,
 int status, ServiceContext serviceContext)
{// see details in ArticleLocalServiceImpl.java
}

As shown in the preceding code, it first gets the latest article by
resourcePrimKey and WorkflowConstants.STATUS_ANY. Then, it updates
the article, based on the workflow status. Moreover, it updates article display
order, asset tags and categories, social activities, indexer, attachments,
subscriptions, and so on.

4. Last but not least, add the workflow-related AUI tags.

First of all, add AUI input workflow action with the value
WorkflowConstants.ACTION_SAVE_DRAFT.
<aui:input name="workflowAction" type="hidden" value="<%=
WorkflowConstants.ACTION_SAVE_DRAFT %>" />

As shown in the preceding code, the default value of the AUI input
workflowAction was set to SAVE DRAFT, with type hidden. That is,
this AUI input is invisible to the end users.
Afterwards, it would be better to add workflow messages by the UI tag
liferay-ui:message, such as, a-new-version-will-be-created-auto-
matically-if-this-content-is-modified for WorkflowConstants.STA-
TUS_APPROVED and there-is-a-publication-workflow-in-process for
WorkflowConstants.STATUS_PENDING.
And then, add the AUI workflow status tag aui:workflow-status in
/admin/edit_article.jsp. Finally, you should add JavaScript to
implement the function publishArticle.

Summary
In this chapter, you learned how to leverage webs plugins and WAI, to build webs
plugins, using cas-web and solr-web plugins as examples, to index and search assets
(both portal core assets and plugins custom assets), to set up a solr-web plugin, to
apply workflow to assets, and to employ the kaleo-web plugin.

In the next chapter, we're going to introduce WAP and portlets bridges.

Mobile Devices and
Portlet Bridges

Websites or WAP sites are made up of many pages. Each page consists of a set
of portlets with a specific look-and-feel, specified by themes. Moreover, all of the
portlets in a page are arranged using layout templates. The websites could be viewed
in Web or WAP browsers (mobile devices, such as Smartphones and tablets). The
mobile device detectors provide mobile device support and detection within
portal infrastructure.

Generally speaking, a theme is a user interface design that makes the portal more
user-friendly and visually pleasing. The portal provides layout templates in order
to describe how various columns and rows are arranged to display portlets. It also
provides themes that can be used to customize the overall look-and-feel of websites,
WAP sites, and pages. Basically, themes control the whole look-and-feel of the pages
generated in the portal, using CSS, images, JavaScript, HTML tags, Velocity, and/or
FreeMarker templates.

In addition, the portal provides a set of portlet bridges, such as, MVC, Struts, JSF,
Spring MVC, and more, where diversities of portlet plugins could be built on top of
these portlet bridges.

This chapter will first introduce layout template plugins and theme plugins. Then,
it will address WAP mobile site-building. Portlet bridges will get introduced with
different frameworks: Struts, JSF, and Spring MVC.

By the end of this chapter, you will have learned how to build:
•	 Layout template plugins
•	 Theme plugins
•	 WAP mobile themes and mobile device detectors
•	 Portlet bridges

Mobile Devices and Portlet Bridges

[440]

•	 Struts 2 portlets
•	 JSF 2 portlets
•	 Spring 3 MVC portlets

Layout template plugins
As mentioned earlier, Liferay Plugins SDK provides a set of default templates, such
as, EAR, Ext, hook, layout template, portlet, theme, and so on. The previous chapter
has introduced portlet, ext, hook, and web projects templates. This section is going
to introduce layout template project's default template. The theme project's default
template will be introduced in the next section.

Layout template
Liferay Plugins SDK provides layout template project's default template. This default
template has the following structure. The layout template project's folder name is
represented as @layouttpl.name@-layouttpl. For example, @layouttpl.name@ has
the value 1-2-1-columns for 1-2-1 layout templates. Under the folder @layouttpl.
name@-layouttpl, there is a folder named docroot and an XML file called build.
xml. As you can see, build.xml has the following code:

<!DOCTYPE project>
 <project name="@layouttpl.name@-layouttpl"
 basedir="." default="deploy">
 <import file="../build-common-layouttpl.xml" />
</project>

As shown in the code, @layouttpl.name@ represents a real layout template name.
When using Ant target create, it will create a new layout template project. Under
the folder docroot, it includes a thumbnail file blank_columns.png, a web browser
template file blank_columns.tpl, a WAP browser template file blank_columns.
wap.tpl, and the WEB-INF folder.

The subfolder WEB-INF especially covers XML files, such as, liferay-plugin-
package.properties and liferay-layout-templates.xml. Inside these XML files,
you would have noticed that template variables @layouttpl.template.name@ and
@layouttpl.template.name@ are in use. For instance, the content of the XML file
liferay-layout-templates.xml is listed as follows:

<layout-templates>
 <custom>
 <layout-template id="@layouttpl.template.name@" name="@
layouttpl.display.name@">

Chapter 10

[441]

 <template-path>/@layouttpl.template.name@.tpl</template-path>
 <wap-template-path>/@layouttpl.template.name@.wap.tpl</wap-
template-path>
</custom>
</layout-templates>

This code shows registration of the product-home layout template under the custom
XML tag, with id as @layouttpl.template.name@, name as @layouttpl.display.
name@, template-path as /@layouttpl.template.name@.tpl, wap-template-path
as /@layouttpl.template.name@.wap.tpl, and thumbnail-path as /@layouttpl.
template.name@.png.

Layout template DTD
As you can see, there are at least two kinds of XML files that are involved: liferay-
layout-templates.xml and liferay-plugin-package.xml. The DTDs of these
XML files are defined as at $PORTAL-SRC_HOME/definitions: liferay-layout-
templates_6_1_0.dtd and liferay-plugin-package_6_1_0.dtd.

The layout template XSD is the XML Schema for layout templates deployment
descriptor. The layout-templates element is the root of the deployment descriptor
for Liferay layout templates. It can have zero or one standard and custom values.
The layout-templates element contains the declarative data of a portlet, as follows:

<!ELEMENT layout-templates (standard?, custom?)>
<!ELEMENT standard (layout-template*)>
<!ELEMENT custom (layout-template*)>
<!ELEMENT layout-template (template-path, wap-template-path,
 thumbnail-path?, roles?)>
<!ELEMENT roles (role-name)>

The * sign, in this example, declares that the child element layout-template can
occur zero or more times inside the custom and standard elements. The layout-
template element has many child elements, such as, template-path, wap-
template-path, thumbnail-path, and roles. As you can see, the template-path
and wap-template-path elements can occur only one time, forming the key of the
layout template for WEB and WAP, respectively, while the thumbnail-path and
roles elements can occur zero or one time inside the element layout-template.

The roles element contains a list of role names. Users who have any of these roles
will be able to use this layout template for their layouts. Anyone can use this layout
template if no role names are set. role-name designates the name of a security role.

Mobile Devices and Portlet Bridges

[442]

Sample layout template
Optionally, you could run a script to create a blank layout template project (of
course, you can use Liferay IDE to build it). For example, for the preceding project,
we have a project named 3-2-3-columns and layout template display named 3-2-3
columns. On Linux or Mac, you would change the directory to $PLUGINS_SDK_HOME/
layouttpl and then type the following command:

./create.sh 3-2-3-columns "3-2-3 Columns"

On Windows, you would change the directory to $PLUGINS_SDK_HOME/layouttp
and then type the following command:

create.bat 3-2-3-columns "3-2-3 Columns"

This command will create a blank layout template in the folder $PLUGINS_SDK_
HOME/layouttpl. In fact, the script uses default template to create a blank layout
template with the following Ant command:

ant -Dlayouttpl.name=$1 -Dlayouttpl.display.name=\"$2\" create

The portal has defined default standard layout templates. The following table shows
a summary of these layout templates. Obviously, you can use these layout templates
as references.

Name Type Files and Icons Description
pop up standard pop_up.png, pop_up.tpl,

pop_up.wap.tpl
Popup layout template

max standard max.png, max.tpl, max.wap.
tpl

Maximized layout
template

exclusive standard exclusive.png, exclusive.
tpl, exclusive.wap.tpl

Exclusive layout
template

Although you can define custom layout templates in plugins, the portal also defined
a set of custom layout templates as default. The following table shows a summary of
these layout templates:

Name Type Files and Icons Description
Free form custom freeform.png, freeform.

tpl, freeform.wap.tpl
Free form layout template

3 columns custom 3_columns.png, 3_
columns.tpl, 3_columns.
wap.tpl

3 columns (1/3:1/3:1/3)
layout template

Chapter 10

[443]

Name Type Files and Icons Description
2 columns custom 2_columns_i(or ii or

iii).png, 2_columns_i(or
ii or iii).tpl, 2_
columns_i(or ii or
iii).wap.tpl

2 columns (alternatives
– 50%:50%; 30%:70%;
70%:30%) layout template

2-2 columns custom 2_2_columns.png,
2_2_columns.tpl, 2_2_
columns.wap.tpl

2-2 columns (70%:30%,
30%:70%) layout template

1-2 columns custom 1_2_columns_i(or ii).
png, 1_2_columns_i(or
ii).tpl, 1_2_
columns_i(or ii).wap.
tpl

1-2 columns (alternatives
– 100%, 30%:70%; 100%,
70%:30%) layout template

1-2-1
columns

custom 1_2_1_columns.png,
1_2_1_columns.tpl,
1_2_1_columns.wap.tpl

1-2-1 columns (100%,
50%:50%, 100%) layout
template

Layout template services
The portal provided the interface LayoutTemplate, extending
Comparable<LayoutTemplate>, Plugin, and Serializable. It is implemented by
the class LayoutTemplateImpl extending the class PluginBaseImpl. The following
is the code snippet of the interface LayoutTemplate:

public String getLayoutTemplateId();
// see details in LayoutTemplate.java
public List<String> getColumns();

Of course, you would be able to leverage the service
class LayoutTemplateLocalService and the utility class
LayoutTemplateLocalServiceUtil.

As mentioned earlier, there are two kinds of layout templates: custom
and standard. These layout templates got defined in the constants class
LayoutTemplateConstants.

Mobile Devices and Portlet Bridges

[444]

Theme plugins
We have discussed the layout template plugins in the previous section. This section
is going to address theme plugins.

Theme default template
Liferay Plugins SDK provides theme project's default template. This default template
has the following structure. The theme project folder name is represented as @theme.
name@-theme. For example, @theme.name@ has value so for social office theme.
Under the folder @theme.name@-theme, there is a folder named docroot and an
XML file called build.xml. As you can see, build.xml contains the following code:

<project name="@theme.name@-theme" basedir="." default="deploy">
 <import file="../build-common-theme.xml" />
 <property name="theme.parent" value="_styled" />
</project>

This means that when your newly created theme is built, it will copy all the files
from the _styled folder in the ${PORTAL_SRC_HOME}/html/themes/ directory, to
the docroot folder of your theme. The default _styled folder doesn't have enough
files to create a completely working theme, and that is why you would see a messed-
up page when the theme is applied to a page. The reason why this default _styled
folder doesn't include enough files is that some Liferay users prefer to have a
minimal set of files to start with.

As shown in the preceding code, @theme.name@ represents a real theme name. When
using Ant target create, it will create a new layout template project with a specific
theme name and project title as parameters.

You can modify the build.xml file for your theme in the ${PLUGINS_SDK_HOME}/
themes/@theme.name@-theme/ folder, by changing the value of the theme.parent
property from _styled to classic, if you prefer to use the Classic theme as the
basis for your theme modification:

<property name="theme.parent" value="classic" />

The folder docroot includes folders WEB-INF and _diff.

Chapter 10

[445]

Default themes
The portal has defined default themes: _styled, _unstyled, classic, and
control_panel, as shown in the following table:

Name location Folders Files
_styled /portal-web/

docroot/html/
themes/_styled

css; images application.css,
base.css, custom.css,
dockbar.css, extra.css,
forms.css, layout.css,
main.css, navigation.
css, portlet.css.

screenshot.png

_unstyled /portal-web/
docroot/html/
themes/_
unstyled

css; images
(and sub
folders); js;
templates

application.css, and so
on. favicon.ico, /add_
content/portlet_item.
png, and so on. main.js;
portal_normal.vm (ftl)

classic /portal-web/
docroot/html/
themes/_classic

_diff/css; _
diff/images;

_diff/
js; _diff/
templates

custom.css, and so on.
screenshot.png, and
so on. main.js; portal_
normal.vm (ftl)

control_panel /portal-web/
docroot/html/
themes/control_
panel

_diff/css; _
diff/images;
_diff/
js; _diff/
templates

custom.css, and so on.
screenshot.png, and
so on. main.js; portal_
normal.vm

Building themes
As much as we can say, the best practice of building a customized theme is to put
only the differences of customized themes into the ${theme-name}/docroot/_diffs
folder. Here, ${theme-name} refers to any theme project name, for example, so-
theme. Using the best practice, we need to put customized CSS, images, JavaScript,
and templates in the /_diffs folder only.

Mobile Devices and Portlet Bridges

[446]

In the /_diffs/css folder, create a CSS file custom.css. We should place all of
the CSS that is different from the other files. By placing custom CSS in this file, and
not touching the other files, we can be assured that the upgrading of their theme,
later on, will be much smoother. In the /_diffs/images folder, put all customized
images with subfolders. For example, create at least two images—screenshot.
png and thumbnail.png—to show what a page with the current theme looks like.
Further, create a subfolder searchbar, and put all search-related images in a folder
called /searchbar.

Create a JavaScript file main.js in the folder /_diffs/javascript. The portal
includes the Alloy UI JavaScript library. Thus, we can include any plugin (note that
plugin here refers to Alloy UI plugins or YUI plugins) that Alloy UI supports in
the theme. In the /_diffs/templates folder, create customized template files such
as, init_custom.vm (.ftl), navigation.vm (.ftl), portal_normal.vm (.ftl),
portal_pop_up.vm (.ftl), and portlet.vm (.ftl).

look-and-feel DTD
For a specific theme plugin such as so-theme, there are at least two kinds of files
in the folder /docroot/WEB-INF/, they are liferay-look-and-feel.xml and
liferay-plugin-package.properties. The DTD of the XML file is defined as
at /definitions/liferay-look-and-feel_6_1_0.dtd.

The look-and-feel element is the root of the deployment descriptor for a Liferay
look-and-feel archive. The look-and-feel archive will hereafter be referred to as an
LAF archive:

<!ELEMENT look-and-feel (compatibility, company-limit?, group-limit?,
theme*)>

The compatibility element specifies a list of Liferay Portal versions that will
properly deploy the themes in this LAF archive:

<!ELEMENT compatibility (version+)>

The version element specifies a specific Liferay Portal version number. For example,
if its value is 6.1.x, that means the themes in this LAF archive will deploy correctly
in Liferay Portal 6.1.x. The portal will not deploy themes from an LAF archive, unless
the version numbers match.

Chapter 10

[447]

The company-limit element specifies a list of company IDs that can access the
themes in this LAF archive. If company-limit is not set, then every company in the
portal has access to all of the themes in this LAF archive. If company-limit is set, then
the company IDs will be included or excluded, based on the company-includes and
company-excludes elements. Note that if there is a disagreement between company-
includes and company-excludes, company-excludes will take precedence:

<!ELEMENT company-limit (
 company-includes?, company-excludes?)>
<!ELEMENT company-includes (company-id*)>
<!ELEMENT company-excludes (company-id*)>

The company-includes element specifies a list of company IDs that will have access
to the themes in this LAF archive. The company-excludes element specifies a list of
company IDs that will not have access to the themes in this LAF archive.

The company-id element must have either the name or pattern attributes specified.
If the name attribute is specified, then the exact company ID is either included or
excluded, depending on whether the company-id element is inside the company-
includes element or the company-excludes element. If the pattern attribute is
specified, then a regular expression match is applied to the pattern, which will
determine whether a company ID is included or excluded.

The group-limit element specifies a list of group IDs that can access the themes in
this LAF archive. If group-limit is not set, then every group in the portal has access
to all of the themes in this LAF archive. If group-limit is set, then the group IDs
will be included or excluded based on the group-includes and group-excludes
elements. If there is a disagreement between group-includes and group-excludes,
group-excludes takes precedence:

<!ELEMENT group-limit (group-includes?, group-excludes?)>
<!ELEMENT group-includes (group-id*)>
<!ELEMENT group-excludes (group-id*)>

The group-includes element specifies a list of group IDs that will have access to the
themes in this LAF archive. The group-excludes element specifies a list of group
IDs that will not have access to the themes in this LAF archive.

The group-id element must have either the name or pattern attributes specified. If
the name attribute is specified, then the exact group ID is either included or excluded,
depending on whether the group-id element is inside the group-includes element
or the group-excludes element. If the pattern attribute is specified, then a regular
expression match is applied to the pattern, which will determine whether a group
ID is included or excluded.

Mobile Devices and Portlet Bridges

[448]

The theme element contains the declarative data of a theme.

<!ELEMENT theme (root-path?, templates-path?, css-path?, images-path?,
javascript-path?, virtual-path?, template-extension?, settings?, wap-
theme?, roles?, color-scheme*, layout-templates?)>

As shown in the following declaration, the id attribute specifies the unique key for
a theme. For convenience, the id attribute can be referenced in the rest of the theme
element as ${theme-id}. The name attribute specifies the friendly name of a theme
that is displayed to the user:

<!ATTLIST theme
 id CDATA #REQUIRED
 name CDATA #REQUIRED
>

As shown in the theme element definition, the root-path value sets the location
of the root path for the theme. For example, the root path for the Classic theme is /
html/themes/classic. This means you can find the files for the Classic theme in /
docroot/html/themes/classic. For convenience, the root-path attribute can be
referenced in the rest of the theme element as ${root-path}. The default value is "/".

The templates-path value sets the location of the templates path for the theme.
For example, the templates path for the Classic theme is /html/themes/classic/
templates. This means you can find the FTL or VM templates for the Classic theme
in /docroot/html/themes/classic/templates. For convenience, the templates-
path attribute can be referenced in the rest of the theme element as ${templates-
path}. The default value is ${root-path}/templates.

The images-path value sets the location of the images path for the theme.
For example, the images path for the Classic theme is /html/themes/classic/
images. This means you can find images for the Classic theme in /docroot/html/
themes/classic/images. For convenience, the images-path attribute can be
referenced in the rest of the theme element as ${images-path}. The default
value is ${root-path}/images.

Meanwhile, the javascript-path value sets the location of the JavaScript path for
the theme. For example, the JavaScript path for the Classic theme is /html/themes/
classic/js. This means you can find JavaScript for the Classic theme in /docroot/
html/themes/classic/js. For convenience, the javascript-path attribute can
be referenced in the rest of the theme element as ${javascript-path}. The default
value is ${root-path}/js.

The virtual-path value sets the virtual path used to fetch the CSS, images, and
JavaScript files. By default, the portal returns the theme's servlet path. This setting
allows you to override it. The default value is empty, which means this is not used.

Chapter 10

[449]

You could set the wap-theme value to true, if the theme is designed for cellular
phones or other mobile devices such as smartphones. The default value is false.

The roles element contains a list of role names. Users who have any of these roles
will be able to use this theme for their layouts and layout sets. Anyone can use this
theme, if no role names are set.

A theme can have many color schemes. Each color scheme references a css class
name and defines an image path for the location of the color scheme's images:

<!ELEMENT color-scheme (default-cs?, css-class, color-scheme-images-
path?)>

The id attribute specifies the key for a color scheme that is unique for its parent
theme. For convenience, the id attribute can be referenced in the rest of the color-
scheme element as ${color-scheme-id}. The name attribute specifies the friendly
name of a color scheme that is displayed to the user:

<!ATTLIST color-scheme
 id CDATA #REQUIRED
 name CDATA #REQUIRED
>

You may set the default-css value to true if this is the default color scheme. The
default value is false. The css-class value is a CSS class name that represents the
color scheme. For convenience, the css-class attribute can be referenced in the rest
of the color-scheme element as ${css-class}.

The color-scheme-images-path value sets the location of the images path for the
color scheme. For convenience, the color-scheme-images-path attribute can be
referenced in the rest of the theme element as ${color-scheme-images-path}. The
default value is ${root-path}/images/color_schemes/${css-class}.

What's happening after deploying themes?
In general, when you double-click on the Ant target deploy, under the theme
of the Ant view, it will first copy all of the files from the folder ${app.server.
portal.dir}/html/themes/_unstyled/ to the folder $PLUGINS_SDK_HOME/
themes/${theme.name}/docroot/. Then, it will copy all of the files from the folder
${app. server.portal.dir}/html/themes/_styled/ to the folder ${theme.
name}/docroot/, too. Afterwards, it will copy all of the files from the folder
${theme.name}/docroot/_diffs/ to the folder ${theme.name}/docroot/. It
means that you will place all of your new and changed files into the folder ${theme.
name}/docroot. Here, ${theme.name} refers to a real theme project name, for
example, so-theme.

Mobile Devices and Portlet Bridges

[450]

Afterwards, you will see folders css, images, js, and templates, under the folder
${theme.name}/docroot. Each of these folders will contain all merged files and
subfolders from folders _unstyled, _styled, and _diffs. As mentioned earlier, the
theme.parent property is specified with the _styled value in the ${theme.name}/
build.xml file. Of course, you can configure this property with the _unstyled value
or the classic value. Fortunately, you can find details from the XML file
build-common-theme.xml, as follows:

<if>
 <equals arg1="${theme.parent}" arg2="_unstyled" />
 <then>
 <copy todir="docroot" overwrite="true">
 <fileset dir="${app.server.portal.dir}/
 html/themes/_unstyled"
 excludes="templates/**"/>
 </copy>
 <!— see details in build-common-theme.xml -->
</elseif>

This code shows the process to deploy themes. For _unstyled, it just copies all files
from the theme _unstyled to the folder /docroot. For _styled, it first copies all
of the files from the theme _unstyled to the folder /docroot, and then it copies all
of the files from the theme _styled to the folder /docroot and overwrites all the
changes under the folder /docroot from the folder _styled.

Theme services
Similar to the interface LayoutTemplate, the portal provided the interface Theme,
extending Comparable<Theme>, Plugin, and Serializable. It is implemented by
the class ThemeImpl extending the class PluginBaseImpl. The following is a code
snippet from the Theme interface:

public List<ColorScheme> getColorSchemes();
// see details in theme.javapublic String getName

Obviously, you would be able to leverage the service classes ThemeLocalService
and ThemeService, and the utility classes ThemeLocalServiceUtil and
ThemeServiceUtil. The following table shows these services, utilities, and interfaces:

Interface Utility/Wrapper Implementation Main methods
Theme None ThemeImpl extends

PluginBaseImpl
get*, has*, is*,
resourceExists,
set*

ThemeSetting None ThemeSettingImpl get*, is*, set*

Chapter 10

[451]

Interface Utility/Wrapper Implementation Main methods
Theme(Local)
Service

Theme(Local)
ServiceUtil

Theme(Local)
ServiceWrapper

Theme(Local)
ServiceImpl
extends
Theme(Local)
ServiceBaseImpl

getThemes,
getWARThemes

Action None ThemeService
PreAction

run, servicePre

In addition, the portal provides a set of classes to display the theme in the package
com.liferay.portal.theme, such as, NaItem, PortletDisplay, ThemeDisplay,
and so on. The following table lists these classes and their involved models:

Class name Interface Involved models Description
NavItem Serializable RequestVars, Layout,

List<NavItem>
Layout
navigation items
in the theme

PortletDisplay Serializable Writer,
PortletPreferences

Portlet display
in the theme

ThemeCompanyId Serializable String _value,
boolean _pattern;

Company ID in
the theme

ThemeCompany
Limit

Serializable List<ThemeCompanyId>
_includes,

List<ThemeCompanyId>
_excludes;

Company limit
in the theme

ThemeGroupId Serializable String _value,
boolean _pattern;

Group ID in the
theme

ThemeGroup
Limit

Serializable List<Theme
GroupId> _includes,

List<ThemeGroupId>
_excludes;

Group limit in
the theme

ThemeDisplay Serializable Account, ColorScheme,
Company, Contact,
Group, Layout,
LayoutSet,
LayoutTypePortlet,
Theme, ThemeSetting,
User;

Theme display

Mobile Devices and Portlet Bridges

[452]

Theme factories
The portal implemented a set of theme-related factories, such as,
PortletDisplayFactory, ThemeDisplayFactory, and ThemeLoaderFactory, as
shown in the following table:

Factory Model Involved models Description
PortletDisplay
Factory

PortletDisplay None Portlet display
factory

ThemeDisplay
Factory

ThemeDisplay None Theme display
factory

ThemeLoader
Factory

ThemeLoader ServletContext,
ServletContextPool

Theme loader
factory

Template engines
The portal integrated template engines Apache Velocity and FreeMarker, by default.
FreeMarker is a Java-based template engine for servlet-based web application
development and any other kind of text output, such as generating CSS, Java source
code, and so on. Unlike JSP, it isn't dependent on the servlet architecture or on HTTP.
Refer to http://freemarker.org/.

The portal has specified the following properties for the FreeMarker template engine
in portal.properties:

freemarker.engine.cache.storage=
 com.liferay.portal.freemarker.LiferayCacheStoragefreemarker.engine.
macro.library=FTL_liferay.ftl as Liferay

As shown in the code, the portal provided the abstract class com.liferay.
portal.freemarker.FreeMarkerTemplateLoader and its extension classes
ServletTemplateLoader and ThemeLoaderTemplateLoader, extending
URLTemplateLoader and JournalTemplateLoader. The following table shows
details of these classes:

Abstract class/Interface Abstract class/Utility Extension/
Implementation

Description

FreeMarker
TemplateLoader

URLTemplate
Loader

LiferayTemplate
Source

URLTemplate
Source

JournalTemplate
Loader

ServletTemplate
Loader
ThemeLoader
TemplateLoader

FreeMarker
template loader

Chapter 10

[453]

Abstract class/Interface Abstract class/Utility Extension/
Implementation

Description

Concurrent
CacheStorage

None LiferayCache
Storage

Liferay cache
storage

TemplateLoader None StringTemplate
Loader

String template
loader

SimpleHash None LiferayTemplate
Model

Liferay
template model

DefaultObject
Wrapper

None LiferayObject
Wrapper

Liferay object
wrapper

Configuration
DefaultObject
Wrapper Template;

FreeMarkUtil None FreeMarker
Utility

As you can see, the template loader could be used in different domains: servlet,
Journal, and theme loader.

Apache Velocity is a Java-based template engine, providing a simple yet powerful
template language to reference objects defined in Java code. It permits anyone
to use template language to reference objects defined in Java code. Refer to
http://velocity.apache.org/.

The portal has specified the following properties for the Apache Velocity template
engine in portal.properties:

velocity.engine.resource.listeners=com.liferay.portal.velocity.
ServletVelocityResourceListenervelocity.engine.logger.category=org.
apache.velocity

As shown in the code, you can set the Velocity resource managers. The portal
extends the Velocity's default resource managers for better scalability. Note that
the modification check interval is not respected because the resource loader
implementation does not know the last modified date of a resource. This means
you will need to turn off caching if you want to be able to modify VM templates
in themes and see the changes right away.

Mobile Devices and Portlet Bridges

[454]

In addition, the portal provided the abstract class classcom.liferay.
util.velocity.VelocityResourceListener and its extension classes
ClassLoaderVelocityResourceListener, ServletVelocityResourceListener,
ThemeLoaderTemplateLoader, and JournalTemplateVelocityResourceListener,
as shown the following table. These classes will run in sequence to allow you to find
the applicable ResourceLoader to load a Velocity template. The following table lists
a summary of these classes:

Abstract class/Interface Abstract class/Utility Extension/
Implementation

Description

StringResource
Repository

Serializable
StringResource

StringResource
RepositoryImpl

Velocity String
resource
repository

ResourceManager
Impl

LiferayResource
Manager

None Liferay Velocity
resource
manager

ResourceCache LiferayResource
CacheUtil

LiferayResource
Cache

Liferay Velocity
resource cache

VelocityPortlet GenericPortlet None Velocity Portlet
ResourceLoader,
ServiceLocator

None LiferayResource
Loader

Velocity
Resource

VelocityResource
Listener

None ClassLoader
VelocityResource
Listener,
JournalTemplate
VelocityResource
Listener,
ServletVelocity
ResourceListener,
ThemeLoader
VelocityResource
Listener

Velocity
Resource
Listener

PortletPreferences VelocityPortlet
Preferences

None Velocity Portlet
Preferences

Velocity VelocityUtil UtilLocator Velocity Utility

As you can see, the template loader could be used in different domains: class
loader, servlet, Journal template, and theme loader.

Chapter 10

[455]

Template engine services
The portal defines Velocity engine interfaces VelocityEngine, VelocityContext,
and VelocityVariables, as shown in the following table:

Interface Utility/Extension Implementation Main methods
Velocity
Engine

Velocity
EngineUtil

Velocity
EngineImpl

get*, init,
mergeTemplate,
flushTemplate

Velocity
Context

Template
Context

Velocity
ContextImpl

get, put

Velocity
Variables

Velocity
VariablesUtil

Velocity
VariablesImpl

insertHelperUtilities,
insertVariables

Similarly, the portal defined Velocity engine interfaces FreeMarkerEngine,
FreeMarkerContext, and FreeMarkerVariables, as shown in the following table:

Interface Utility/Extension Implementation Main methods
FreeMarker
Engine

FreeMarker
EngineUtil

FreeMarker
EngineImpl

get*, init, merge*,
resourceExists

FreeMarker
Context

Template
Context

FreeMarker
ContextImpl

get, put

FreeMarker
Variables

FreeMarker
VariablesUtil

FreeMarker
VariablesImpl

insertHelperUtilities,
insertVariables

Template services
The portal provides template parser interface and implementation. The following
table shows the template parser, transformer interface, and transformer listeners:

Interface Utility/Abstract
class

Implementation Description

Template
Parser

BaseTemplate
Parser

VelocityTemplate
Parser

Template parser
interface and its
implementation

Transformer BaseTransformer DDLTransformer
Journal
Transformer

Transformer
interface and its
implementation

Mobile Devices and Portlet Bridges

[456]

Interface Utility/Abstract
class

Implementation Description

Transformer
Listener

BaseTransformer
Listener

ContentTransformer
Listener;
LocaleTransformer
Listener;
RegexTransformer
Listener;
TokensTransformer
Listener; ViewCounter
TransformerListener

Transformer
listener and its
implementation

Template variables
The portal provides template files to control the look-and-feel of websites. These
templates include both VM (Velocity) format and FTL (FreeMarker) format, such as,
init, init_custom, navigation, portal_normal, portal_pop_up, and portlet.
The following table shows a summary of these template files:

Template file VM FTL Variables
init_custom init_custom.

vm
init_custom.
ftl

This file allows you to override and
define new FreeMarker/Velocity
variables

init init.vm init.ftl Common variables: theme,
theme_display, theme_
settings, and so on

navigation navigation.
vm

navigation.
ftl

Variables in Navigation: nav_
items, nav_item

portal_
normal

portal_
normal.vm

portal_
normal.ftl

Variables in the portal normal:
theme, theme_display, theme_
settings, and so on

portal_pop_
up

portal_pop_
up.vm

portal_pop_
up.ftl

Variables in the portal pop up:
theme

portlet portlet.vm portlet.ftl Variables in the portlet: theme,
portlet_display

Chapter 10

[457]

Where are these variables declared? Eventually, these variables got defined in the
classes VelocityVariablesImpl and FreeMarkerVariablesImpl, as shown in the
following table:

Methodes Classes Variables Mapped classes
insertHelper
Utilities

Velocity
VariablesImpl

FreeMarker
VariablesImpl

arrayUtil,
auditMessage
FactoryUtil,
auditRouterUtil,
BrowserSniffer,
dateFormatFactory,
dateTool, and so on

ArrayUtil_IW,
AuditMessage
Factory,
AuditRouter.
BrowserSniffer,
FastDateFormat
Factory,

DateTool, and so on
insert
Variables

Velocity
VariablesImpl

FreeMarker
VariablesImpl

request,
portletConfigImpl,
portletRequest,
portletResponse,
xmlRequest

themeDisplay,
company, user,
realUser, layout,
layouts

plid, scopedGroupId,

permissionChecker,

locale, timeZone

portletDisplay,
navItems

init, theme, and so on

Request,
portletConfigImpl,
PortletRequest,
portletResponse,
String, themeDisplay,
Company, User, Layout,
List<Layout>,

Long,
PermissionChecker,
Locale, TimeZone;
PortletDisplay,
List<NavItem>

Init.vm, Theme, and
so on

As you can see, the variables, such as, theme, themeDisplay, portletDislay,
navItems, and so on, got defined in both VelocityVariablesImpl and
FreeMarkerVariablesImpl. The custom velocity variables could be added
by overriding the class VelocityVariablesImpl.

Alloy UI
Alloy UI is a user interface meta-framework, providing a consistent and simple API
for building web applications across all three levels of the browser: structure, style,
and behavior. In brief, Alloy UI is a user interface web application framework, a
unified UI library on top of the revolutionary YUI3, and a library of tools. Its purpose
is to help make building and designing web applications an enjoyable experience.
Refer to http://alloy.liferay.com/.

Mobile Devices and Portlet Bridges

[458]

Structure—HTML 5
Alloy UI is based on HTML5's structure, providing reusable markup patterns.
HTML5 is being developed as the next major revision of HTML (HyperText Markup
Language), the core markup language of the World Wide Web.

HTML5 introduces a number of new elements and attributes that reflect typical
usage on modern websites. Some of them are semantic replacements for common
uses of generic block <div> and inline elements, for example, <nav> website
navigation block and <footer> representing bottom of web page or last lines of
HTML code. Other elements provide new functionality through a standardized
interface, for example, <article>, <section>, <figure>, <summary>, <progress>,
<canvas>, <audio>, and <video> elements.

Style—CSS 3
Cascading Style Sheets (CSS) is a stylesheet language used to describe the
presentation semantics (that is, the look and formatting) of a document written in
a markup language. It's the most common application to style web pages written
in HTML and XHTML, but the language can also be applied to any kind of XML
document, including SVG and XUL.

CSS level 3 (CSS3) is modularized. It is both more compact and richer in semantics.
The markup in the published texts of CSS is also not exactly the same as the markup
that the authors used when writing the text.

Behavior—YUI 3
The Yahoo! User Interface Library (YUI) is an open source JavaScript library for
building richly interactive web applications, using techniques such as Ajax, DHTML,
and DOM scripting. In addition, YUI includes several core CSS resources.

YUI 3 is Yahoo!'s next-generation JavaScript and CSS library. The YUI 3 Library
has grown to include the core components, a full suite of utilities, the widget
infrastructure, and a few widgets.

Mobile device detectors
The portal provides mobile device support and detection with portal infrastructure.
This framework will use information gathered on the device being used to view
the portal to change various aspects of the request. For example, if the user is using
an Android or an iPhone device, change the theme to a mobile theme; if the user is
using a Tablet, redirect the request to an information page.

Chapter 10

[459]

As shown in the following diagram, the portal has defined a set of entities for mobile
device detection: MDRAction, MDRRule, MDRRuleGroup, and MDRRuleGroupInstance:

The following table shows an overview of mobile device detection-related interfaces
and their implementation:

Interface Implementation Extension/Utility Main methods
RuleHandler SimpleRuleHandler None evaluateRule,

get*

ActionHandler BaseRedirect
ActionHandler,
LayoutTemplate
Modification
ActionHandler,
ThemeModification
ActionHandler

BaseRedirect
ActionHandler,
SimpleRedirect
ActionHandler,
SiteRedirect
ActionHandler,

applyAction,
get*

Device AbstractDevice UnknownDevice get*, has*, is*
KnownDevices NoKnownDevices None get*, reload
RuleGroup
Processor

DefaultRuleGroup
ProcessorImpl

RuleGroup
ProcessorUtil

get*, register*,
unregister*

ActionHandler
Manager

DefaultAction
HandlerManagerImpl

ActionHandler
ManagerUtil

get*, register*,
unregister*

WURFL
WURFL (stands for Wireless Universal Resource FiLe) is a Device Description
Repository (DDR), a set of proprietary APIs and an XML configuration file that
contains information about device capabilities and features for a variety of mobile
devices. The wurfl-web plugin delivers device recognition based on WURFL
(using the wurfl.jar JAR file). Refer to svn://svn.liferay.com/repos/public/
plugins/trunk/webs/wurfl-web.

Mobile Devices and Portlet Bridges

[460]

WAP theme
Wireless Application Protocol (WAP) is a technical standard for accessing
information over a mobile wireless network. A WAP browser is a web browser for
mobile devices. The portal does not only run on web browsers, but also on WAP
browsers. Now, most browsers support HTML 5. That is, these browsers support
both web devices and mobile devices. Thus, building mobile themes means building
HTML5-based look-and-feel; working on the vast majority of all modern desktops,
smartphones (such as, iPhone, iPad, and so on), tablets, and e-reader platforms (such
as, Apple iOS, Android, Windows Phone 7, Blackberry 6, Palm WebOS, Firefox
Mobile, Opera Mobile, Kindle 3, and so on).

In general, the mobile theme should support a fully enhanced experience with Ajax-
based animated page transitions, including, slide, slideup, slidedown, pop, fade,
and flip. This section is going to address how to build a WAP theme for the portal.

WAP layout template
As mentioned earlier, any layout template has two types of tpl files—one for normal
browsers (named *.tpl) and one for WAP browsers (named *.wap.tpl). In most
cases, the layout template 1-column would be useful for WAP sites.

The file 1-column.wap.tpl has specified the following code:

<div class="columns-1" id="main-content" role="main">
 <div class="portlet-layout">
 <div class="portlet-column portlet-column-only"
 id="column-1">
 $processor.processColumn("column-1",
 "portlet-column-content
 portlet-column-content-only")
 </div>
 </div>
</div>

As shown in the code, only tag <div> is involved. In HTML, the <div> tag defines
a division or a section in an HTML document, often used to group block-elements
to format them with styles.

The tag <div> has defined attributes id and class. ID values (for example,
main-content) are unique. Each element can have only one ID, and each page can
have only one element with that ID. Classes' values (for example, columns-1) are not
unique. You can use the same class on multiple elements; you can also use multiple
classes on the same element.

Chapter 10

[461]

You can also find the attribute role and its value (for example, main) using the role
attribute as a class name. Use this method when individual elements need a different
class name.

You will see the template variable $processor.processColumn, which processes
portlet content of a given column. Eventually, the portlet layout-configuration
provides the interface ColumnProcessor.

The abstract class RuntimeLogic has the following specification:

public abstract String processContent(
 Map<String, String> attributes) throws Exception;

The following table shows related interfaces and their implementation:

Interface/Abstract
class

Implementation Related models/classes Description

ColumnProcessor TemplateProcessor

Customization
SettingsProcessor

Layout,
CustomizedPages,
LayoutType
PortletImpl

Column
processor

RuntimeLogic PortletLogic,
Portlet
ColumnLogic

LayoutTypePortlet,
Portlet,
ThemeDisplay

Runtime
logic

None InitColumn
Processor

LayoutTemplate
LocalServiceImpl

Initiate
column
processor

jQuery and UI
jQuery is a cross-browser JavaScript library designed to simplify the client-side
scripting of HTML. It is a fast and concise JavaScript Library that simplifies HTML
document traversing, event handling, animating, and Ajax interactions for rapid web
development. Refer to http://jquery.com/.

jQuery UI provides abstractions for low-level interaction and animation, advanced
effects and high-level, theme-able widgets, built on top of the jQuery JavaScript
Library. Refer to http://jqueryui.com/.

jQuery mobile
jQuery Mobile, Touch-Optimized Web Framework for Smartphones and Tablets, is a
unified user interface system across all popular mobile device platforms, built on the
rock-solid jQuery and jQuery UI foundation. Refer to http://jquerymobile.com/
for more information.

Mobile Devices and Portlet Bridges

[462]

Building a WAP theme
Here, using jQuery and jQuery Mobile as an example, we're going to build a
WAP theme. Loosely speaking, in the following steps, you can build this WAP
theme as well:

1. Create a folder named wap-theme, for example.
You can use Liferay IDE or Ant target. At the end, you will see the XML file
build.xml and a folder called docroot. Under the folder docroot, you will
see folders WEB-INF and _diffs. Under the folder, you will see the liferay-
plugin-package.properties file.
Under the folder _diffs, you will see folders css, images, js, and
templates.

2. Put your custom images into the images folder, say, screenshot.png,
favicon.ico, and apple-touch-icon.png.
You can put more custom images within specific folders in the images folder.

3. Put your custom JavaScript files into the js folder, say, jquery-x.x.x.min.
js and jquery.mobile.min.js.

4. Copy your custom CSS file to the folder css and rename it as custom.css,
say, jquery.mobile.min.css. Copy the custom folder images and all files
under this folder to the folder css.
Note that both the custom CSS file jquery.mobile.min.css and the custom
folder images should be in the same parent folder.

5. Create template a file under the template folder—portal_normal.vm if
using Velocity engine, or portal_normal.ftl if using FreeMarker engine.
Add the following lines:
<!DOCTYPE html>
<html>
<head>
 <link rel="stylesheet" href="$css_folder/main.css"
 type="text/css" title="$company_name style" />
 <script src="$javascript_folder/jquery-x.x.x.min.js"
 type="text/javascript"></script>
 <script src="$javascript_folder/jquery.mobile.min.js"
 type="text/javascript"></script>
</head>
<body>
 $theme.include($content_include)
</body>
</html>

Chapter 10

[463]

	° As shown in the code, HTML5 declaration is specified as <!DOCTYPE
html>. For leveraging HTML5, all you need is <!doctype html>.

	° Then, it parses init and defines template variables. Afterwards, it
starts with HTML tag <html> and ends with HTML tag </html>.
The <html> tag tells the browser that this is an HTML document. The
html element is the outermost element in HTML documents, known
as the root element. It contains a head element and a body element,
as usual.

	° The head element is a container for all the head elements. Elements
inside <head> can include scripts, instruct the browser where to find
style sheets, provide meta-information, and more. The following tags
can be added to the head section: <base>, <link>, <meta>, <script>,
<style>, and <title>.

	° The <title> tag defines the title of the document and is the only
required element in the head section. The <script> tag is used
to define a client-side script, such as a JavaScript. The <link>
tag defines the relationship between a document and an external
resource and is most used to link to the style sheets.

	° The <meta> tag provides metadata about the HTML document.
Metadata will not be displayed on the page, but it will be
machine-parsable. Meta elements are typically used to specify page
description, keywords, author of the document, last modified date,
and other metadata.

	° The <base> tag specifies a default URL and/or a default target, for
all elements with a URL (for example, hyperlinks, images, forms,
and so on).

Furthermore, it starts with the HTML <body> tag and ends with HTML </body>
tag. The <body> tag defines the document's body. The body element contains all the
contents of an HTML document, such as text, hyperlinks, images, tables, lists, and so
on. Here, the body element contains all the content, presented as a template variable
such as $theme.include($content_include).

Sample WAP page and page transitions
Once a WAP theme is ready (and a WAP layout template is ready, too), we can
build a WAP page view.jsp in a portlet plugin, and furthermore, add the page
transitions capabilities.

Mobile Devices and Portlet Bridges

[464]

The following is a code snippet from the view.jsp JSP file:

<div data-role="page" id="home">
 <div data-role="header" data-theme="b">
 <h2><a data-ajax="false" href="#">
 Action List</h2></div>
 <div data-role="content">
 <ul data-role="listview">
 <li class="view-home"><a href="#view-home"
 data-transition="pop">Map
 Details
 Questions and Answers

 </div>
</div>

As shown in the preceding code, the jQuery Mobile tag page supports either single
page, or local internal linked page within a given page. The immediate children
of tag page are tags div, with data-role of header, content, and footer.

Lists are used for data display, navigation, result lists, and data entry. Any page can
be presented as a modal dialog by adding the data-rel="dialog" attribute to the
page anchor link. When the "dialog" attribute is applied, the framework adds styles
to add rounded corners, margins around the page, and a dark background to make
the tag "dialog" being suspended above the page. Buttons are core widgets used
within a wide range of other plugins, while toolbars are used for headers, footers
and utility bars.

Each theme includes several global settings, including font family, drop shadows for
overlays, and corner radius values for buttons and boxes. In addition, the theme can
include multiple color "swatches", each with color values for bars, content blocks,
buttons and list items, and font text-shadow. jQuery Mobile's default theme includes
five swatches that are given letters a, b, c, d, and e.

The jQuery Mobile framework includes a set of six CSS-based transition effects
(such as, slide, slideup, slidedown, pop, fade, and flip), applied to any object- or
page-change event, which applies the chosen transition when navigating to a new
page and the reverse transition on hitting the Back button.

Chapter 10

[465]

Portlet bridges
The Portlet Bridge is an implementation of the multiple-standard specification (for
example, JSR-301) with added enhancements to support other web frameworks
(such as, JSF, Struts, or Spring MVC), allowing any developer to get started quickly
with their web application running in a portal environment. The good thing is that
the developer no longer needs to worry about the underlying portlet development,
portlet concepts, or the API.

This section is going to address a set of portlet bridges built into the portal. Spring 3
MVC, Struts 2, and JSF 2 will be addressed in the coming sections.

An overview of built-in portlet bridges
The portal supports multiple portlet bridges. The following table shows an overview
of these portlet bridges:

Bridge name Portlet name Base extension Description
alloy AlloyPortlet GenericPortlet Alloy UI portlet bridge
BSF BaseBSFPortlet GenericPortlet Base BSF portlet bridge
scripting ScriptingPortlet GenericPortlet Scripting portlet bridge
groovy GroovyPortlet ScriptingPortlet Groovy portlet bridge
javascript JavaScriptPortlet ScriptingPortlet JavaScript portlet

bridge
python PythonPortlet ScriptingPortlet Python portlet bridge
ruby RubyPortlet ScriptingPortlet Ruby portlet bridge
MVC MVCPortlet LiferayPortlet

extends
GenericPortlet

MVC portlet bridge

WAI WAIPortlet LiferayPortlet
extends
GenericPortlet

MVC portlet bridge

PHP PHPPortlet GenericPortlet PHP portlet bridge

Mobile Devices and Portlet Bridges

[466]

Alloy portlet
The Alloy portlet defines an interface called AlloyController. It defines a set of
methods, such as, afterProperties, execute, and setPageContext.

The Alloy portlet also specifies a friendly URL. The following table shows a
summary of alloy portlet, controller, and friendly URL:

Class Interface/Extension Involved models/
XML file

Description

BaseAlloy
ControllerImpl

AlloyController ActionRequest
ActionResponse

Alloy
controller and
implementation

AlloyFriendlyURL
Mapper

DefaultFriendly
URLMapper

Alloy-
friendly-url-
routes.xml

Alloy friendly
URL mapper

AlloyPortlet GenericPortlet ActionRequest
ActionResponse

Alloy portlet

Base BSF portlet
Bean Scripting Framework (BSF) is a method of allowing the use of scripting in Java
code, providing a set of Java classes that provide support within Java applications for
scripting languages, and also allowing access to Java objects and methods. Refer to
http://jakarta.apache.org/bsf/.

The portal predefines base-BSF-portlet. The following table depicts details of the
base-BSF-portlet:

Portlet Extension Methods Views Involved
model

BaseBSF
Portlet

Generic
Portlet

doView, doHelp,
doEdit

doDispatch, init
processAction

serviceResource

edit-file;
help-file;
view-file;
action-file;
resource-file;
global-files

org.
apache.
bsf.
BSFManager

Chapter 10

[467]

Scripting portlet
A scripting language is a programming language that allows control of one or more
applications. Scripts are distinct from the core code of the application, interpreted
from source code or byte-code. The portal has a defined scripting portlet bridge
called ScriptingPortlet and supports developing scripting portlets in Ruby,
Groovy, Python, and JavaScript, in the plugins environment. The following table
shows details of the portlet bridge ScriptingPortlet:

 Portlet Extension Methods Views Involved models
Scripting
Portlet

Generic
Portlet

doView,
doHelp,
doEdit

doDispatch,
init

process
Action

service
Resource

edit-file;
help-file;
view-file;
action-
file;
resource-
file;
scripting-
language;
global-
files

ActionRequest,
ActionResponse,

RenderRequest,
RenderResponse,

ResourceRequest,
ResourceRespons,

PortletRequest,
PortletResponse,
PortletConfig,
PortletContext

Ruby portlet
Ruby is a dynamic, reflective, general-purpose, object-oriented programming
language that combines syntax inspired by Perl with Smalltalk-like features,
supporting multiple programming paradigms. It has a dynamic type system and
automatic memory management, similar in varying respects to Python, Perl, Lisp,
Dylan, Pike, and CLU. Refer to http://www.ruby-lang.org/en/.

Ruby on Rails (short form, Rails) is an open source web application framework for
the Ruby programming language. Refer to http://rubyonrails.org/.

JRuby is a Java implementation of the Ruby programming language, tightly
integrated with Java to allow the embedding of the interpreter into any Java
application with full two-way access between the Java and the Ruby code.
Refer to http://www.jruby.org/.

Mobile Devices and Portlet Bridges

[468]

The portal has defined the JRuby-based Ruby portlet-bridge, as shown in the
following table:

Portlet Extension Methods Language Involved
JAR file

RubyPortlet ScriptingPortlet init,
getFileName

Ruby jruby.jar

Python portlet
Python is an interpreted, general-purpose, high-level programming scripting
language, supporting multiple programming paradigms, such as, object-oriented
and functional programming styles, with a fully dynamic type system and automatic
memory management, similar to that of Scheme, Ruby, Perl, and Tcl. Refer to
http://www.python.org/.

Jython is an implementation of the Python programming language written in Java.
Refer to http://www.jython.org/. The portal has defined the Jython-based Python
portlet-bridge, as shown in the following table.

Portlet Extension Methods Language Involved JAR
file

PythonPortlet Scripting
Portlet

init,
getFileName

Python jython.jar

Groovy portlet
Groovy is an object-oriented programming, dynamic-scripting, domain-specific
language for the Java platform with features similar to those of Python, Ruby, Perl,
and Smalltalk. Refer to http://groovy.codehaus.org/.

The portal has defined the Groovy portlet-bridge as shown in the following table:

Portlet Extension Methods Language Involved JAR
file

GroovyPortlet Scripting
Portlet

init,
getFileName

groovy groovy.jar

Chapter 10

[469]

JavaScript portlet
JavaScript is a prototype-based, object-oriented scripting language that is dynamic,
weakly typed, and has first-class functions. JavaScript is the scripting language
of the Web. The portal has defined the JavaScript portlet-bridge as shown in the
following table:

Portlet Extension Methods Language Involved
JAR file

JavaScriptPortlet Scripting
Portlet

init,
getFileName

JavaScript None

PHP portlet
PHP is a general-purpose scripting language, embedded into the HTML source
document and interpreted by a web server with a PHP processor module, which
generates the web page document. Refer to http://www.php.net/.

The PHP/Java Bridge is an implementation of a streaming, XML-based network
protocol, connecting a native script engine (for example, PHP, Scheme, or Python)
with a Java virtual machine. J2EE backend clustering and Apache load balancing
are supported as well as running PHP scripts within JSP, JSF, or other frameworks.
Refer to http://php-java-bridge.sourceforge.net/pjb/.

Quercus is a 100 percent open source Java implementation of the PHP language.
Refer to http://www.caucho.com/resin-4.0/examples/quercus.xtp. The portal
has defined the PHP portlet-bridge, as shown in the following table:

Portlet Extension Methods Views Involved models
PHPPortlet Generic

Portlet
doView, doHelp,
doEdit

doDispatch, init
processAction,
destroy

edit-uri;
help-uri;
view-
uri; com.
caucho.
quercus.
servlet.
Quercus
Servlet

ActionRequest,
ActionResponse,
RenderRequest,
RenderResponse,
PortletRequest,
PortletResponse,
PortletConfig,
PortletContext

PHPServlet
Request

HttpServlet
Request
Wrapper

getContextPath,
getParameter,
getPathInfo,
getQueryString,
getRequest,
getServletPath

None RenderRequest,
RenderResponse,
PortletConfig

Mobile Devices and Portlet Bridges

[470]

MVC portlet
Model-view-controller (MVC) is software architecture, isolating the application
logic for the user from the user interface, permitting independent development,
testing, and maintenance of each. The model manages the behavior and data of the
application domain, responds to requests for information about its state, usually
from the view, and responds to instructions to change state, usually from the
controller. The view renders the model into a form suitable for interaction, typically
a user interface element. Multiple views can exist for a single model for different
purposes. The controller receives user input and initiates a response by making calls
on model objects. The portal has defined the MVC portlet-bridge, as shown in the
following table:

Portlet/request Extension/
Interface

Methods Views Involved models

MVCPortlet Liferay
Portlet

doAbout, doConfig,
doView, doHelp,
doEditDefaults,
doEditGuest,
doPreview,
doPrint,
doDispatch, init,
invokeTaglib
Discussion,
processAction,
serveResource,
callActionMethod,
checkJSPPath,
include,

about-jsp,
config-
jsp, edit-
jsp, edit-
defualts.
jsp, edit-
guest.jsp,
help-jsp,
preview-
jsp, view-
jsp

ActionRequest,
ActionResponse,

RenderRequest,
RenderResponse,

PortletRequest,
PortletResponse,
PortletConfig,
PortletContext

Liferay
Portlet

Generic
Portlet

doAbout, doConfig,
doDispatch,
doEditDefaults,
doEditGuest,
doPreview,
doPrint,

None ActionRequest,
ActionResponse,

MimeResponse,

RenderRequest,
RenderResponse,

Action
CommandCache

Action
Command

processCommand None PortletRequest,
PortletResponse

WAI portlet
As mentioned in the previous chapter, the Web Application Integrator (WAI) will
automatically deploy any standard Java servlet application as a portlet within the
portal. The portal predefines the WAI portlet. It also specifies a WAI portlet-friendly
URL. The following table shows a summary of WAI portlets and friendly URLs:

Chapter 10

[471]

Class Interface/Extension Involved models/XML
file

Description

WAIPortlet LiferayPortlet RenderRequest,
RenderResponse,
PortletContext

WAI portlet

WAIFriendly
URLMapper

FriendlyURLMapper wai-friendly-url-
routes.xml

WAI friendly
URL mapper

Vaadin widgets
Vaadin is a web application framework for rich Internet applications. In contrast
to JavaScript libraries and browser plugin-based solutions it features server-side
architecture—the majority of the logic runs on the servers. Ajax technology is
used at the browser end, to ensure a rich and interactive user experience. Refer
to http://vaadin.com/.

Vaadin has been integrated in the portal by default. The integration is done by
performing the following steps:

1. Copy the vaadin-${version}.jar JAR file into the $PORTAL_SRC_HOME/lib
folder with the new filename vaadin.jar.

2. Update the Vaadin version in version.html and versions.xml, in the
$PORTAL_SRC_HOME/lib folder.

3. Build Ant target build-vaadin in $PORTAL_SRC_HOME/portal-web/build.
xml and build Vaadin. For more details, you can refer to build.xml.

The following table shows a summary of Vaadin themes and widgets:

Name Folder Sample Description
base /html/

VAADIN/
themes/base

absolutelayout, accordion,
button, caption, common,
csslayout, customlayout,
and so on

Base theme

default /html/
VAADIN/
themes/
default

images

favicon.ico, styles.css

Default theme

liferay /html/
VAADIN/
themes/
liferay

formlayout,
panel, popupview,
processindicator, and so on

Liferay theme

Mobile Devices and Portlet Bridges

[472]

Name Folder Sample Description
reindeer /html/

VAADIN/
themes/
reindeer

a-sprite-definitions,
label, link, menubar,
notification, and so on

Reindeer theme

Runo /html/
VAADIN/
themes/runno

Absolutelayout, slider,
table, tabsheet, textfield,
tree, and so on

Runo theme

com.vaadin.
portal.gwt.
PortalDefault
WidgetSet

html/VAADIN/
widgetsets/

Prettify Portal default
widget set

Sample portlets
The portal has specified a set of sample portlets. This section is going to introduce
some of them. In addition, you could find many sample plugins (webs, hooks,
layout templates, themes, and portlets) at svn://svn.liferay.com/repos/public/
plugins/trunk/.

OpenLaszlo
OpenLaszlo is a platform for the development and delivery of rich Internet
applications. The OpenLaszlo platform consists of the LZX programming language
and the OpenLaszlo Server. LZX is an XML and JavaScript description language,
similar in spirit to XUL, MXML, and XAML, while the OpenLaszlo Server is a Java
servlet that compiles LZX applications into executable binaries for targeted runtime
environments. Refer to http://www.openlaszlo.org/.

JSON
JSON, an acronym for JavaScript Object Notation, is a lightweight, text-based open
standard designed for human-readable data interchange, derived from the JavaScript
scripting language for representing simple data structures and associative arrays,
called objects. JSON is built on two structures: a collection of name/value pairs and
an ordered list of values. Refer to http://json.org/.

You can use JSON in your plugin by performing the following steps:

1. Prepare a servlet in a portlet plugin, for example, SampleJSONServlet
extending HttpServlet class. Register the servlet in the web.xml file.

2. Apply JSON object JSONObject in the method service and export the JSON
object as a string.

Chapter 10

[473]

YUI
YUI is an open source JavaScript library for building richly interactive web
applications using techniques such as Ajax, DHTML, and DOM scripting, including
several core CSS resources. YUI 3 is Yahoo!'s next-generation JavaScript and CSS
library. Refer to http://developer.yahoo.com/yui/.

Although the AUI has integrated YUI 3, you would also be able to use your own YUI
3 (for example, the latest version) in custom plugins. The following steps would help
you bring YUI 3 into a custom portlet:

1. Copy the CSS file, say, yui.css, and related images into the css folder.
2. Copy the JavaScript file yui.min.js into the js folder.
3. Configure the portlet with custom CSS and JavaScript, such as, header-

portlet-css and header-portlet-javascript, in the liferay-portlet.
xml file.

Ext JS
Ext JS is a JavaScript library for building interactive web applications, using
techniques such as Ajax, DHTML, and DOM scripting, with data stores for
accessing the data. Refer to http://www.sencha.com/products/extjs.

Ext JS includes a set of GUI-based form controls, called widgets, for use within web
applications: text field and text-area input controls, date fields with a pop-up date-
picker, numeric fields, list box and combo boxes, radio and checkbox controls, HTML
editor control, grid control (with both read-only and edit modes, sortable data,
lockable and draggable columns, and a variety of other features), tree control, tab
panels, toolbars, desktop application-style menus, region panels to allow a form
to be divided into multiple sub-sections, sliders, and so on.

Dojo Toolkit
Dojo Toolkit is an open source modular JavaScript library (JavaScript toolkit)
designed to ease the rapid development of cross-platform, JavaScript-/Ajax-based
applications and websites. Refer to http://dojotoolkit.org.

Dojo widgets are components comprising of JavaScript code, HTML mark up, and
CSS style declarations that provide cross-browser, interactive features: menus, tabs,
tooltips, sortable tables, dynamic charts, and 2D vector drawings and 3D animated
effects (fades, wipes and slides), facilities for custom animation effects, tree widgets
that support drag-and-drop, various forms and routines for validating form input,
calendar-based date selectors, time selectors, clocks, core widgets, and so on.

Mobile Devices and Portlet Bridges

[474]

DWR—Direct web remoting
Direct Web Remoting (DWR) is an RPC library that enables the Java on a server and
the JavaScript in a browser to interact and call each other. It generates the JavaScript
to allow web browsers to securely call into Java code almost as if it was running
locally, marshalling virtually any data, including collections, POJOs, XML, and
binary data such as images and PDF files (refer to http://directwebremoting.
org/dwr/index.html).

In general, you can bring DWR into the portal by performing the two following steps:

1. Configuring the portal: The WEB-INF/web.xml configuration options will be
useful to all DWR users, or you can declare what to export using dwr.xml.

2. Scripting the browser: You can simply bring JavaScript libraries (more
specifically, engine.js and util.js) into your portlets:

	° engine.js: Handles all server communication
	° util.js: Helps you alter web pages with the data you got from

the portal

jWebSocket
jWebSocket is a pure Java/JavaScript high-speed, bi-directional communication
solution for the Web. It provides a wide range of functionality from a basic token
exchange up to powerful data and GUI synchronization, remote procedure calls,
and much more. Refer to http://jwebsocket.org/

Apache Wicket
Apache Wicket (short form, Wicket) is a lightweight, component-based web
application framework for the Java programming language, conceptually similar to
JavaServer Faces and Tapestry. With proper mark-up/logic separation, a POJO data
model, and a refreshing lack of XML, Wicket makes developing web apps simple
and enjoyable. Refer to http://wicket.apache.org/.

Struts 2 portlet
Apache Struts is a web application framework for developing Java EE web
applications, and using and extending the Java Servlet API to encourage developers
to adopt an MVC architecture. Apache Struts 2 is an elegant, extensible framework
for creating enterprise-ready Java web applications, designed to streamline the full
development cycle, from building to deploying, to maintaining applications over
time. Refer to http://struts.apache.org/.

Chapter 10

[475]

Strut 2 especially leverages Object-Graph Navigation Language (OGNL). OGNL is
an Expression Language (EL) for Java, allowing getting and setting properties through
defined setProperty and getProperty methods, found in JavaBeans, and execution
of methods of Java classes. Refer to http://incubator.apache.org/ognl/.

Struts 2 portlet-bridge
Struts 2 provides a JSR-168 portlet framework, using org.apache.struts2.
portlet.dispatcher.Jsr168Dispatcher as the portlet class in the portlet.
xml file. The Struts 2 JSR-286 portlet framework is expected to be ready in the
near future. The following table shows details of the JSR-168 portlet framework
Jsr168Dispatcher. The advantage of using Struts portlet-bridge is that it is an
easier way to convert Struts-based web applications into portlets.

Key Sample value Default
value

Description

portletNamespace /portlet Default
namespace

The namespace for the portlet
in the action configuration,
appended to all action
lookups, making it possible to
host multiple portlets in the
same portlet application.

viewNamespace /view Default
namespace

The namespace in the xwork
config for the view portlet
mode.

editNamespace /edit Default
namespace

The namespace in the xwork
config for the edit portlet
mode.

helpNamespace /help Default
namespace

The namespace in the xwork
config for the help portlet
mode.

defaultViewAction /viewAction Default Name of the action to use as
default for the view portlet
mode, when no action name is
present.

defaultEditAction /editAction Default Name of the action to use as
default for the edit portlet
mode, when no action name is
present.

defaultHelpAction /helpAction Default Name of the action to use as
default for the help portlet
mode, when no action name is
present.

Mobile Devices and Portlet Bridges

[476]

These are the init-param elements that you can set up in portlet.xml for
configuring the portlet mode. Basically, you can think of the different portlet modes
as different web applications, so that you can set up the struts.xml configuration
with different namespaces for the different portlets and portlet modes.

In addition, a base configuration file named struts-default.xml is included in
the struts2-core-${version}.jar file. This file is automatically included in the
struts.xml file to provide the standard configuration settings without having to
copy them.

A Struts 2 plugin (called struts2-portlet-plugin-${version}.jar) extends and
replaces existing Struts framework functionality. To configure the plugin, the JAR
may contain a struts-plugin.xml, which follows the same format as an ordinary
struts.xml file. As a plugin can contain the struts-plugin.xml file, it has the
ability to define new packages with results, interceptors, and/or actions to override
framework constants and to introduce new extension point implementation classes.

Sample Struts 2 portlet
Struts 2 could be running in the portal. It leverages the Struts 2 portlet bridge
Jsr168Dispatcher and the standard configuration settings struts.xml.

How can we achieve this Struts 2 portlet in the portal? In general, you can bring
Struts 2 into the portal using the following steps:

1. Prepare Struts 2-action called com.bookpub.portlet.struts.action.
Struts2Action which extends org.apache.struts2.dispatcher.
DefaultActionSupport. Note that you can have a different package
name and class name.

2. Set up the struts.xml configuration in the folder /src. Note that you may
have different configuration settings according to your own requirements.

3. Configure portlets, such as portlet-class and init-param, in the
portlet.xml file.

4. Prepare JSP files view.jsp and results.jsp. You would have many
JSP files and add your own logics inside these JSP files according to
your own expectation.

Of course, you can refer to the attached code for more information.

Chapter 10

[477]

JSF 2 portlet
JavaServer Faces (JSF) is a request-driven MVC web framework based on the
component-driven UI design model, using XML files called view templates or
Facelets views. Basically, requests are processed by the FacesServlet, which
loads the appropriate view template, builds a component tree, processes
events, and renders the response, typically in HTML, to the client. Refer to
http://javaserverfaces.java.net/.

JavaServer Faces 2.x (JSR-314) has enhanced functionality and performance. Core
features cover managed beans, a template-based component system, built-in Ajax
support using <f:ajax />, built-in support for bookmarking and page-load actions,
integration with the unified expression language (EL), a default set of HTML- and web
application-specific UI components, a server-side event model, state management, two
XML-based tag libraries, and so on.

For instance, PrimeFaces is a lightweight, open source component suite for Java Server
Faces 2, featuring a rich set of JSF components, while the Mobile module features
a UI kit for developing mobile web applications. For more information, refer to
http://www.primefaces.org/.

Portlet faces bridge
The following projects offer Ajax-based JSF frameworks:

•	 jBoss RichFaces (Ajax4jsf): Ajax-enabled JSF components for layout, file
upload, forms, inputs, and many other features. For more information, refer
to http://www.jboss.org/richfaces.

•	 ICEfaces: Java JSF extension framework and rich components; Ajax without
JavaScript. For more information, refer to http://www.icefaces.org.

•	 MyFaces: JavaServer Faces implementation, along with several libraries of
JSF components that can be deployed on the core implementation. For more
information, refer to http://myfaces.apache.org/.

Mobile Devices and Portlet Bridges

[478]

The following table depicts a summary of these JSF frameworks and their
portlet-bridges:

JSF
Implementation

Portlet bridge URL Description

jBoss Richfaces jBoss portlet
bridge

http://www.
jboss.org/
portletbridge

Implementation of the JSR-301
and JSR-329 specifications to
support JSF within a portlet.
Currently, the bridge supports
any combination of JSF, Seam,
and RichFaces, with running
inside a portlet.

ICEfaces Portletfaces
portlet bride

http://www.
portletfaces.
org/projects/
portletfaces-
bridge

Enabling development of
JSF 2 applications that run
inside a Portlet 2.0-compliant
portlet container. In addition,
the bridge facilitates the
deployment of ICEfaces 2
applications.

MyFaces MyFaces
portlet bridge

http://
myfaces.
apache.org/
portlet-
bridge/

Implementations of the
technology needed to expose
a JSF application as a portlet
within a Portlet 2.0 or Portlet
1.0 environment.

JBoss portlet bridge
The JBoss portlet bridge is an implementation of the JSR-301 and JSR-329
specifications to support JSF within a portlet and with added enhancements
to support other web frameworks, such as, Seam and RichFaces, with running
inside a portlet.

The class javax.portlet.faces.GenericFacesPortlet, extending the class
GenericPortlet, provides JSR-301 generic faces portlet.

Chapter 10

[479]

The following table shows GenericFacesPortlet initialization parameters:

Parameter Sample
value

Default
value

Description

javax.portlet.faces.
defaultViewId

/welcome.
xhtml

/error.
xhtml

View

Edit

help

It defines the default ViewId
that should be used when
the request doesn't otherwise
convey the target. There must
be one initialization parameter
for each supported mode. Each
parameter is named DEFAULT_
VIEWID.mode, where mode is
the name of the corresponding
PortletMode.

javax.portlet.faces.
autoDispatchEvents

None True It contains the setting
for whether the
GenericFacesPortlet
overrides event processing
by dispatching all events
to the bridge or delegates
all events processing to the
GenericPortlet.

javax.portlet.faces.
preserveActionParams

true empty It specifies, on a per-portlet
basis, whether the bridge
should preserve parameters
received in an action request
and restore them for use
during subsequent renders.

javax.portlet.faces.
defaultContentType

text/html Empty It defines the render response
ContentType, that the bridge
sets prior to rendering. If
not set, the bridge uses the
request's preferred content
type.

javax.portlet.faces.
defaultCharacter
SetEncoding

None UTF-8 It defines the render response
CharacterSetEncoding,
that the bridge sets prior to
rendering. Typically, only
set when the JSP outputs an
encoding other then the portlet
containers' and the portlet
container supports response
encoding transformation.

Mobile Devices and Portlet Bridges

[480]

Parameter Sample
value

Default
value

Description

javax.portlet.faces.
BridgeImplClass

None Empty It names the bridge class used
by this application. Typically,
not used unless more than
one bridge is configured in an
environment.

As shown in the following table, jBoss portlet bridge provides the
GenericFacesPortlet portlet classes:

Class Extension Involved interfaces Description
GenericFaces
Portlet

Generaic
Portlet

ActionRequest; ActionResponse;
EventRequest; EventResponse;
PortletConfig, PortletContext;
PortletRequest;
PortletResponse; PortletMode;
PortletRequestDispatcher;
RenderRequest; RenderResponse;
ResourceRequest;
ResourceResponse;
StateAwareResponse; WindowState

jBoss portlet-
bridge

MyFaces portlet bridge
The MyFaces portlet bridge project provides implementations of the technology
needed to expose a JSF application as a portlet within a Portlet 2.0 (JSR-286) or
Portlet 1.0 (JSR-168) environment, defined by the portlet bridge for JavaServer
Faces standards.

The class javax.portlet.faces.GenericFacesPortlet, extending the class
GenericPortlet, is provided to simplify development of a portlet that, in whole or
part, relies on the Faces Bridge to process requests. If all requests are to be handled
by the bridge, GenericFacesPortlet is a turnkey implementation. Developers don't
need to subclass it. However, if there are some situations where the portlet doesn't
require bridge services, GenericFacesPortlet can be sub-classed and overridden.

Chapter 10

[481]

The following table shows GenericFacesPortlet initialization parameters and
default values which are similar to that of jBoss portlet bridge GenericFacesPortlet:

Parameter Sample
value

Default
value

Description

javax.portlet.faces.
defaultViewId

/guess.
xhtml

View

Edit

help

It specifies, on a per-mode
basis, the default viewId
the Bridge executes when
not already encoded in the
incoming request.

javax.portlet.faces.
excludedRequest
Attributes

None Empty It specifies, on a per-portlet
basis, the set of request
attributes the bridge is to
exclude from its request scope.

javax.portlet.faces.
preserveAction
Params

None Empty It specifies, on a per-portlet
basis, whether the bridge
should preserve parameters
received in an action request
and restore them for use during
subsequent renders.

javax.portlet.faces.
defaultContentType

text/html Empty It specifies, on a per-mode
basis, the content type the
bridge should set for all render
requests it processes.

javax.portlet.faces.
defaultCharacter
SetEncoding

None UTF-8 It specifies, on a per-mode
basis, the default character set
encoding the bridge should
set for all render requests it
processes

javax.portlet.faces.
BridgeImplClass

None Empty It specifies the
Bridgeimplementation
class used by this portlet.

Mobile Devices and Portlet Bridges

[482]

As shown in the following table, the MyFaces portlet bridge provides the portlet
class GenericFacesPortlet. As you can see, both MyFaces portlet bridge and jBoss
portlet bridge have a similar implementation of the GenericFacesPortlet class.

Class Extension Involved interfaces Description
GenericFaces
Portlet

Generaic
Portlet

ActionRequest;
ActionResponse; EventRequest;
EventResponse; PortletConfig,
PortletContext;
PortletRequest;
PortletResponse; PortletMode;
PortletRequestDispatcher;
RenderRequest;
RenderResponse;
ResourceRequest;
ResourceResponse;
StateAwareResponse;
WindowState

MyFaces
portlet-
bridge

PortletFaces
PortletFaces Bridge enables development of JSF 2 applications that run inside a
Portlet 2-compliant portlet container, such as the one provided by Liferay Portal. In
addition, the bridge facilitates the deployment of ICEfaces 2 applications. For more
information, refer to http://www.portletfaces.org/.

AlloyFaces provides JSF 2 UI components and Facelet composite components
for use with Alloy UI, JSF equivalents of the aui: JSP tag library, provided by
Liferay Portal.

LiferayFaces provides JSF 2 UI components and Facelet composite components
for use with Liferay Portal, JSF equivalents of the liferay-ui: and liferay-
security: JSP tag library, provided by Liferay Portal.

PortletFaces Bridge provides a portlet class called org.portletfaces.bridge.
GenericFacesPortlet extending GenericFacesPortlet. The following table shows
GenericFacesPortlet initialization parameters, similar to that of jBoss portlet
bridge GenericFacesPortlet, and MyFaces':

Chapter 10

[483]

Parameter Sample value Default
value

Description

javax.portlet.
faces.
defaultViewId

/xhtml/
portlet
ViewMode.
xhtml

View

Edit

help

It specifies, on a per-mode
basis, the default viewId
the Bridge executes when
not already encoded in the
incoming request.

javax.portlet.
faces.
BridgeImplClass

none Empty It specifies the Bridge
implementation class used by
this portlet.

As shown in the following table, the jBoss portlet bridge provides the portlet class
GenericFacesPortlet:

Class Extension Involved interfaces Main methods
GenericFaces
Portlet

Generaic
Portlet

ActionRequest;
ActionResponse;
EventRequest;
EventResponse;
PortletConfig,
PortletContext;
PortletRequest;
PortletResponse;
PortletMode;
RenderRequest;
RenderResponse;
ResourceRequest;
ResourceResponse

init;

processAction;

processEvent;

serveResource;

doEdit, doHeaders,
doHelp, doView;

getFacesBridge

Sample ICEfaces 2 portlet
ICEfaces 2 IPC Ajax-push could be running in the portal. It leverages
the PortletFaces portlet bridge GenericFacesPortlet, IPC (inter-portlet
communication), AJAX push, Multistep form, and the standard configuration
settings faces-config.xml.

How to achieve the ICEfaces 2 portlet in the portal? You can bring the ICEfaces 2
portlet in the following steps, using the portlet sample-icefaces-2-portlet
as an example:

1. Prepare models and services. You can use the service builder to generate
models and related services.

2. Prepare web configuration web.xml and faces configuration settings
faces-config.xml.

Mobile Devices and Portlet Bridges

[484]

3. Prepare ICEfaces UI files, for example, booking.xhtml, customers.xhtml,
and styling.xhtml. XHTML is short for eXtensible HyperText Markup
Language.

4. Configure portlets, such as portlet-class and init-param, in portlet.xml.

Sample MyFaces 2 portlet
Using the MyFaces portlet bridge, we would be able to bring MyFaces 2 into the
portal. The following is a sample scenario. Fortunately, MyFaces portlet bridge
allows us to add more detailed features. To build a specific MyFaces 2 portlet
named sample-myfaces-2-portlet, you may take the following steps:

1. Prepare models, services, web configuration web.xml, and faces
configuration settings faces-config.xml.

2. Prepare MyFaces UI files, for example, index.html, guest.xhtml,
response.xhtml, and template.xhtml.

3. Configure portlets, for example, portlet-class and init-param, in the
portlet.xml.

Sample RichFaces 4 portlet
As with the Myfaces 2 portlet, we would be able to bring RichFaces 4 into the portal
via the jBoss Portlet Bridge. Suppose that we are going to build a plugin called
sample-richfaces-4-portlet, we could take the following steps into account:

1. Prepare models, services, web configuration web.xml, and faces
configuration settings faces-config.xml, pages.xml, compoments.xml.

2. Prepare RichFaces UI files, for example, index.jsp, error.xhtml, welcome.
xhtml, and welcome-content.xhtml.

3. Configure portlets, for example, portlet-class and init-param, in
portlet.xml. This step is the same or almost the same as that of the
MyFaces 2 portlet bridge.

Spring 3 MVC portlet
Like Struts, Spring MVC is a request-based framework. The Spring Framework
comprises several modules that provide a range of services: inversion of control
container, aspect-oriented programming, data access, transaction management,
model-view-controller, remote access framework, convention-over-configuration,
batch processing, authentication and authorization, remote management, messaging,
testing, and so on. Refer to http://www.springsource.org/ for more information.

Chapter 10

[485]

Spring MVC portlet bridge
The Spring MVC portlet bridge is a request-driven web MVC framework, designed
around a portlet that dispatches requests to controllers and offers other functionality
facilitating the development of portlet applications. The class DispatcherPortlet,
however, is integrated with the Spring ApplicationContext and allows us to
use every other feature that Spring framework has. The following table shows the
DispatcherPortlet initialization parameters:

Parameter Sample value Default value Description
contextClass application

Context.xml
XmlPortlet
Application
Context

Class that implements
WebApplicationContext,
which will be used to
instantiate the context used by
this portlet.

contextConfig
Location

kb-display-
portlet.xml

Empty String that is passed to the
context instance to indicate
where context(s) can be found.
The String is potentially split
up into multiple Strings to
support multiple contexts.

namespace kb-list-
portlet

${portlet.
name}-portlet

The namespace of the
WebApplicationContext.

viewRenderer
Url

None Empty The URL where
DispatcherPortlet
can access an instance of
ViewRendererServlet

As shown in the following table, Spring 3 MVC provides two portlet classes:
DispatcherPortlet and FrameworkPortlet:

Class Interface/Extension Involved interfaces Description
Dispatcher
Portlet

FrameworkPortlet ActionRequest;
ActionResponse;
EventRequest;
EventResponse;
MimeResponse;
PortletException;
PortletRequest;
PortletResponse;
PortletSession;
RenderRequest;
RenderResponse;
ResourceRequest;
ResourceResponse;
StateAwareResponse;

Spring MVC
portlet-bridge

Mobile Devices and Portlet Bridges

[486]

Class Interface/Extension Involved interfaces Description
Framework
Portlet

GenericPortlet
Beanmplements
Application
Listener<Context
RefreshedEvent>

ActionRequest;
ActionResponse;
EventRequest;
EventResponse;
PortletException;
PortletRequest;
PortletResponse;
RenderRequest;
RenderResponse;
ResourceRequest;
ResourceResponse;

Abstract class

Sample Spring 3 MVC portlet
The Spring 3 MVC IPC portlet could be running in the portal. It leverages the Spring
3 MVC portlet bridge DispatcherPortlet, IPC (inter-portlet communication), and
the standard configuration settings applicationContrext.xml.

How to achieve the Spring 3 MVC portlet in the portal? In general, you can bring
Spring 3 MVC into the portal in the following steps:

1. Prepare models and controllers. You can use the service builder to generate
models and related services. Controllers must implement the interfaces org.
springframework.stereotype.Controller, org.springframework.web.
bind.annotation.RequestMapping, EventMapping, and ActionMapping.

2. Prepare context XML files, for example, kb-display-portlet.
xml and kb-list-portlet.xml, and the application context called
applicationContext.xml under the folder /docroot/WEB-INF.

3. Prepare view resolver JSP files. The prefix and suffix of view resolvers got
specified in the context XML files, as mentioned in the previous step.

4. Configure portlets, such as portlet-class and init-param, in
portlet.xml.

Summary
In this chapter, you first learnt how to build layout template plugins, theme plugins,
and WAP mobile themes. The mobile device detectors and WURFL were addressed
too. Then you learnt how to leverage portlet bridges, Struts 2 portlets, JSF 2 portlets,
and Spring 3 MVC portlets.

In the forthcoming chapter, we're going to address the common API.

Index
Symbols
$SOLR_HOME variable 403
.war file 149

A
ABBYY FineReader 238
action-key element 206
actionRequest attribute 98
actionResponse attribute 98
action URL

about 109
example 109

Activiti 433
Activiti BPM 9
Activiti Eclipse Designer 433
Activiti Modeler 433
addAttachment method 101
addExtJar method 155
addRequiredJar method 155
addSearchExpandoKeywords method 408
Adobe Photoshop format 235
advanced calendar 310
Advanced File System Hook 225
AdvancedFileSystemHook 226
advanced MVC portlet

about 100
configuration and preferences 103
interacting, with database 110, 112
portlet bridge extension 100, 101
portlet description 106
portlet key 106
portlets, bringing into Control Panel 102
portlet title 106
redirect 107, 108

advanced portal web
overwriting 145-147

AIM 10, 300, 323
AJAX

and render weight 96
Ajax-based animated page transitions 460
Ajax-based JSF frameworks

about 477
ICEfaces 477, 478
jBoss RichFaces (Ajax4jsf) 477, 478
MyFaces 477, 478

AJAX Enterprise Instant Messaging client
311

alerts portlet 301
Alfresco 11, 231
Alfresco integration 231, 232
AlloyFaces 482
Alloy portlet 466
Alloy UI (AUI)

about 413, 457
CSS3 style 458
HTML5's structure 458
URL 457
YUI 3 behavior 458

Android 460
announcements portlet

about 301
services 301

announcements portlet, services
AnnouncementsDelivery(Local)Service 301
AnnouncementsEntry(Local)Service 301
AnnouncementsFlag(Local)Service 301

Ant
about 32, 33
URL 33

[488]

ANT_HOME variable 33
AntiSamy 268
Antivirus Scanner 209
Ant target build-client 73
Ant target build-db 70
Ant target build-lang 70, 71
Ant target build-service 51
Ant target build-wsdd 71, 72
Ant target clean

about 43
tasks 43, 46

Ant target deploy
about 44
tasks 44-46

Ant target start
about 43
tasks 43

ant -version command 33
Apache Abdera

about 232
URL 232

Apache Chemistry 227
Apache Derby 33
Apache Geronimo 34
Apache load balancing 469
Apache Solr 392
Apache Struts 474
Apache Struts 2 474
Apache Tika

about 222, 403
URL 403

Apache Velocity
about 452, 453
URL 453

Apache Wicket
about 474
URL 474

Apple iOS 460
application shutdown events 166
application startup events 166
app.server.properties file 39
archive 244
ArticleCreateDateComparator 252
ArticleDisplayDateComparator 252
ArticleIDComparator 252
ArticleModifiedDateComparator 252

ArticleReviewDateComparator 252
articles

about 110
retrieving 256

ArticleTitleComparator 252
ArticleVersionComparator 253
Asprise OCR 238
asset

about 282, 314
models 283-286
services 283, 286
view count number 286
workflow, applying to 434

AssetCategory 283-285
AssetCategory(Local)Service 289
AssetCategoryproperty 283
AssetCategoryProperty 285
AssetCategoryProperty(Local)Service 289
AssetCategoryStats 285
asset comments

about 317
models 317
services 317
UI taglib liferay-ui:discussion 318

AssetEntry 283, 285
AssetEntry(Local)Service 286
asset flags

about 318
UI taglib liferay-ui:flags 319

AssetLink 285
AssetLink(Local)Service 286
Asset management system (AMS)

about 306, 314
models 314
shopping cart portlet 308, 309
Software Catalog portlet 306, 307

asset publisher 293
asset query 291
asset ratings

about 316
services 316
UI taglib liferay-ui:ratings 316, 317

AssetRendererFactory interface 294
asset renderer framework 293
AssetRenderer interface 294

[489]

assets collaboration
about 315, 316
asset comments 317
asset flags 318
asset rating 316
assets subscription 319, 320
attached model 322, 323
e-mail notification 320, 321
RSS feeds 321

assets subscription 319, 320
AssetTag 285 283
AssetTag(Local)Service 288
AssetTagProperty 285
AssetTagProperty(Local)Service 288
AssetTagStats 285
AssetTagStats(Local)Service 288
AssetVocabulary 285 283
AssetVocabulory(Local)Service 289
ATOM 1.0 321
AtomPub 228
Atom Publishing Protocol. See AtomPub
attachments, document management 213
AudioProcessor class 208
audit trail 10
authentication 17
author element 52
authoring 242, 243
authorization 17
AutoComplete 412
auto deploy 148, 152, 153
AutoDeployDir class 153
AutoDeployer interface 155
auto deploy listener 154
AutoDeployScanner class 153
automatic peer discovery 381

B
Babel Fish 71
BaseAutoDeployListener class

about 154
methods 154

Base BSF portlet 466
BaseDeployer class

about 155
methods 155, 156

BaseFileAntivirusScanner class 209
BaseIndexer class 395
BaseInputStreamAntivirusScanner class

209
BaseLocalRepositoryImpl class 224
base models, image management 197
BaseOpenSearchImpl interface 415
BaseRepository interface 224
base-spring.xml file 425
basic MVC portlet

about 86
AJAX and render weight 96
building 86
CSS 96, 97
CSS and footer JavaScript 96, 97
Header JavaScript 96, 97
Liferay plugin package 88
Liferay portlet display 87
Liferay portlet registration 87
portlet app XSD 89
portlet XSD and DTD 89
predefined objects 97-99
project structure 86
setting up 86
View specification 88

BBcode 273
Bean Scripting Framework (BSF) 466
benchmarks folder 38
Bitmap format 235
Blackberry 6 460
BlogsIndexer class 395
Blogs portlets

about 299
services 300

Blogs portlets, services
BlogsEntry(Local)Service 300
BlogsStatsUserLocalService 300

bookmarks
about 304
services 305

BookmarksIndexer class 395
bookmarks, services

BookmarksEntry(Local)Service 305
BookmarksFolder(Local)Service 305

BooleanClause interface 405
BooleanClauseOccur interface 405

[490]

BooleanQuery extends Query interface 405
Borland ES 34
BPMN 418
BPMN 2 432
BPMN2 Visual Editor, for Eclipse 433
branch version 37
build-common-java.xml file 39
build-common-plugins.xml file 42
build-common-plugin.xml file 42
build-common-web.xml file 39
build-common.xml file 40, 42
build.properties file 42
build.xml file 40, 42
Business Dictionary

URL 27
Business Process Model and Notation. See

BPMN
buttons 464

C
cache clustering

about 379, 385
portal cache interfaces 380

cache-enabled value 54
cache server 381
calendar portlet

about 300
services 300

CalIndexer class 396
Cascading Style Sheets (CSS) 260, 458
categories

about 289
models 283, 289
services 283, 289

categories cloud 290
category tree 290
Chat portlet

about 13, 311
extensions 311
model interface 311
wrapper 311

checkArguments method 156
ckconfig.jsp file 272
CKEditor

about 247, 270
diffs 272

folder structure 271
CKEditor custom plugins

about 273
BBcode 273
Creole 273
Wiki link 274

CKEditor diffs 272
CKEditor File Browser Connector 271
CKEditor, folder structure

about 271
adapters 271
images 271
lang 271
plugins 271
_sample 271
skins 271
_source 271
themes 271

ckeditor.js file 272
ckeditor.jsp file 272
CKEditor plugins

a11yhelp 273
about 273
adobeair 273
ajax 273
autogrow 273
clipboard 273
colordialog 273
dialog 273

ClamAntivirusScannerImpl class 209
class diagrams 239
class loader proxy

about 159
generating 159, 160
plugin services, sharing 161

className-classPK pattern 269
Client API 227
Client Bindings API 227
clients folder 41
clp (Class Loader Proxy) 312
CLU 467
clustered caching

setting up, with Terracotta 384
clustering

about 385
interfaces 386

[491]

models 386
settings 386

cluster nodes 385
cluster-spring.xml file 425
CMIS 8, 193, 295
CMIS consumer 227, 228
CMISHook 225
CMIS Hook, S3 Hook 225
CMIS producer 227, 228
CMISRepositoryHandler 228
CMS 8
CMS content 358
codepress 270
collaboration tools

about 296
announcements 301
blogs 299, 300
bookmarks 304, 305
message boards 301-304
polls 305, 306
shared calendar 300
wiki 296-298

Collection 56
colorScheme attribute 99
column element 54, 56
com.liferay.portal.kernel.repository.cmis.

CMISRepositoryUtil 228
com.liferay.portal.kernel.repository.cmis.

Session 228
com.liferay.portal.model.Image 196
com.liferay.portal.model.Repository 212
com.liferay.portal.model.RepositoryEntry

212
com.liferay.portal.search.lucene.cluster

package 402
com.liferay.portal.search.lucene.dump pack-

age 402
com.liferay.portal.search.lucene.messaging

package 402
com.liferay.portal.search.lucene package

401
com.liferay.portal.sharepoint.dws.Respon-

seElement 229
com.liferay.portal.sharepoint.methods.

Method 230

com.liferay.portal.
sharepoint,ResponseElement 229

com.liferay.portal.sharepoint.Share-
pointStorage 229

com.liferay.portlet.documentlibrary.model.
DLFileEntry 196

com.liferay.portlet.documentlibrary.model.
DLFileEntryType 211

com.liferay.portlet.documentlibrary.model.
DLFolder 196

comments 110
common folder 145, 146
community 19
community-defaults element 206
Community Edition (CE) 15, 45
Company attribute 98
company-excludes element 447
company-id element 447
company-includes element 447
company-limit element 447
comparator services

about 252
ArticleCreateDateComparator 252
ArticleDisplayDateComparator 252
ArticleIDComparator 252
ArticleModifiedDateComparator 252
ArticleReviewDateComparator 252
ArticleTitleComparator 252
ArticleVersionComparator 253
StructurePKComparator 253

compatibility element 446
Concurrent Versions System (CVS) 36
ConditionFactory interface 282
ConfigurationAction class 104
ConfigurationActionImpl class 103
Contact attribute 99
Contact Center Profiles 331
ContactListener 348
Contacts plugin 330, 331
content

authoring 242, 243
content archiving 244
content author 243
content authoring

about 242
implementing 243

[492]

content creator 243
Content Management Interoperability Serv-

ices. See CMIS
Content Management Systems. See CMS
content modifier 243
ContentTransformerListener 254
content types 243
controller 83, 470
convert-null element 66, 68
convert-null value 56
CookieUtil.java 144
copyDependencyXml method 156
copyFromLive function 366
copyJar method 158
copyJars method 156
copyPortalDependencies method 156
copyProperties method 156
copyRemoteLayouts function 369
copyTlds method 156
copyWebFiles method 158
copyXmls method 156
core assets

indexing 395-397
countEntries method 292
CounterLocalServiceUtil.java 144
Coveo 11, 392
createFullQuery method 408
createTablesAndPopulate() method 75, 76
Creole 273, 298
cross-site scripting. See XSS
CSS3 458
CSS level 3. See CSS3
CSS sprite 202
Cursor format 235
custom assets

scheduling 378, 379
social equity services, adding on 337, 338

custom assets' indexer
registering, in plugins 397, 398

custom attribute
about 274
data types 277, 278
entities 275
indexer 278
models 275, 276
services 275, 276
taglibs 277

CustomAttributesDisplay 276
custom field 274
custom field indexer interface 278
custom folder 146
customize theme

building 445
custom JSP hooks

about 23, 161, 177
BOOLEAN 277
BOOLEAN_ARRAY 277
custom JSP files 178, 179
DATE 277
DATE_ARRAY 277
DOUBLE 277
DOUBLE_ARRAY 277
FLOAT 277
FLOAT_ARRAY 277
INTEGER 278
INTEGER_ARRAY 278
LONG 278
LONG_ARRAY 278
path mapping 178, 179
SHORT 278
SHORT_ARRAY 278
STRING 278
STRING_ARRAY 278

custom portlets
permissions, adding 128

custom query 125-127
custom-sql 125
custom SQL, Kaleo-web services 423

D
database

advanced MVC portlet, interacting with
110-112

database case-sensitive queries 76
DatabaseHook 226
database index 393
database schema 75
database sharding 16
database structure definition

about 51, 52
author element 52
exceptions element 52
namespace element 52

[493]

dataSource 413
data-source value 54
data types, custom attribute 277
db-name value 55
DDLRecord 280
DDLRecord(Local)Service 281
DDLRecordSet 280
DDLRecordSet(Local)Service 281
DDLRecordVersion 280
DDLRecordVersion(Local)Service 281
DDMContent 280
DDMStorageLink 280
DDMStructure 280
DDMStructureLink 281
DDMSXD interface 282
DDMTemplate 281
DDMXML interface 282
DefaultConfigurationAction class 103
default data population

about 73
processes, verifying 77

default document types
adding 208

Default Image metadata set 207
default templates

portlet project, setting up with 84, 85
Default Video metadata set 207
Definitions folder 38
deleteArticle method 101
deleteAttachment method 101
deleteComment method 101
deleteData method 358
deleteTemplate method 101
Deployer interface 150
deploy processes

about 148, 149
auto deploy 152, 153
hot deploy 156, 157
sandbox deploy 151, 152

development strategies, Liferay Portal
about 25
Level I development 25
Level II development 26
Level III development 27

Device Description Repository (DDR) 459
dialect detector 74

Diff 216
DiffImpl class 216
DiffResult class 216
direct JSP servlet

about 99
working 100

Direct Web Remoting. See DWR
disableStaging function 366, 369
DLAppLocalService 213
DLAppService 213
DLFileEntry 194
DLFileEntryLocalService 198
DLFileEntryMetadata 212
DLFileEntryService 198
DLFileEntry table 194
DLFileRank 212
DLFileShortcut 212
DLFileVersion 212
DLFolder 194
DLFolderLocalService 198
DLFolderService 198
DL Image 194
DLIndexer class 396
DLLocalService 213
DLRepositoryLocalService 213
DLRepositoryService 213
DLService 213
DLSharepointStorageImpl class 229
DLStoreIndexer class 396
DocBook

about 29
URL 29

document
converting 214-216
indexing 220, 221
moving 220

Document and Media Library
about 8, 193
images, using from 200, 201

document check-in functions 218, 219
document check-out functions 218, 219
document hooks 225
document imaging 194
document indexing 220, 221
document indexing functions 220
Document interface 405

[494]

Document Library
about 209
documents, versioning 214
permissions levels 204, 205
records 233, 234
resource action mapping 205, 206
video/audio processors 208
video management 207

Document Library document 213
Document Management System (DMS)

about 209, 210
attachments 213
models 210-212
multiple repositories 224
services 210, 212
WebDAV 222

document scanning 234
document tracking 234
Documentum 11, 225, 230
Documentum Hook 225
DocumentumHook class 231
Documentum integration 230, 231
document-unique URL 213
document versioning

about 214
document check-in functions 218, 219
document check-out functions 218, 219
document, converting 214-216
document, moving 220
live document, previewing 217, 218
version, comparing 216

doDelete method 408
doGetDocument method 408
doGetSummary method 408
doInvokeDeploy(event) method 158
doInvokeDeploy method 173, 175, 185
doInvokeUndeploy(event) method 158
Dojo 20
Dojo Toolkit

about 473
URL 473

Dojo widgets 473
doReindex method 408
drawing formats 215
Drools 11, 28
Drools 5 433
Dublin Core metadata set 207

DummyAntivirusScannerImpl class 209
DWR 474
Dylan 467
Dynamic Data Lists (DDL) 207

about 7, 9, 247, 279
models 279-281
services 279, 281

Dynamic Data Mapping (DDM)
about 7, 9, 247, 279
models 279-281
services 279, 281

dynamic-data-source-spring.xml file 425
dynamic query API

about 118
interface 119
queries 119-122
SQL joins 122

dynamic query factory 120
dynamic query operations 120, 122

E
EAR template 79, 440
Easy Hibernate Cache. See Ehcache
Eclipse Classic 35
Eclipse IDE 35
ECM

about 193, 230
URL 230

EDI 234
Ehcache

about 343, 380, 393
replicated cache 381, 382
URL 380

Ehcache cache replication
configuring, JGroups used 383

EhcacheConfigurationUtil class 382
EhcachePortalCache class 382
EhcachePortalCacheManager class 382
Electronic Data Interchange. See EDI
e-mail notification 320, 321
enableLocalStaging function 366
enableRemoteStaging function 369
Enterprise Content Management System.

See ECM
Enterprise Edition (EE) 15, 45
Enterprise Service Bus (ESB) 13, 14, 390

[495]

entity
about 53
attribute list declarations 53
column element 54, 56
finder element 56, 57
order element 58
reference element 57
tx-required element 59

errors folder 146
eventRequest attribute 98
eventResponse attribute 98
exceptions element 52
Expando 274
ExpandoBridge 276
ExpandoBridgeFactory interface 278
ExpandoBridgeIndexer interface 278
ExpandoBridge interface 278 277
ExpandoColumn 275, 276
ExpandoColumnLocalService interface 276
ExpandoRow 275, 276
ExpandoRowLocalService interface 277
ExpandoTable 275, 276
ExpandoTableLocalService interface 276
ExpandoValue 275, 276
ExpandoValueLocalService interface 277
Expression Language (EL) 475
Ext 138, 440
ExtDeployer class 155
eXtensible HyperText Markup Language.

See XHTML
Extension environment. See Ext environ-

ment
Ext environment

about 138
upgrading 147, 148

ext folder 41
ExtHotDeployListener class

about 158
methods 158

ext-impl folder 139
Ext JS

about 473
URL 473

ext-lib folder 139
ext-model-hints.xml file 143

Ext plugin
about 21, 22, 31, 137, 138
advanced configuration 143
advanced customization 140, 141
advanced portal web, overwriting 145-147
configuration files 143
files 141, 142
folders 140
portal code mapping 140, 141
portal core API, overwriting 144, 145
project default template 138
sample code 140, 141

Ext plugin (Level II) 25, 26
Ext plugin location

ext-impl/src 149
ext-lib/global/ojdbc14.jar 149
ext-lib/portal/commons-configuration.jar

149
ext-service/src 149
ext-util-bridges/src 149
ext-util-java/src 149
ext-util-taglib/src 150
ext-web/docroot/html/common/themes/

bottom-ext.jsp 150
ext-web/docroot /WEB-INF/struts-config-

ext.xml 150
Ext plugin project

creating 139
Ext plugin project default template 138
Ext plugins 32
ExtRegistry class 155
ext-service folder 139
ext-spring.xml file 143, 425
ext-util-bridge folder 139
ext-util-java folder 139
ext-util-taglib folder 139
ext-web folder 139

F
Facebook 10, 11, 323, 335
FacetCollector interface 409
FacetConfiguration interface 409
faceted browsing 408
faceted classification 408
faceted navigation 408

[496]

faceted search 408, 409
Facet interface 409
FacetValueValidator interface 409
FAST 392
FCKeditor 270
fckeditor.jsp file 272
features, Liferay Portal 14, 15
federated search 414
FieldCondition extends Condition interface

282
fielded searching 399
File System Hook 225
FileSystemHook 226
Filter interface 184
findEntries method 292
finder-column element 57
finder element 56, 57
FineReader Online 239
Firebird 33
Firefox Mobile 460
folksonomies 11, 282
footer-portal-css tag 97
footer-portal-javascript tag 97
footer-portlet-css tag 97
footer-portlet-javascript tag 97
FreeMarker

about 260, 452
URL 452

FreeMarkerContext interface 266
Free OCR 239

G
getClassNames method 408
getExportControls method 358
getGroupLocalService method 57
getGroupService method 57
getIndexerPostProcessors method 408
getInstance method 408
getPortletId method 408
getProperty method 475
GlassFish 34
global group 352
global models, portal workflow services

426, 427
global scope. See global group

global services, portal workflow services
427, 428

global shutdown events 166
global startup events 166
GNOME 222
GOCR 238
Google+ 10
Google Docs 239
Graphics Interchange Format 235
Groovy 467, 468
Groovy portlet 468
group 19
group-id element 447
group-includes element 447
Group interface

about 350
layout set 354
services 351
system groups 351, 353
user 353

group-level permissions 18
group-limit element 447
groups 356
GroupServiceHttp 371
GSA 392

H
header-portal-css tag 97
header-portal-javascript tag 97
header-portlet-css tag 97
header-portlet-javascript tag 97
Hibernate 66, 68, 343, 393
hibernate listener 347
hibernate-spring.xml file 425
Hits interface 405
HitsOpenSearchImpl interface 415
hook 440
HookHotDeployListener class 173, 175, 185
hook parameters 23
hook plugin 21-23
hook plugin project default template 161,

162
hooks

about 22, 31, 32, 137, 161
custom JSP hooks 177, 189

[497]

indexer post processor hooks 180, 181, 190
language properties hooks 174, 189
portal properties hooks 165, 166, 189
service wrapper hooks 181-183, 190
servlet filter 183-185, 190
servlets mapping hooks 183-185, 190
struts action hook 186-190

hooks folder 41
hooks, Kaleo-web services 424
hot deploy 148, 156, 157
HotDeployEvent class 157
hot deploy listener 157
HotDeployListener interface 157
HTML 5 15, 458
HtmlEngine 298
HTTP protocol 369
HTTP services

about 371
GroupServiceHttp 371
LayoutServiceHttp 371

Http Servlet Request 230
Http Servlet Response 230
HTTP Tunneling 369
Human resource management (HR) 315
Hypersonic 33, 73

I
IBM DB2 33
IBML 234
IBM Rational ClearCase 36
iCal 300
ICEfaces 477, 478
Icon format 235
icons folder 145
ICQ 10, 323
ICQC 300
IDE 32, 35
id-param value 55
id-type value 55
IETF Atom Syndication Format 232
IG image 196
iGoogle 300
im4java 217
image formats, OCR

Adobe Photoshop 235
Bitmap 235

Cursor 235
Graphics Interchange Format 235
Icon 235
JPEG 235
Macintosh PICT Format 235
PCX Format 235
Portable Network Graphics 235
Sun Raster Format 235
Tag Image File Format 235
Targa 235
Windows/OS2 235
X Bitmap 235
X PixMap 235

Image Gallery 194
ImageLocalService 199
ImageMagic 210
ImageMagick

URL 202
image management

about 194
base models 197
image processor 201, 202
models 194-196
services 194, 198, 199

image processor 201, 202
ImageProcessorImpl class 202
ImageProcessor interface 202
ImageProcessorUtil class 202
images

about 194
using, from Document and Media Library

200, 201
image scanning. See document scanning
ImageService 199
image sprite processor 202, 203
importData method 358
IncludeTag.java 144
index 393
indexer

about 264, 265, 393
interface 394, 395

indexer hook 23
Indexer interface 394
indexer post processor hooks 161, 180, 181
IndexerPostProcessor interface 394 181
IndexerRegistry interface 394

[498]

indexing
core assets 395-397

IndexSearcher interface 394
IndexWriter interface 394
information-daily-limit entity 206
information-lifespan entity 207
Informix 33
infrastructure-spring.xml file 425
insertHelperUtilities method 457
insertVariables method 457
installExt method 158
installing

Tomcat 35
Intalio | BPMS 9
Integrated Development Environment. See

IDE
IntelliJ 35
InterBase 33
internalization 9
internationalization (i18n) 262
IPC Ajax-push 483
IPC (inter-portlet communication) 483
isAlwaysExportable method 358
isExtPlugin method 154
isFilterSearch method 408
isHidden method 92
isHookPlugin method 154
isMatchingFileExtension method 154
isMatchingFile method 154
isPublishToLiveByDefault method 358
isThemePlugin method 154
isWebPlugin method 154

J
J2EE backend clustering 469
Jabber 10, 323
JAMWiki

URL 298
JAR-based fix patch 49, 50
JasperForge 11
JasperReports 11, 28
Java 14
Java data types

mapping, into SQL data types 61
Java-diff 216
javadoc 70

JAVA_HOME variable 32
Java Message Service API. See JMS API
Java RMI 50
JavaScript 467, 469
JavaScript Object Notation. See JSON
JavaScript portlet 469
JavaServer Faces 2.x (JSR-314) 477
JavaServer Faces (JSF) 474, 477
java -version command 32
JBoss 148
JBoss AS 34
JBoss portlet bridge 478, 480
jBoss RichFaces (Ajax4jsf) 477, 478
jBPM 11
jBPM 5 433
jBPM workflow 9
JCR 295
JCR Hook 225
JCRHook 226
JDataStore 33
JDK

about 32
URL 32

JDK 1.5 32
Jetty 34
JGroups

about 383
Ehcache cache replication, configuring 383

JGroupsBootstrapCacheLoader class 382
JGroupsManager class 382
JIRA 325
JMS API

about 373
models 373

JMS API, models
point-to-point 373
publish and subscribe 373

JMX MBeans 10
JOIN query 125
JOnAS 34
JournalArticle 250
JournalArticleDisplay 250
JournalArticleImage 250
JournalArticleImage(Local)Service 251
JournalArticleListener 348
JournalArticle(Local)Service 251

[499]

JournalArticleResource 250
JournalArticleResource(Local)Service 251
Journal articles 9, 252
JournalContentSearch 250
JournalContentSearch(Local)Service 251
Journal content services 253
JournalFeed 250
JournalFeed(Local)Service 251
JournalIndexer class 396
JournalStructure 250
JournalTemplate 250
JournalTemplateListener 348
JournalTemplate(Local)Service 251
Journal tokens 254, 255
JPEG format 235
jQuery

about 20, 461
URL 461

jQuery Mobile
about 461
URL 461

jQuery UI
about 461
URL 461

JRuby
about 467
URL 467

JRun 34
JSAS 34
js folder 145
JSF portlet 79
JSON

about 472
URL 472

JSP 20
JSP files 83
jsp folder 146
JSPWikiEngine

about 298
URL 298

JSR-168 13, 480
JSR-168 portlet framework 475
JSR-286 13, 480
JSR-286 portlet framework 475
JSR-286 portlets 28, 31
JSR-301 465
JSR-301 specifications 478

JSR-329 specifications 478
JSTL taglib 89
Junction extends Condition interface 282
jWebSocket

about 474
URL 474

Jython
about 468
URL 468

K
KaleoAction interface 419
KaleoCondition interface 419
KaleoDefinition interface 419
KaleoInstance interface 419
KaleoLog interface 419
KaleoNode interface 419
KaleoNotification interface 420
kaleo-spring.xml file 425
KaleoTask interface 420
KaleoTimer interface 420
KaleoTransition interface 420
Kaleo-web models 418-420
Kaleo-web services

about 420-423
custom SQL 423
hooks 424
Spring beans and messaging configuration

425, 426
web 425

Kaleo workflow 9, 389
Kaleo workflow definition 430, 431
KBArticleLocalServiceClp class 160
KDE 222
Kindle 3 460
knowledge base management

about 27, 193
implementing 28, 29
specific requirements, adding 28, 29

knowledge base portlet project 85, 86
KonaKart 11

L
LAF archive 446
Language-ext_:.properties file 143

[500]

language properties hooks 23
about 161, 174
multiple languages 175, 176

LAR
about 357
setup archive 362

LAR export 357
LAR import 357
layout 16, 355
Layout attribute 99
LayoutListener 348
layout-manager element 206
Layouts attribute 99
LayoutServiceHttp 371
layout set 354
LayoutSetListener 348
layouts publishing

scheduling 378
layout template 440
layout template default template 440, 441
layout template DTD 441
layout template plugins

about 440
default template 440, 441
DTD 441

layout templates 21, 24, 31, 32, 355
layout template services 443
layout template XSD 441
layouttpl folder 41
layoutTypePortlet attribute 99
LDAP 11
legacy Ext environment

upgrading 147, 148
lexicographically 292
lib folder 41
Lib folder 38
liferay 270
Liferay

about 7, 31
functionalities 8
history 7
permissions 128
plugin portlet project 84
portal properties hooks 165
portal service and model interfaces 48, 49
security 128
systems development 20, 21

URL, for community plugins 30
URL, for corporate website 29
URL, for discussion forums 30
URL, for official plugins 30

Liferay Archive. See LAR
LiferayBootstrapCacheLoaderFactory class

382
LiferayCacheEventListenerFactory class 382
Liferay CMS and WCM 8
Liferay data source 54
Liferay Developer Studio 32
Liferay display DTD 91
liferay-display.xml file 141
LiferayFaces 482
Liferay functionalities

about 8
auditing 10
document and media library 8
integration, with external applications 11
internalization 9
Liferay CMS and WCM 8, 9
Liferay Portal 8
Liferay social collaboration 8, 10
Liferay social office 8, 10
monitoring 10
personalization 9
portal tagging system 11
publishing 9
reporting 10
scheduling 9
staging 9
WCM 8, 9
workflow 9

liferay-hook descriptor 162
liferay-hook DTD

URL 162
Liferay hook DTD 162-164
Liferay IDE 22, 32, 442
Liferay Journal 9
liferay-layout-templates-ext.xml file 142
liferay-look-and-feel-ext.xml file 142
Liferay plugin package 88
Liferay plugin package DTD 93, 94
Liferay Portal

about 7, 8
application servers 34
architectural layers and functionality 12

[501]

architecture 12
databases 33
data population 75, 76
default data population 73
development strategies 25, 26
Enterprise Service Bus (ESB) 13, 14
event handlers 166, 167
features 14, 15
framework 12
IDEs 35
multi-tenancy feature 16
plugins runtime structure 46
Plugins SDK source code 40
portal and plugins structure 36
portlet preferences 105
RBAC 17, 18
release information 74
required tools 32
runtime structure 42, 43
service and implementation 47-49
Service Oriented Architecture (SOA), using

12
standards 14, 15
terminologies 15

Liferay Portal, application servers
Tomcat 34

Liferay Portal, databases
about 33
MySQL 33

Liferay Portal, IDEs
about 35
Eclipse IDE 35
Subclipse 36
Workspace 36

Liferay Portal, required tools
Ant 33
JDK 32
Maven 33

Liferay Portal source code (Level III) 25, 27
Liferay Portal website

URL 29
liferay-portlet-app element 90, 91
Liferay portlet display 87
liferay-portlet-ext.xml file 142
Liferay portlet registration 87
Liferay session factory 54

Liferay social collaboration 8
Liferay social office 8
liferay-ui:message tag 107
Lisp 467
listeners 391
lists 464
live document

previewing 210, 217, 218
live group 365
Locale attribute 99
locales 175
LocaleTransformerListener 254
Localization interface 264
localization (L10n)

about 262
value format 263

localized column 262, 263
localized message

displaying, for portlet key 107
localized value 56
local live staging 365
LocalRepository interface 224
local-service value 53
local staging and publishing 364, 367
local staging interface 365
local staging services 366
location 19, 344, 351
LoginAction.java 144
login events 166
logout events 166
look-ahead 411
look-ahead typing

about 411
models 411, 412
services 411, 412

Look-ahead typing
AutoComplete feature 412

look-and-feel archive. See LAF archive
look-and-feel DTD 446-448
Lucene

about 264, 389-400
URL 399

Lucene query 409
LZX programming 472

[502]

M
Macintosh PICT Format 235
Mail portlet

about 311
models 312
services 313, 314

manual peer discovery 381
many-many relationship 240
many-one relationship 240
many-to-many relationship 55
marketplace 7, 315
Maven

about 32, 33
URL 33

MAVEN_HOME variable 33
MBIndexer class 396
MediaWikiEngine 298
Memcached

about 384
URL 384

mergeWebXml method 158
Message Boards

about 301
models 302, 303
services 303, 304

Message Boards, models
MBBan 302
MBCategory 302
MBCategoryDisplay 302
MBDiscussion 303
MBMailingList 303
MBMessage 303
MBMessageFlag 303
MBStatsUser 303
MBThread 302
MBTreeWalker 303

Message Boards, services
MBBan(Local)Service 303
MBCategory(Local)Service 303
MBDiscussionLocalService 303
MBMailingListLocalService 304
MBMessage(Local)Service 304
MBStatsUserLocalService 304
MBThreadFlagLocalServiceI 304
MBThread(Local)Service 304

Message Oriented Middleware (MOM) 373
messaging 376, 377
messaging-spring.xml file 403, 426
metadata information 234
MethodHandler class 370 159
methods, BaseAutoDeployListener class

isExtPlugin 154
isHookPlugin 154
isMatchingFile 154
isMatchingFileExtension 154
isThemePlugin 154
isWebPlugin 154

methods, BaseDeployer class
addExtJar 155
addRequiredJar 155
checkArguments 156
copyDependencyXml 156
copyJars 156
copyPortalDependencies 156
copyProperties 156
copyTlds 156
copyXmls 156

methods, ExtHotDeployListener class
copyJar 158
copyWebFiles 158
doInvokeDeploy(event) 158
doInvokeUndeploy(event) 158
installExt 158
mergeWebXml 158
removeJar 158
resetPortalWebFiles 158
resetWebXml 158
uninstallExt 158

microblogging 307
microblogs 308
Microsoft OneNote 239
Microsoft Word (DOC, DOCX) 214
MIME type 176
mobile device detectors

about 458
implementations 459
interfaces 459
WURFL 459

modal dialog 464
model 83, 470
model hints 114-116

[503]

model listener 347, 348
model listener functions

about 169
onAfterAddAssociation 169
onAfterCreate 169
onAfterRemove 169
onAfterRemoveAssociation 169
onAfterUpdate 169
onBeforeAddAssociation 169
onBeforeCreate 169
onBeforeRemove 169
onBeforeRemoveAssociation 169
onBeforeUpdate 169

ModelListener interface 169
model listeners

about 168-173
functions 169

model-name element 206
model permissions 18
model-resource element 206
models, document management

about 211, 212
com.liferay.portal.model.Repository 212
com.liferay.portal.model.RepositoryEntry

212
com.liferay.portlet.documentlibrary.model.

DLFileEntryType 211
DLFileEntryMetadata 212
DLFileRank 212
DLFileShortcut 212
DLFileVersion 212

models, image management
about 194, 195
com.liferay.portal.model.Image 196
com.liferay.portlet.documentlibrary.model.

DLFileEntry 196
com.liferay.portlet.documentlibrary.model.

DLFolder 196
models, Web content management

JournalArticle 250
JournalArticleDisplay 250
JournalArticleResource 250
JournalContentSearch 250
JournalFeed 250
JournalStructure 250
JournalTemplate 250

Model-View-Controller architecture. See
MVC architecture

ModifiableEhcacheWrapper class 382
MongoDB

about 279
URL 279

MSN 10, 300, 323
multiple repositories

about 8, 224
Alfresco integration 231, 232
converting 226
document hooks 225
Documentum integration 230, 231
repository interface 224
SharePoint integration 229, 230

multitenancy 349
multi-tenancy feature 17
MVC architecture 20, 83, 470
MVC portlet 470
MVC portlet bridge 94, 95
MVC portlet extension 95, 96
MVCPortlet.java 144
MXML 472
MyFaces 478
MyFaces portlet bridge 480
MySpace 10, 323
MySQL

about 33
URL 33

MYSQL_HOME variable 33
mysql --version command 33

N
namespace element 52
name value 53, 54
NavItem class 451
NCR 234
NetBeans IDE 35
news feed 321
NoSQL 279
NTLM 11

O
OAuth 339
object diagrams 239

[504]

Object-Graph Navigation Language. See
OGNL

Object Management Group (OMG) 418
OCR

about 193, 233
supported bar code formats 234
supported image formats 235

OCR engines
ABBYY FineReader 238
about 238
Asprise OCR 238
GOCR 238
Microsoft OneNote 239
OCRopus 238
OmniPage 239
Readiris 238
RecoStar 238
SimpleOCR 238
Tesseract 238
TopOCR 239

OCR Online 239
OCRopus 238
OCR services

FineReader Online 239
Free OCR 239
Google Docs 239
OCR Online 239
OCR Terminal 239

OCR Terminal 239
OGNL 475
OmniPage 239
onAfterAddAssociation function 169
onAfterCreate function 169
onAfterRemoveAssociation function 169
onAfterRemove function 169
onAfterUpdate function 169
onBeforeAddAssociation function 169
onBeforeCreate function 169
onBeforeRemoveAssociation function 169
onBeforeRemove function 169
onBeforeUpdate function 169
one-many relationship 240
one-one relationship 240
one-to-many relationship 55
Open Authorization. See OAuth
OpenCMIS 227
OpenDocument Text (ODT) 214

OpenFire 311
OpenLaszlo

about 472
URL 472

OpenLaszlo Server 472
OpenOffice 210
OpenOffice.org 1.0 Text (SXW) 214
OpenSearch

about 389, 414
applying, on plugin portlets 417
interfaces 414
services 414
URL 414

OpenSearch framework
configuring 415, 416

OpenSearch interface 415
Open site 350
OpenSocial

about 339
gadget models 339
gadget portlets 341
gadget services 340
Shindig services extension 340

Open Source Initiative (OSI) 93
OpenSSO 11
OpenX 11
Opera Mobile 460
Opex 234
Optical Character Recognition. See OCR
Oracle 33
Oracle AS 34
Orbeon Forms 11
order element 58
organizations 19, 344
Orion 34
OSGi framework 11
out-of-the-box portlets 138

P
page-level permissions 18
page template 355
Palm WebOS 460
PayPal 11
PCX Format 235
PDFBox 210, 218
Perforce 36

[505]

Perl 467
permission 18
permission actions registration 130, 131
permission algorithm 130
permissionChecker attribute 99
permissions

adding, in custom portlets 128
assigning 131, 132
registering 130
verifying 132-135

persistence-class value 54
personalization 9
PHP

about 469
URL 469

PHP/Java Bridge 469
PHP portlet 469
phrase queries 399
Pike 467
Plain Old Java Object. See POJO
Plid attribute 99
plugin custom assets 435-437
plugin portlet

configuration page, implementing 363
plugin portlet project

about 84
filter mappings 84
knowledge base portlet project 85, 86
naming conventions 84
portlet project default template 84
setting up, with default templates 84, 85

plugin portlets
OpenSearch, applying on 417

plugins
about 20
custom assets' indexer, registering 397, 398
resources, adding to 128-130

plugins runtime structure
about 46
Ant target clean 46
Ant target deploy 46

Plugins SDK
about 20, 31, 32
Ant targets 77, 78
default plugins project, creating 77, 78
default project templates 79

fast development 79, 80
folder structure 41, 42
source code 40

Plugins SDK Environment (Level I) 21, 25
Plugins SDK source code 40
plugins services

sharing 161
POJO 53
Polls portlet

about 305
services 306

Polls portlet, services
about 306
PollsChoiceLocalService 306
PollsQuestion(Local)Service 306
PollsVote(Local)Service 306

POM 33
Pootle 71
Portable Document Format (PDF) 214
Portable Network Graphics 235
portal 7
PortalCacheCacheEventListener class 382
portal-client folder 38
portal core API

overwriting 144, 145
portal core assets

about 360
workflow capability 434, 435
scheduling 378, 379

Portal EE 32
portal-ext.properties file 141
portal folder 145, 146
portal framework 389
Portal-Group-Page-Content (PGPC)

about 15, 344
Group interface 350
Layout interface 355
Portal interface 345

portal-implementation 13
portal-impl folder 38
portal instance 16
portal-instance level relationship 242
portal instances 349
Portal interface

about 345
base models 345, 346

[506]

model listener 347, 348
portal instances 349

portal-kernel 13
portal-log4j-ext.xml file 143
portal properties hooks 23

about 161, 165, 166
event handlers 166, 167
model listeners 168-173

portal runtime structure
about 42, 43
Ant target clean 43
Ant target deploy 44, 45
Ant target start 43

PortalSearchEngine interface 405
portal-service 13, 31
portal service and implementation

about 47-49
JAR-based fix patch 49, 50

portal-service folder 38
portal service hooks 23
portal source code

about 37
folder structure 38-40

portal struts action hooks 23
portal tagging system 11
portal-web folder 38
portal workflow services

about 426
global models 426, 427
global services 427, 428
workflow permissions 428

portlet
about 356
configuring, in runtime 103, 104
portletabout 440

portlet app XSD 89
portlet bridge extension 100, 101
portlet bridges

about 465
alloy 465, 466
BSF 465, 466
groovy 465, 468
javascript 465, 469
MVC 465, 470
overview 465
PHP 465, 469
python 465, 468

ruby 465, 467
scripting 465, 467
WAI 465, 470, 471

portletConfig attribute 98
portlet data context 358
PortletDataContext interface 358
portlet data context listener 359
PortletDataContextListener interface 359
portlet data handler

about 357
services 359

PortletDataHandler interface 357, 358
portlet description 106
portletDisplay attribute 99
PortletDisplay class 451
portlet exporter 361, 362
portlet-ext.xml file 142
PortletFaces Bridge

about 482
URL 482

portlet folder 146
portlet-hbm.xml file 426
portlet importer 361, 362
portlet-instance-level permissions 129
portlet key

about 106
localized message, displaying for 107

portlet-level permissions 129
portlet-model-hints.xml file 114, 426
portletName attribute 98
portlet-name element 205
portlet-orm.xml file 426
portlet permissions 18
portlet preferences 105
portletPreferences attribute 98
PortletPreferencesListener 348
portletPreferencesValues attribute 98
portlets

about 7, 21, 24, 31, 32
getting, into Control Panel 102

portletSession attribute 98
portletSessionScope attribute 98
portlets folder 41
portlet-spring.xml file 426
portlet title 106
portlet XSD and DTD 89
PostgreSQL 33

[507]

presentation formats 215
PrimeFaces 477
private message (PM) 307
private page 354
Private site 350
project object model. See POM
PropertiesTransformerListener 254
proximity queries 399
public page 354
publishToLive function 366
publishToRemote function 369
pull quote

about 274
implementing, steps 274

Python 467, 468
Python portlet 468

Q
Quartz 373
Quartz job scheduling engine 9
Quartz scheduler 373
Quercust 469
Query interface 406
query parser

about 409
syntax 409, 410

QueryTerm, QueryTranslator interface 406

R
Rails

about 467
URL 467

range queries 292, 399
ranked searching 399
RawMetadataProcessor class 208
RBAC

about 17, 18, 130
group 19, 20
permission 18
resource 18
role 18
user 19

Readiris 238
Really Simple Syndication. See RSS feeds
realUser attribute 99
record classification 237

record model 236
records

about 233, 234
classifying 237
indexing 237
validating 237

records indexing 237
Records management (RM) 193, 233
RecoStar 238
reference element 57
RegexTransformerListener 254
regular organization 344, 351
related content 292
relationship

about 239
building 240
model 240
services 241

release.properties file 40
remote layouts

copying 370, 371
remote live

activating 368
remote live staging 365
remote staging and publishing 367, 368
remote staging services 369
removeJar method 158
render method 101
renderRequest attribute 98
renderResponse attribute 98
render URL

about 108
example 108

render weight
and AJAX 96

replicated cache, Ehcache 381, 382
repositories

converting 226
repository-ext.xml file 143
repository interface 224
reserved alias names 59
reserved column names 60
reserved elements 255
reserved JSON types 61
reserved names 59
reserved table names 60
resetPortalWebFiles method 158

[508]

resetWebXml method 158
Resin 34
resource action mapping 205, 206
resource element 207
resourceRequest attribute 98
resourceResponse attribute 98
resources

about 18
adding, to plugins 128-130

ResourceServingConfigurationAction class
104

REST 339
Restricted site 350
Rich Text Format (RTF) 214
RMI 381
role 18
Role Based Access Control. See RBAC
Rome API

about 321
usage 321

RPC 339
RSS 1.0 321
RSS 2.0 321
RSS feeds 321
Ruby 467
Ruby on Rails. See Rails
Ruby portlet 467
runtime

portlet, configuring 103, 104

S
S3Hook 226
Salesforce.com 11
SAML 2.0 11
sample ICEfaces 2 portlet 483
sample layout template 442
sample MyFaces 2 portlet 484
sample portlets

about 472
Apache Wicket 474
Dojo Toolkit 473
DWR 474
Ext JS 473
JSON 472
jWebSocket 474

OpenLaszlo 472
YUI 473

sample RichFaces 4 portlet 484
sample Spring 3 MVC portlet 486
sample Struts 2 portlet 476
sample WAP page 463, 464
sample workflow 431
sandbox deploy 148, 151, 152
SandboxDeployDir class 151
sandbox deploy listener 152
SandboxHandler interface 151
Sanitizer interface 267
sanitizers 267
SAP 33
scale function 202
scheduler

cluster support 376
interfaces 373, 374
services implementation 374, 375

scheduling 9, 343, 373
schema.xml file 403
SCIndexer class 397
scoped group 352
scopeGroupId attribute 99
scripting language 467
scripting portlet 467
scripts 467
Search 389
search context 407
search engine indexing

about 392
indexer 393
overview 392, 393

SearchEngine interface 405
Search Engine Optimization (SEO) 176, 389
search engines

about 404
interfaces 405, 406
search context 407

search engines, interfaces
BooleanClause 405
BooleanClauseOccur 405
BooleanQuery extends Query 405
Document 405
Hits 405
PortalSearchEngine 405
Query 406

[509]

QueryTerm 406
QueryTranslator 406
SearchEngine 405
SearchPermissionChecker 406
SortFactory 406
StringQueryFactory 406
TermQuery 406
TermQueryFactory 406
TermRangeQuery 406
TermRangeQueryFactory 406
WildcardQuery 406

search index 392
search method 408
SearchPermissionChecker interface 406
serveArticleRSS method 101
serve Attachment method 101
serveGroupArticleRSS method 101
serveResource method 101
service builder 393
Service-Builder

about 20, 21, 31, 50
convert-null element 66, 68
database structure definition 51, 52
entity 53
improvements 68, 69
Java data types, mapping into SQL data

types 61
JSON JavaScript 64
mappings 61
models and services 62-64
properties 64
reserved names 59
Spring and Hibernate configurations 65
SQL scripts 64

service-builder element 52
ServiceClp class 160
Service Oriented Architecture (SOA) 12
services

about 50
rebuilding 113, 114

services, document management
about 212
DLAppLocalService 213
DLAppService 213
DLLocalService 213
DLRepositoryLocalService 213

DLRepositoryService 213
DLService 213

services, image management
about 198, 199
DLFileEntryLocalService 198
DLFileEntryService 198
DLFolderLocalService 198
DLFolderService 198
ImageLocalService 199
ImageService 199

services, rebuilding
about 113
model hints 114-116
other databases 116-118

services, Web content management
JournalArticleImage(Local)Service 251
JournalArticle(Local)Service 251
JournalArticleResource(Local)Service 251
JournalContentSearch(Local)Service 251
JournalFeed(Local)Service 251
JournalStructure(Local)Service 251
JournalTemplate(Local)Service 251

service wrapper hooks 161, 181-183
servlet filters 161, 183-185
servlet service events 166
servlets mapping hooks 161, 183-185
Session object 393
setProperty method 475
shard-data-source-spring.xml file 426
sharding 349
shared mechanisms

about 353
shared-by-membership 353
shared-by-organization-hierarchy 353
shared-by-permission 353
shared-by-subscription 353

SharePoint 11
SharePoint integration 229, 230
SharePoint protocol

implementing 229, 230
Sharepoint Storage 230
Shindig 339
Shindig services extension 340
shopping cart, entities

about 309
ShoppingCart 309

[510]

ShoppingCartItem 309
ShoppingCategory 309
ShoppingCoupon 309
ShoppingItem 309
ShoppingItemField 309
ShoppingItemPrice 309
ShoppingOrder 309
ShoppingOrderItem 309

shopping cart portlet
about 308, 309
advanced calendar 310
entities 309
tasks management 310

simple 270
Simple Object Access Protocol. See SOAP
SimpleOCR 238
SiteMinder 11
site snapshot feature 10
site type

about 350
Open 350
Private 350
Restricted 350
System 350

Skype 10, 323
Smalltalk 467
SnapReader. See TopOCR
SOAP 53
social-activity-mapping element 207
social activity plugin

about 331
activities 334
models 332
requests 334
services 333
social activity tracking, adding 334
social bookmarks 335
UI taglib liferay-ui:social-activities 333

social activity statistics 338
social bookmarks 335
social coding 325
social equity

about 295, 336
models 336
services 337

social-equity-mapping element 206

social equity services
adding, on custom assets 337, 338

social identity repository
about 323
OpenSocial 339
social activity plugin 331-335
social equity plugin 336-338
social networking plugin 323-325
social office plugin 326-328

social networking
about 323
models 324
services 324, 325

social networking, models
MeetupsEntry 324
MeetupsRegistration 324
WallEntry 324

social networking, services
Google maps 325
MeetupsEntryLocalService 325
MeetupsRegistrationLocalService 325
SocialActivityLocalService 324, 325
SocialRequestLocalService 325
UserLocalService 324, 325
WallEntryLocalService 325

social office 295, 326
social office plugin

Contacts plugin 330, 331
hooks 328, 329
models 327
services 327, 328

social office plugin, models
about 327
MemberRequest 327
ProjectsEntry 327

social office plugin, services
GroupLocalService 327, 328
LayoutSetPrototypeService 328
MemberRequestLocalService 328
ProjectsEntryLocalService 327
RoleLocalService 327
SocialActivityInterpreterLocalService 327
SocialRequestInterpreterLocalService 328
SocialRequestLocalService 328
UserLocalService 327, 328

[511]

Software Catalog portlet
about 306
microblogging 307
private messaging 307
services 306

Solr
about 11, 264, 402, 403
URL 403

solr-spring.xml file 403
solr-web plugin 389
SortFactory interface 406
SourceForge website

URL 29
spreadsheet formats 214
Spring 3 MVC 20
Spring framework 13
Spring Framework 484
Spring Hibernate transaction manager 54
Spring MVC 484
Spring MVC portlet bridge 485
SpriteProcessor interface 203
SpriteProcessorUtil interface 203
SQL data types

Java data types, mapping into 61
sql folder 139
Sql folder 38
SQL joins

about 122
tables, joining among different plugins 123,

124
tables, joining among plugins and portal

code 124, 125
tables, joining inside plugin 122

SQL Server 33
SSO CAS 11
SSO (Single Sign-On) 390
staging

about 9
activating 364

staging group 365
staging, types

local live 365
remote live 365

standard folder 146
StorageEngine extends StorageAdapter

interface 282

string-containing process 398
string-equal process 398
StringQueryFactory interface 406
structure

about 257
types 257, 259
value format 259

StructurePKComparator 253
structures

retrieving 256
strus-config-ext.xml file 142
Struts 1.2.9 12
Struts 2 20
Struts 2 portlet 474
Struts 2 portlet-bridge 475, 476
struts action hook 186-189
struts actions hooks 161
Subclipse 36
subscribeArticle method 101
Subversion (SVN) 36
SugarCRM 11
Sun Raster Format 235
support-maven folder 38
supports element 205
support-tomcat folder 38
SVN 325
Sybase 33
system groups 351, 353
system portlet 102
systems development, Liferay

about 20, 21
Ext plugin 22
hook plugin 22, 23
layout template 24
portlet 24
theme plugin 24
web plugins 24

System site 350

T
tables

joining, among different plugins 123, 124
joining, among plugins and portal code

124, 125
joining, inside plugins 122

[512]

tagging content 283
Tag Image File Format 235
taglib, custom attribute 277
taglib folder 146
tags

about 287
models 283, 287
services 283, 288

tags cloud 288
tag version 37
Tapestry 474
Targa 235
targets 33
task management 310
taxonomies 11, 283
TCP Unicast 383
team 20
Team entity 344
template

about 110, 259, 260
custom CSS 261
custom JavaScript 262
language type 260
retrieving 256
values 261
variables 261

TemplateContext interface 266
template engines

about 452-454
services 455

template engine services 455
TemplateParser interface 267
template services 455
templates folder 146
template variables 456
tenants 17
TermCollector interface 409
TermQueryFactory interface 406
TermQuery interface 406
TermRangeQueryFactory interface 406
TermRangeQuery interface 406
Terracotta

about 380
clustered caching, setting up 384

Terracotta Server Array. See TSA
Tesseract 238
TextEngine 298

text formats 214
Theme attribute 99
ThemeCompanyId class 451
ThemeCompanyLimit class 451
theme default template

about 444, 445
customize theme, building 445
look-and-feel DTD 446-448

themeDisplay attribute 98
ThemeDisplay class 451
theme element 448
theme factories

about 452
PortletDisplayFactory 452
ThemeDisplayFactory 452
ThemeLoaderFactory 452

theme folder 41
ThemeGroupId class 451
ThemeGroupLimit class 451
theme plugin 21, 24
theme plugins

about 444
default template 444, 445
factories 452
services 450, 451

themes
about 31, 32, 439, 440, 464
deploying 449

theme services 450, 451
themes folder 146
TIFF 233
Tika 233
tiles-defs-ext.xml file 142
timeZone attribute 99
tinymce 270
tinymcesimple 270
Title keyword 263
TokensTransformerListener 254
Tomcat

about 34, 148
installing 35

tools folder 41
Tools folder 39
TopOCR 239
transformer listeners

about 254
ContentTransformerListener 254

[513]

LocaleTransformerListener 254
PropertiesTransformerListener 254
RegexTransformerListener 254
TokensTransformerListener 254
ViewCounterTransformerListener 254

transition effects 464
trunk version 37
TSA 383
Tunneling 369
TunnelServlet class 370
TunnelUtil class 370
tunnel-web

protecting 372
tunnel-web folder 39
tunnel-web services

about 369
HTTP services 371
remote layouts, copying 370, 371

Twitter 10, 335
tx-manager value 54
tx-required element 59

U
UDP Multicast 383
UID 265
UI taglib liferay-ui:discussion 318
UI taglib liferay-ui:flags 319
UI taglib liferay-ui:ratings 316, 317
UI taglib liferay-ui:social-activities 333
UML 239
uninstallExt method 158
Unique Identification Number. See UID
unregisterIndexerPostProcessor method 408
unsubscribeArticle method 101
unsubscribeGroupArticle method 101
updateArticle method 101
updateAttachments method 101
updateComment method 101
updateTemplate method 101
user

about 19, 353
adding 353
updating 353

User attribute 99
User entity 344
user group 19, 20

UserGroup entity 344
UserGroupListener 348
user information

securing 372
UserListener 348
UTF-8 263
util-bridges folder 39
util-java folder 39
util-taglib folder 39
UUID column 53

V
Vaadin

about 20, 471
URL 471

VAADIN folder 146
Vaadin portlet 79
VelocityContext interface 267
version element 446
video management

about 207
Antivirus scanner 209
default document types, adding 208

VideoProcessor class 208
View 83
view_article.jsp file 108
ViewCounterTransformerListener 254
view.jsp file 107
view_template.jsp file 108
View_templates.jsp file 108

W
WAI portlet 470, 471
WAP

about 460
layout template 460, 461
page transitions 463, 464

WAP layout template 460, 461
WAP page transitions 463, 464
WAP theme

about 460
building 462, 463

WCM
about 9, 247
models 248-250
services 248-251

[514]

Web 2.0 Mail portlet 13
Web Application Integrator (WAI)

about 11, 391, 470
limitations 391
need for 391
using 391
working 391, 392

WebAutoDeployer 391
WebAutoDeployListener 391
Web-based Distributed Authoring and

Versioning. See WebDAV
WebCacheItem 223
WebCachePool 223
web content 248
Web Content. See Liferay Journal
Web content management. See WCM
Web Content Search 389
WebDAV

about 222, 295
models 223
services 223

WebDAVRequest 223
WebDAV storage 222
web deployer 391
WebDeployer 391
Web Experience Management Interoperabil-

ity (WEMI) 295
web feed 321
WEB-INF folder

about 139
files 139
subfolders 139

Weblogic 149
WebLogic 34
web plugin 21, 24
web plugin project 390
webs 31
Web Service Deployment Descriptor. See

wsdd
webs folder 41
websites 439
WebSphere 34, 149
webs plugins 390
web template 259
web.xml file 142
Wicket. See Apache Wicket 20

Wiki engines
about 298
HtmlEngine 298
JSPWikiEngine 298
MediaWikiEngine 298
TextEngine 298

WikiIndexer class 397
Wiki link 274
wiki models

about 296
WikiNode 296
WikiPage 297
WikiPageDisplay 296
WikiPageResource 297

Wiki portlet
about 296
engines 298
models 296, 297
services 297

wiki services
WikiNode(Local)Service 297
WikiPage(Local)Service 297
WikiPageResourceLocalService 297

wildcard queries 399
WildcardQuery interface 406
Windows Phone 7 460
Wireless Application Protocol. See WAP
Wireless Universal Resource FiLe. See

WURFL
workflow

about 417, 418
applying, to assets 434
BPMN2 Visual Editor, for Eclipse 433
Kaleo-web models 418-420
Kaleo-web services 420-423
portal workflow services 426
URL 417

workflow definition 429
WorkflowDefinitionLink interface 427
workflow designer 432
workflow handler

about 434
BlogsEntry WorkflowHandler 434
DDLRecord WorkflowHandler 434
DLFileEntry WorkflowHandler 434
JournalArticle WorkflowHandler 435

[515]

LayoutRevision WorkflowHandler 434
MBMessage WorkflowHandler 435
User WorkflowHandler 434
WikiPage WorkflowHandler 435

WorkflowInstanceLink interface 427
workflow permissions, portal workflow

services 428
workflow XSD definition 429, 430
Workspace 36
wsdd 70, 71
WURFL 459
wurfl-web plugin 459
WYSIWYG editor 270, 298

X
XAML 472
X Bitmap 235
XHTML 20, 484
XML descriptor 21
XML Schema Definition. See XSD
XML security 266

X PixMap 235
XSD 87
XSL 260
XSL Content portlet 266
XSLTemplateParser class 266
XSS 176
XStream

about 362
URL 362

Xuggler
about 208
URL 208

XUL 472

Y
Yahoo! User Interface Library. See YUI
YM 10, 300, 323
YUI

about 458, 473
URL 473

YUI 3 15, 458, 473

Thank you for buying
Liferay Portal Systems Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Liferay Portal 6 Enterprise
Intranets
ISBN: 978-1-849510-38-7 Paperback: 692 pages

Build and maintain impressive corporate intranets
with Liferay

1. Develop a professional Intranet using Liferay's
practical functionality, usability, and technical
innovation

2. Enhance your Intranet using your innovation
and Liferay Portal's out-of-the-box portlets

3. Maximize your existing and future IT
investments by optimizing your usage of
Liferay Portal

Liferay User Interface
Development
ISBN: 978-1-84951-262-6 Paperback: 388 pages

Develop a powerful and rich user interface with
Liferay Portal 6.0

1. Design usable and great-looking user interfaces
for Liferay portals

2. Get familiar with major theme development
tools to help you create a striking new look for
your Liferay portal

3. Learn the techniques and tools to help you
improve the look and feel of any Liferay portal

4. A practical guide with lots of sample code
included from real Liferay Portal Projects free
for use for developing your own projects

Please check www.PacktPub.com for information on our titles

Liferay Beginner’s Guide
ISBN: 978-1-84951-700-3 Paperback: 396 pages

Quick and easy techniques to build, deploy, and
maintain your own Liferay portal

1. Detailed steps for installing Liferay portal and
getting it running, for people with no prior
experience of building portals

2. Follow the example of building a
neighbourhood site with pre-installed portlets
and custom portlets

3. Create your own communities, organizations
and user groups, and learn how to add users to
them

Learning Vaadin
ISBN: 978-1-84951-522-1 Paperback: 412 pages

Read this book or eBook to master the full range of
Web Development features powered

1. Discover the Vaadin framework in a
progressive and structured way

2. Learn about components, events, layouts,
containers, and bindings

3. Create outstanding new components by
yourself

4. Integrate with your existing frameworks and
infrastructure

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Liferay Enterprise Portal
	Liferay functionalities
	Document and media library—CMS
	Web content management—WCM
	Personalization and internalization
	Workflow, staging, scheduling, and publishing
	Social network and social office
	Monitoring, auditing, and reporting
	Tagging
	Integration

	Framework and architecture
	Service Oriented Architecture
	Enterprise Service Bus
	Standards

	Terminologies
	Multi-tenancy
	Role-based access control
	Resource, role, and permission
	User
	Group

	Systems development
	Ext plugin
	Hook plugin
	Portlet, layout template, and web plugins
	Theme plugin
	Development strategies
	Level I development
	Level II development
	Level III development

	An example: Knowledge base management
	More useful information
	Summary

	Chapter 2: Service-Builder and Development Environment
	Plugins SDK development environment
	Required tools
	JDK
	Ant
	Maven

	Databases
	MySQL

	Application servers
	Tomcat

	IDE
	Eclipse IDE
	Workspace
	Subclipse

	Portal and plugins structure
	Portal source code
	Portal source code structure

	Plugins SDK source code
	Plugins SDK structure

	Portal runtime structure
	Ant target clean
	Ant target start
	Ant target deploy
	What is happening?

	Plugins runtime structure
	Ant target clean
	Ant target deploy

	Portal service and implementation
	Interface and implementation
	JAR-based fix patch

	Service-Builder
	Ant target build-service
	Database structure definition
	Author, namespace, and exceptions

	Entity
	Attribute list declarations
	Column
	Finder
	Reference
	Order and tx-required

	Reserved names
	Reserved alias names
	Reserved table names
	Reserved column names
	Reserved JSON types

	Mappings
	Data types
	Models and services
	SQL scripts, properties, and JSON JavaScript
	Spring and Hibernate

	Element convert-null
	Service-Builder improvement
	More services
	Ant target build-db
	Ant target build-lang
	Ant target build-wsdd
	Ant target build-client

	Default data population
	Release information
	Data population
	Database case-sensitive queries
	Verifying processes

	Default project creation and templates
	Plugins default project creation—Ant targets
	Plugins default project templates

	Fast development
	What is happening?

	Summary

	Chapter 3: Generic MVC Portlets
	Plugin portlet project
	Naming conventions and filter mappings
	Portlet project default template
	Knowledge base portlet project

	Basic MVC portlet
	Project structure
	Portlet definition
	Liferay portlet registration
	Liferay portlet display
	Liferay plugin package
	View specification

	Portlet XSD and DTD
	Portlet app XSD
	Liferay portlet app DTD
	Liferay display DTD
	The Liferay plugin package DTD

	What's happening?
	MVC portlet bridge
	MVC portlet extension

	Portlet JSP/JavaScript/CSS loading
	AJAX and render weight
	Header JavaScript/CSS and footer JavaScript/CSS
	Predefined objects
	Direct JSP servlet

	What's happening?

	Advanced MVC portlet
	Portlet bridge extension
	Bringing portlets into the Control Panel
	Portlet configuration and preferences
	Portlet configuration
	Portlet preferences

	Portlet keys, title, and description
	Message

	Redirect
	Render URL
	Action URL

	Interacting with the database

	Rebuilding services
	What's happening?
	Model hints

	Other databases in plugins
	What's happening?

	Dynamic query API
	Queries in plugins
	Dynamic query factory
	Dynamic query operations

	SQL joins
	Joining tables inside a plugin
	Joining tables from different plugins
	Joining tables from plugins and portal core

	Custom query
	What's happening?

	Security and permissions
	Adding resources
	What's happening?

	Registering permission
	Permission algorithm
	Permission actions registration

	Assigning permissions
	Checking permission
	What's happening?

	Summary

	Chapter 4: Ext Plugin and Hooks
	Ext plugin
	Ext plugin project default template
	Creating an Ext plugin project

	Advanced customization
	Advanced configuration
	Advanced portal core API overwriting
	Advanced portal web overwriting

	Upgrading a legacy Ext environment
	What's happening?

	Deploy processes
	What's happening?
	Deployer

	Sandbox deploy
	Sandbox deploy listener

	Auto deploy
	Auto deploy listener
	Auto deployer

	Hot deploy
	Hot deploy listener

	Class loader proxy
	Generating the class loader proxy
	Sharing plugin services

	Hooks
	Hook plugin project default template
	Liferay hook DTD
	Portal properties hooks
	Event handlers
	Model listeners
	What's happening?

	Language properties hooks
	Multiple languages
	What's happening?

	Custom JSP hooks
	Custom JSP files and path mapping
	What's happening?

	Indexer post processor hooks
	What's happening?

	Service wrappers hooks
	What's happening?

	Servlet filter and servlet filter mappings hooks
	What's happening?

	Struts actions hooks
	What's happening?

	Summary

	Chapter 5: Enterprise Content Management
	Image management
	Models and services
	Models
	Base model
	Services
	Usage
	Image processor
	Image sprite processor

	Permissions
	Resource action mapping

	Video management
	Adding default document types
	Video and audio processors
	Antivirus scanner

	Document management
	Models and services
	Models
	Services
	Attachments

	Document versioning
	Converting document
	Comparing versions
	Previewing a live document
	Document check-in and check-out
	Moving document
	Document indexing

	WebDAV
	WebDAV storage
	WebDAV models and services

	Multiple repositories
	Repository interface
	Document hooks
	Converting repositories
	CMIS consumer and producer
	SharePoint integration
	Documentum integration
	Alfresco integration

	Records management
	Records in Document Library
	Record model
	Records validation and classification
	Records indexing
	OCR engines

	Building relationship
	Model
	Services
	Portal-instance level relationship

	Content authoring
	Content archiving

	Summary

	Chapter 6: DDL and WCM
	Web content management
	Models and services
	Models
	Services
	Comparator services
	Journal content services
	Journal tokens
	Retrieving structures, templates, and articles

	Structure
	Types
	Value format

	Template
	Language types
	Variables and values
	Custom CSS
	Custom JavaScript

	Localization
	Localized column
	Value format
	Localization interface

	Indexer
	XML security
	Sanitizer
	Antisamy

	ClassName-classPK pattern

	WYSIWYG editor
	CKEditor integration
	CKEditor structure
	CKEditor diffs

	CKEditor plugins
	Custom plugins

	Expando—custom attribute
	Models and services
	Models
	Services
	Taglib
	Data types

	Indexer
	NoSQL adapter

	Dynamic data lists and dynamic data mapping
	Models and services
	Models
	Services

	Storage adapter

	Asset, tagging, and categorization
	Models and services
	Models
	Services
	View count

	Tag
	Services
	Tags cloud

	Category
	Services
	Categories cloud
	Category tree

	Asset query
	Related content
	Range query

	Asset publishing
	Asset renderer framework

	Summary

	Chapter 7: Collaborative and Social API
	Collaboration
	Wiki
	Wiki models
	Wiki services
	Wiki engines

	Blogs
	Shared calendar
	Announcements
	Message Boards
	Models
	Services

	Bookmarks
	Polls

	Asset management
	Software Catalog
	Private messaging
	Microblogs

	Shopping cart
	Advanced calendar
	Tasks management

	Online chat and mail
	Chat
	Mail
	Asset management system
	Human resource management
	Marketplace

	Assets collaboration
	Asset ratings
	UI taglib liferay-ui:ratings

	Asset comments
	Model
	Service
	UI taglib liferay-ui:discussion

	Asset flags
	UI taglib liferay-ui:flags

	Assets subscription
	E-mail notification
	RSS feeds
	Attached model

	Social identity repository
	Social networking
	Models
	Services
	Social coding

	Social office
	Models
	Services
	Hooks
	Contacts

	Social activity
	Models
	Services
	UI taglib liferay-ui:social-activities
	Adding social activity tracking
	Requests and activities
	Social bookmarks

	Social equity
	Models
	Services
	Adding social equity services on custom assets
	Social activity statistics and top users

	OpenSocial
	Gadget models
	Gadget services
	Shindig services extension
	Gadget portlets

	Summary

	Chapter 8: Staging, Scheduling, Publishing, and Cache Clustering
	The pattern: Portal-Group-Page-Content
	Portal
	Base models
	Model listener
	Portal instance

	Group
	Services
	System groups
	User
	Layout set

	Layout
	Layout template
	Portlet

	LAR export and import
	Portlet data handler
	Interface
	Portlet data context
	Portlet data context listener
	Services
	Portal core assets
	Portlet exporter and importer

	Setup archive
	Configuration action
	Portlet preferences and portlet item

	Local staging and publishing
	Activating staging
	Local staging interface
	Local staging services

	Remote staging and publishing
	Activating remote live
	Remote staging services
	Tunnel-web services
	Copying remote layouts
	HTTP services
	Securing users' information

	Scheduling and messaging
	Scheduler
	Interfaces
	Services
	Clustering scheduler

	Messaging
	Scheduling layouts publishing
	Scheduling portal core assets and custom assets

	Cache clustering
	Portal cache interfaces
	Ehcache
	Replicated cache
	Replicated caching with JGroups
	Clustered caching via Terracotta

	Memcached
	Cache clustering
	Clustering models and interfaces
	Clustering settings

	Summary

	Chapter 9: Indexing, Search, and Workflow
	Webs plugins
	Web plugin project
	Web deployer and listener

	Web applications integrator
	What's happening?

	Indexing and search
	Overview
	Indexer
	Interface
	Indexing core assets
	Registering custom asset indexers in plugins
	Lucene
	Solr

	Search engine
	Interfaces
	Search context
	Faceted search
	Query parser syntax

	Look-ahead typing—auto complete
	Models and services
	AutoComplete

	OpenSearch
	Interface and services
	Configuration
	What's happening?
	Applying OpenSearch on plugin portlets

	Workflow
	Kaleo-web models
	Kaleo-web services
	Custom SQL
	Hooks
	Web
	Spring beans and messaging

	Portal workflow services
	Global models
	Global services
	Workflow permissions

	Workflow definition
	Workflow definition XSD
	Kaleo workflow definition
	Sample workflow
	BPMN 2

	Workflow designers
	BPMN2 Visual Editor for Eclipse
	jBPM and Drools
	Activiti

	Applying workflow to assets
	Portal core assets
	Plugin custom assets

	Summary

	Chapter 10: Mobile Devices and Portlet Bridges
	Layout template plugins
	Layout template
	Layout template DTD
	Sample layout template
	Layout template services

	Theme plugins
	Theme default template
	Default themes
	Building themes
	look-and-feel DTD

	What's happening after deploying themes?
	Theme services
	Theme factories

	Template engines
	Template engine services
	Template services
	Template variables

	Alloy UI
	Structure—HTML 5
	Style—CSS 3
	Behavior—YUI 3

	Mobile device detectors
	WURFL

	WAP theme
	WAP layout template
	jQuery and UI
	jQuery mobile
	Building a WAP theme
	Sample WAP page and page transitions

	Portlet bridges
	An overview of built-in portlet bridges
	Alloy portlet
	Base BSF portlet
	Scripting portlet
	Ruby portlet
	Python portlet
	Groovy portlet
	JavaScript portlet
	PHP portlet
	MVC portlet
	WAI portlet

	Vaadin widgets
	Sample portlets
	OpenLaszlo
	JSON
	YUI
	Ext JS
	Dojo Toolkit
	DWR—Direct web remoting
	jWebSocket
	Apache Wicket

	Struts 2 portlet
	Struts 2 portlet-bridge
	Sample Struts 2 portlet

	JSF 2 portlet
	Portlet faces bridge
	JBoss portlet bridge
	MyFaces portlet bridge
	PortletFaces

	Sample ICEfaces 2 portlet
	Sample MyFaces 2 portlet
	Sample RichFaces 4 portlet

	Spring 3 MVC portlet
	Spring MVC portlet bridge
	Sample Spring 3 MVC portlet

	Summary

	Index

